

 Mishka Installer

 v0.0.4

 Table of contents

 	Elixir programming language plugin management system

 	Modules

 	MishkaInstaller

 	MishkaInstaller.ActivitiesActionEnum

 	MishkaInstaller.ActivitiesSectionEnum

 	MishkaInstaller.ActivitiesStatusEnum

 	MishkaInstaller.ActivitiesTypeEnum

 	MishkaInstaller.Activity

 	MishkaInstaller.ContentPriorityEnum

 	MishkaInstaller.Database.ActivitySchema

 	MishkaInstaller.Database.DependencySchema

 	MishkaInstaller.Database.Helper

 	MishkaInstaller.Database.PluginSchema

 	MishkaInstaller.Database.SettingSchema

 	MishkaInstaller.DepCompileJob

 	MishkaInstaller.DepUpdateJob

 	MishkaInstaller.Dependency

 	MishkaInstaller.DependencyEnum

 	MishkaInstaller.DependencyTypeEnum

 	MishkaInstaller.Helper.Extra

 	MishkaInstaller.Helper.LibraryMaker

 	MishkaInstaller.Helper.Sender

 	MishkaInstaller.Helper.Setting

 	MishkaInstaller.Hook

 	MishkaInstaller.Installer.DepChangesProtector

 	MishkaInstaller.Installer.DepHandler

 	MishkaInstaller.Installer.Live.DepGetter

 	MishkaInstaller.Installer.MixCreator

 	MishkaInstaller.Installer.RunTimeSourcing

 	MishkaInstaller.Plugin

 	MishkaInstaller.PluginDependTypeEnum

 	MishkaInstaller.PluginETS

 	MishkaInstaller.PluginState

 	MishkaInstaller.PluginStateDynamicSupervisor

 	MishkaInstaller.PluginStatusEnum

 	MishkaInstaller.Reference.OnAfterDependency

 	MishkaInstaller.Reference.OnChangeDependency

 	MishkaInstaller.Reference.OnInit

 	MishkaInstaller.Setting

 	Mix Tasks

 	mix mishka_installer.db.gen.migration

Elixir programming language plugin management system

[image: MishkaInstaller CI] [image: Hex.pm] [image: GitHub license] [image: GitHub issues]
Build purpose

Imagine you are going to make an application that will have many plugins built for it in the future. But the fact that many manipulations will be made on your source code makes it difficult to maintain the application. For example, you present a content management system for your users, and now they need to activate a section for registration and SMS; the system allows you to present your desired input/output absolutely plugin oriented to your users and makes it possible for the developers to write their required applications beyond the core source code.
We have used this library in the Mishka content management system.

NOTICE: Do not use the master branch; this library is under heavy development. Expect version 0.0.4, and for using the new features, please wait until a new release is out.
Plugin management system theory and installation of Elixir libraries at runtime

The functionality of this library can be conceptualized as an architectural potential that is composed of two primary components, which are as follows:
	Event management
	Managing removal and installation of Elixir plugins without downtime.

When a programmer uses this library for his own software development, we sought to ensure that in addition to the established capabilities, he also has access to a set of appropriate standards for software development that are based on preset behaviors that can be applied. This was our goal. It streamlines and organizes the work of a group working on a project while also facilitating the creation of software.
Error control and tree structure, which enable us to develop a system that is robust and trustworthy, are two of the guiding ideas behind the construction of this library, which has garnered attention from people all around the world.
The MishkaInstaller library can be created in various systems, and it provides fundamental capabilities such as the management of plugin states and the application of standard behaviors. These features can all be accessed by specified hooks in the library.
Behaviors and events

In this section, you can define a series of events for each event, for example: after successful registration or unsuccessful purchase from “the store”, and for each event, put a set of callbacks in one module. After completing this step, when the user wants to create his own plugin, the @behaviour module will call you in its action module.
This helps you have a regular and error-free system, and the library uses an almost integrated structure in all of its events.
Hook with priority

In Mishka Elixir Plugin Management Library, a series of action or hook functions are given to the developer of the main plugin or software, which helps build plugins outside the system and convert software sections into separate events. Some of the functions of this module include the following:
	Registering a plugin outside of the system in database and ram state
	Removing plugin from database and state
	Restoring plugin
	Successful pause of plugin
	Hook plugin
	Search among the events

And other functions that help both the mother software become an event-driven system and the developer can build the desired plugin or extension for different parts of the software and install it on the system as a separate package. This package can also be published in hex.
State management and links to the database supporting PostgreSQL

The Hook module manages a large part of this part, and the developer of the external plugin usually does not need it much. Still, this part creates a state on RAM for each plugin that is activated in a specific event and a dynamic supervisor for it. This allows us in case of an error in each plugin; the other plugins in the different events face no errors, and the system will try to restart with various strategies.
It should be noted for more stability and data storage after registering a plugin in the system; This section also maintains a backup copy of the database and strategies for recall in the event in case of an error. But to speed up the calling of each plugin, the website always uses state.

Managing removal and installation of Elixir plugins without downtime
Through the use of event management, you are able to convert any portion of your program into a standalone event based on the specific requirements of the strategy, and you are also able to activate an endless number of modules or plugins for each event. However, if you do not perform installation at runtime, you will need to ensure that you call all of the necessary plugins in addition to the primary source when you start the software. One example of this would be installing an Elixir library in the mix.exs file.
By utilizing this capability, you will be able to add your program to the system and manage it after adding it, even if your software is already operating. The following are examples of management facilities that may be included:
	Register a plugin for a specified event
	Activate the plugin for the installation
	Put an end to the installation of plugins
	Resetting the configuration plugin used during installation
	Uninstall the currently active plugin.
	Manage the plugin's requirements after they have been installed.
	Keeping an eye on the graphic panel and demonstrating it to the site managers

And there are other scenarios that are known as APIs or Hooks to the software developer and management, and making use of them is a pretty straightforward process.
It is important to note that this capability does not involve Erlang's hot coding and that it can only be used to install an Elixir library. Additionally, it is still in the process of being developed and is now in an experimental stage. If you use the software, you need to make sure you have a backup of it. At the moment, it is merely in the testing phase of its development, which consists of trial and error.
To use this section, please read the documentation of this library

Installing the library:

It should be noted that this library must be installed in two parts of the plugin and the software that wants to display the plugins, and due to its small dependencies, it does not cause any problems. To install, just add this library to your "mix.exs" in the "deps" function as follows:
def deps do
 [
 {:mishka_installer, "~> 0.0.4"}
]
end
Using the library for extension creation and event activation:

After installing this library, you must first install the required database of this package on your website, for which a mix task has been created, which is enough to load it once in your terminal, in the project path before the start.
mix mishka_installer.db.gen.migration
After implementing the above sections, you must first implement events in your main software and place the call function from the Hook module there to call all the plugins activated in the event you want based on priority. And give the state you want, to these plugins in order, and the output you expect will eventually be generated.
For example, you can see the mentioned description in a function controller in phoenix after a successful registration as the following:
def login(conn, %{"user" => %{"email" => email, "password" => password}} = _params) do
 # If your conditions are passed we call an event and pass it a struct of entries
 # which our developers need to create plugin with this information
 state = %MishkaInstaller.Reference.OnUserAfterLogin{
 conn: conn,
 endpoint: :html,
 ip: user_ip, type: :email,
 user_info: user_info
 }

 hook = MishkaInstaller.Hook.call(event: "on_user_after_login", state: state)

 hook.conn
 |> renew_session()
 |> put_session(:user_id, user_info.id)
 |> put_flash(:info, "You entered to our world, well played.")
 |> redirect(to: "/home")
end
Now the event is ready in the part where you need to allow the developer to make his own plugins for it. And it's time to write a plugin for this section. This is very simple. Consider the following example:
defmodule MishkaUser.SuccessLogin do
 alias MishkaInstaller.Reference.OnUserAfterLogin
 use MishkaInstaller.Hook,
 module: __MODULE__,
 behaviour: OnUserAfterLogin,
 event: :on_user_after_login,
 initial: []

 @spec initial(list()) :: {:ok, OnUserAfterLogin.ref(), list()}
 def initial(args) do
 event = %PluginState{name: "MishkaUser.SuccessLogin", event: Atom.to_string(@ref), priority: 1}
 Hook.register(event: event)
 {:ok, @ref, args}
 end

 @spec call(OnUserAfterLogin.t()) :: {:reply, OnUserAfterLogin.t()}
 def call(%OnUserAfterLogin{} = state) do
 new_state = Your_Code_Or_Function
 {:reply, new_state}
 end
end
As you can see in the above, we used MishkaInstaller.Reference.OnUserAfterLogin in order to activate behavior which has a few callback in it, and you can see here.

There should be two main functions in each plugin, namely initial and also call. In the first function, we introduce our plugin, and in the second function, whenever the action function calls this special event for which the plugin is written, based on priority. This plugin is also called. But what is important is the final output of the call function. This output may be the input of other plugins with higher priorities. The order of the plugins is from small to large, and if several plugins are registered for a number, it is sorted by name in the second parameter. And it should be noted that in any case, if you did not want this state to go to other plugins and the last output is returned in the same plugin, and you can replace {:reply, :halt, new_state} with {:reply, new_state}.

Subsequent plugins with higher priorities are not counted, and the loop ends here.
Notice that a Genserver will be made based on each plugin name without a supervisor, which can be used for temporary memory in the case when the __using__ function is used as above, which results in the following option:
use MishkaInstaller.Hook,
 module: __MODULE__,
 behaviour: OnUserAfterLogin,
 event: :on_user_after_login,
 initial: []
The last two step to use the plugin you have to put it in your Application module so that whenever the server is turned off and on, the plugin is run again and if it is not registered, a copy of its support will be provided once in the database.
children = [
 %{id: YOUR_PLUGIN_MODULE, start: {YOUR_PLUGIN_MODULE, :start_link, [[]]}}
]
And add these config in your project like /config/config.exs
config :mishka_installer, :basic,
 repo: YOUR_Repo,
 pubsub: YOUR_PUBSUB or nil,
 html_router: YOUR_WEBSITE_ROUTER_MODULE,
 project_path: YOUR_PROJECT_PATH,
 mix: YOUR_MIX_MODULE,
 mix_path: YOUR_MIX_EXS_PATH,
 gettext: YOUR_GETTEXT
If you are using Phoenix as developer mode, please disable live_reload in dev.exs.
Please add reloadable_apps: [:mishka_installer] to your endpoint config in config.exs file.

Because there are a lot of moving elements in this plugin, you need to read the documentation before using it.

You can see our recommendations and other colleagues in the Proposal repository, and if you have a request or idea, send us the full description.
Please help us by submitting suggestions and reviewing the project so that Mishka Group can produce more products and provide them to programmers and webmasters, and online software.

MishkaInstaller

Elixir programming language plugin management system
[image: MishkaInstaller CI] [image: Hex.pm] [image: GitHub license] [image: GitHub issues]
Build purpose

Imagine you are going to make an application that will have many plugins built for it in the future. But the fact that many manipulations will be made on your source code makes it difficult to maintain the application. For example, you present a content management system for your users, and now they need to activate a section for registration and SMS; the system allows you to present your desired input/output absolutely plugin oriented to your users and makes it possible for the developers to write their required applications beyond the core source code.
We have used this library in the Mishka content management system.

NOTICE: Do not use the master branch; this library is under heavy development. Expect version 0.0.4, and for using the new features, please wait until a new release is out.
Plugin management system theory and installation of Elixir libraries at runtime

The functionality of this library can be conceptualized as an architectural potential that is composed of two primary components, which are as follows:
	Event management
	Managing removal and installation of Elixir plugins without downtime.

When a programmer uses this library for his own software development, we sought to ensure that in addition to the established capabilities, he also has access to a set of appropriate standards for software development that are based on preset behaviors that can be applied. This was our goal. It streamlines and organizes the work of a group working on a project while also facilitating the creation of software.
Error control and tree structure, which enable us to develop a system that is robust and trustworthy, are two of the guiding ideas behind the construction of this library, which has garnered attention from people all around the world.
The MishkaInstaller library can be created in various systems, and it provides fundamental capabilities such as the management of plugin states and the application of standard behaviors. These features can all be accessed by specified hooks in the library.
Behaviors and events

In this section, you can define a series of events for each event, for example: after successful registration or unsuccessful purchase from “the store”, and for each event, put a set of callbacks in one module. After completing this step, when the user wants to create his own plugin, the @behaviour module will call you in its action module.
This helps you have a regular and error-free system, and the library uses an almost integrated structure in all of its events.
Hook with priority

In Mishka Elixir Plugin Management Library, a series of action or hook functions are given to the developer of the main plugin or software, which helps build plugins outside the system and convert software sections into separate events. Some of the functions of this module include the following:
	Registering a plugin outside of the system in database and ram state
	Removing plugin from database and state
	Restoring plugin
	Successful pause of plugin
	Hook plugin
	Search among the events

And other functions that help both the mother software become an event-driven system and the developer can build the desired plugin or extension for different parts of the software and install it on the system as a separate package. This package can also be published in hex.
State management and links to the database supporting PostgreSQL

The Hook module manages a large part of this part, and the developer of the external plugin usually does not need it much. Still, this part creates a state on RAM for each plugin that is activated in a specific event and a dynamic supervisor for it. This allows us in case of an error in each plugin; the other plugins in the different events face no errors, and the system will try to restart with various strategies.
It should be noted for more stability and data storage after registering a plugin in the system; This section also maintains a backup copy of the database and strategies for recall in the event in case of an error. But to speed up the calling of each plugin, the website always uses state.

Managing removal and installation of Elixir plugins without downtime
Through the use of event management, you are able to convert any portion of your program into a standalone event based on the specific requirements of the strategy, and you are also able to activate an endless number of modules or plugins for each event. However, if you do not perform installation at runtime, you will need to ensure that you call all of the necessary plugins in addition to the primary source when you start the software. One example of this would be installing an Elixir library in the mix.exs file.
By utilizing this capability, you will be able to add your program to the system and manage it after adding it, even if your software is already operating. The following are examples of management facilities that may be included:
	Register a plugin for a specified event
	Activate the plugin for the installation
	Put an end to the installation of plugins
	Resetting the configuration plugin used during installation
	Uninstall the currently active plugin.
	Manage the plugin's requirements after they have been installed.
	Keeping an eye on the graphic panel and demonstrating it to the site managers

And there are other scenarios that are known as APIs or Hooks to the software developer and management, and making use of them is a pretty straightforward process.
It is important to note that this capability does not involve Erlang's hot coding and that it can only be used to install an Elixir library. Additionally, it is still in the process of being developed and is now in an experimental stage. If you use the software, you need to make sure you have a backup of it. At the moment, it is merely in the testing phase of its development, which consists of trial and error.
To use this section, please read the documentation of this library

Installing the library:

It should be noted that this library must be installed in two parts of the plugin and the software that wants to display the plugins, and due to its small dependencies, it does not cause any problems. To install, just add this library to your "mix.exs" in the "deps" function as follows:
def deps do
[
 {:mishka_installer, "~> 0.0.4"}
]
end
Using the library for extension creation and event activation:

After installing this library, you must first install the required database of this package on your website, for which a mix task has been created, which is enough to load it once in your terminal, in the project path before the start.
mix mishka_installer.db.gen.migration
After implementing the above sections, you must first implement events in your main software and place the call function from the Hook module there to call all the plugins activated in the event you want based on priority. And give the state you want, to these plugins in order, and the output you expect will eventually be generated.
For example, you can see the mentioned description in a function controller in phoenix after a successful registration as the following:
def login(conn, %{"user" => %{"email" => email, "password" => password}} = _params) do
 # If your conditions are passed we call an event and pass it a struct of entries
 # which our developers need to create plugin with this information
 state = %MishkaInstaller.Reference.OnUserAfterLogin{
 conn: conn,
 endpoint: :html,
 ip: user_ip, type: :email,
 user_info: user_info
 }

 hook = MishkaInstaller.Hook.call(event: "on_user_after_login", state: state)

 hook.conn
 |> renew_session()
 |> put_session(:user_id, user_info.id)
 |> put_flash(:info, "You entered to our world, well played.")
 |> redirect(to: "/home")
end
Now the event is ready in the part where you need to allow the developer to make his own plugins for it. And it's time to write a plugin for this section. This is very simple. Consider the following example:
defmodule MishkaUser.SuccessLogin do
 alias MishkaInstaller.Reference.OnUserAfterLogin
 use MishkaInstaller.Hook,
 module: __MODULE__,
 behaviour: OnUserAfterLogin,
 event: :on_user_after_login,
 initial: []

 @spec initial(list()) :: {:ok, OnUserAfterLogin.ref(), list()}
 def initial(args) do
 event = %PluginState{name: "MishkaUser.SuccessLogin", event: Atom.to_string(@ref), priority: 1}
 Hook.register(event: event)
 {:ok, @ref, args}
 end

 @spec call(OnUserAfterLogin.t()) :: {:reply, OnUserAfterLogin.t()}
 def call(%OnUserAfterLogin{} = state) do
 new_state = Your_Code_Or_Function
 {:reply, new_state}
 end
end
As you can see in the above, we used MishkaInstaller.Reference.OnUserAfterLogin in order to activate behavior which has a few callback in it, and you can see here.

There should be two main functions in each plugin, namely initial and also call. In the first function, we introduce our plugin, and in the second function, whenever the action function calls this special event for which the plugin is written, based on priority. This plugin is also called. But what is important is the final output of the call function. This output may be the input of other plugins with higher priorities. The order of the plugins is from small to large, and if several plugins are registered for a number, it is sorted by name in the second parameter. And it should be noted that in any case, if you did not want this state to go to other plugins and the last output is returned in the same plugin, and you can replace {:reply, :halt, new_state} with {:reply, new_state}.

Subsequent plugins with higher priorities are not counted, and the loop ends here.
Notice that a Genserver will be made based on each plugin name without a supervisor, which can be used for temporary memory in the case when the __using__ function is used as above, which results in the following option:
use MishkaInstaller.Hook,
 module: __MODULE__,
 behaviour: OnUserAfterLogin,
 event: :on_user_after_login,
 initial: []
The last two step to use the plugin you have to put it in your Application module so that whenever the server is turned off and on, the plugin is run again and if it is not registered, a copy of its support will be provided once in the database.
children = [
%{id: YOUR_PLUGIN_MODULE, start: {YOUR_PLUGIN_MODULE, :start_link, [[]]}}
]
And add these config in your project like /config/config.exs
config :mishka_installer, :basic,
repo: YOUR_Repo,
pubsub: YOUR_PUBSUB or nil,
html_router: YOUR_WEBSITE_ROUTER_MODULE,
project_path: YOUR_PROJECT_PATH,
mix: YOUR_MIX_MODULE,
mix_path: YOUR_MIX_EXS_PATH,
gettext: YOUR_GETTEXT
Because there are a lot of moving elements in this plugin, you need to read the documentation before using it.

You can see our recommendations and other colleagues in the Proposal repository, and if you have a request or idea, send us the full description.
Please help us by submitting suggestions and reviewing the project so that Mishka Group can produce more products and provide them to programmers and webmasters, and online software.

 Anchor for this section

 Summary

 Functions

 checksum(file_path)

 dependency_activity(state, priority, status \\ "error")

 ensure_compiled(module)

 get_config(item, section \\ :basic)

 gettext()

 ip(user_ip)

 plugin_activity(action, plugin, priority, status \\ "info")

 repo()

 start_oban_in_runtime(opts \\ MishkaInstaller.get_config(:oban_config))

 trim_url(url)

 update_activity(state, priority, status \\ "error")

 Anchor for this section

Functions

 Link to this function

 checksum(file_path)

 View Source

 Link to this function

 dependency_activity(state, priority, status \\ "error")

 View Source

 @spec dependency_activity(map(), String.t(), String.t()) :: nil

 Link to this function

 ensure_compiled(module)

 View Source

 Link to this function

 get_config(item, section \\ :basic)

 View Source

 Link to this function

 gettext()

 View Source

 Link to this function

 ip(user_ip)

 View Source

 Link to this function

 plugin_activity(action, plugin, priority, status \\ "info")

 View Source

 @spec plugin_activity(
 String.t(),
 MishkaInstaller.PluginState.t(),
 String.t(),
 String.t()
) ::
 :ignore | {:error, any()} | {:ok, pid()} | {:ok, pid(), any()}

 Link to this function

 repo()

 View Source

 Link to this function

 start_oban_in_runtime(opts \\ MishkaInstaller.get_config(:oban_config))

 View Source

 @spec start_oban_in_runtime(nil | list()) ::
 :ignore | {:error, any()} | {:ok, pid()} | {:ok, pid(), any()}

 Link to this function

 trim_url(url)

 View Source

 Link to this function

 update_activity(state, priority, status \\ "error")

 View Source

 @spec update_activity(map(), String.t(), String.t()) :: nil

MishkaInstaller.ActivitiesActionEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() ::
 :add
 | :edit
 | :delete
 | :destroy
 | :read
 | :send_request
 | :receive_request
 | :other
 | :auth
 | :compiling
 | :updating

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.ActivitiesSectionEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() ::
 :blog_post
 | :blog_category
 | :comment
 | :tag
 | :other
 | :blog_author
 | :blog_post_like
 | :blog_tag_mapper
 | :blog_link
 | :blog_tag
 | :activity
 | :bookmark
 | :comment_like
 | :notif
 | :subscription
 | :setting
 | :permission
 | :role
 | :user_role
 | :identity
 | :user
 | :compiling
 | :updating

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.ActivitiesStatusEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :error | :info | :warning | :report | :throw | :exit

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.ActivitiesTypeEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() ::
 :section
 | :email
 | :internal_api
 | :external_api
 | :html_router
 | :api_router
 | :db
 | :plugin
 | :dependency

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.Activity

This module is for communication with Activities table and has essential functions such as
adding, editing, deleting, and displaying.
This module is related to module MishkaInstaller.Database.ActivitySchema.

 Anchor for this section

 Summary

 Functions

 create(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 create_activity_by_start_child(params, extra \\ %{})

 This function helps to save the latest activities in different nodes without waiting for a response.

 create_activity_by_task(params, extra \\ %{})

 This function helps to save the latest activities in different nodes within waiting for a response.

 delete(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 edit(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 edit(attrs, allowed_fields)

 See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 show_by_id(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 subscribe()

 If you want to get the latest changes from the Activities table of your database,
this function can help you to be subscribed.

 Anchor for this section

Functions

 Link to this function

 create(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 Link to this function

 create_activity_by_start_child(params, extra \\ %{})

 View Source

 @spec create_activity_by_start_child(map(), map()) ::
 :ignore | {:error, any()} | {:ok, pid()} | {:ok, pid(), any()}

This function helps to save the latest activities in different nodes without waiting for a response.

 Link to this function

 create_activity_by_task(params, extra \\ %{})

 View Source

 @spec create_activity_by_task(map(), map()) :: Task.t()

This function helps to save the latest activities in different nodes within waiting for a response.

 Link to this function

 delete(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 Link to this function

 edit(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 Link to this function

 edit(attrs, allowed_fields)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 Link to this function

 show_by_id(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 Link to this function

 subscribe()

 View Source

 @spec subscribe() :: :ok | {:error, {:already_registered, pid()}}

If you want to get the latest changes from the Activities table of your database,
this function can help you to be subscribed.

MishkaInstaller.ContentPriorityEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :none | :low | :medium | :high | :featured

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.Database.ActivitySchema

This module has been implemented to create the Activities table schema.

 Anchor for this section

 Summary

 Functions

 changeset(struct, params \\ %{})

 Anchor for this section

Functions

 Link to this function

 changeset(struct, params \\ %{})

 View Source

 @spec changeset(
 struct(),
 map()
) :: Ecto.Changeset.t()

MishkaInstaller.Database.DependencySchema

This module has been implemented to create the Dependencies table schema.

 Anchor for this section

 Summary

 Functions

 changeset(struct, params \\ %{})

 Anchor for this section

Functions

 Link to this function

 changeset(struct, params \\ %{})

 View Source

 @spec changeset(
 struct(),
 map()
) :: Ecto.Changeset.t()

MishkaInstaller.Database.Helper

This module provides some functions as utility tools to work with a database and other things.

 Anchor for this section

 Summary

 Functions

 allow_if_sandbox(parent_pid, orphan_msg \\ :stop)

 Helper function to keep PID alive for testing Genserver and database.

 convert_string_map_to_atom_map(map)

 Converting string map to atom map.

 translate_errors(changeset)

 If you need to convert database errors into a list, this function can be helpful.
One of its uses can be correcting returned errors from the database into a list and converting it into JSON.

 uuid(id)

 UUID validation.

 validate_binary_id(changeset, field, options \\ [])

 UUID validation for ecto schema.

 Anchor for this section

Functions

 Link to this function

 allow_if_sandbox(parent_pid, orphan_msg \\ :stop)

 View Source

Helper function to keep PID alive for testing Genserver and database.

 reference

 Reference

	https://elixirforum.com/t/how-to-send-sandbox-allow-for-each-dynamic-supervisor-testing/46422/4

 examples

 Examples

MishkaInstaller.Database.Helper.allow_if_sandbox(pid)

 Link to this function

 convert_string_map_to_atom_map(map)

 View Source

 @spec convert_string_map_to_atom_map(map()) :: map()

Converting string map to atom map.

 examples

 Examples

MishkaInstaller.Database.Helper.convert_string_map_to_atom_map(%{"name" => "Mishka"})

 Link to this function

 translate_errors(changeset)

 View Source

 @spec translate_errors(Ecto.Changeset.t()) :: %{
 optional(atom()) => [binary() | map()]
}

If you need to convert database errors into a list, this function can be helpful.
One of its uses can be correcting returned errors from the database into a list and converting it into JSON.

 examples

 Examples

MishkaInstaller.Database.Helper.translate_errors(changeset)

 Link to this function

 uuid(id)

 View Source

 @spec uuid(any()) :: {:error, :uuid} | {:ok, :uuid, Ecto.UUID.t()}

UUID validation.

 examples

 Examples

MishkaInstaller.Database.Helper.uuid(12)
OR
MishkaInstaller.Database.Helper.uuid("8c512ac2-e002-4589-a93f-b479e46c249d")

 Link to this function

 validate_binary_id(changeset, field, options \\ [])

 View Source

 @spec validate_binary_id(Ecto.Changeset.t(), atom(), any()) :: Ecto.Changeset.t()

UUID validation for ecto schema.

 examples

 Examples

MishkaInstaller.Database.Helper.validate_binary_id(12)
OR
MishkaInstaller.Database.Helper.validate_binary_id("8c512ac2-e002-4589-a93f-b479e46c249d")

MishkaInstaller.Database.PluginSchema

This module has been implemented to create the Plugins table schema.

 Anchor for this section

 Summary

 Functions

 changeset(struct, params \\ %{})

 Anchor for this section

Functions

 Link to this function

 changeset(struct, params \\ %{})

 View Source

 @spec changeset(
 struct(),
 map()
) :: Ecto.Changeset.t()

MishkaInstaller.Database.SettingSchema

This module has been implemented to create the Settings table schema.

 Anchor for this section

 Summary

 Functions

 changeset(struct, params \\ %{})

 Anchor for this section

Functions

 Link to this function

 changeset(struct, params \\ %{})

 View Source

 @spec changeset(
 struct(),
 map()
) :: Ecto.Changeset.t()

MishkaInstaller.DepCompileJob

With the assistance of this module, you will be able to construct a queue to process and install extensions.
This module's responsibility includes reactivating the queue using the MishkaInstaller.Installer.DepChangesProtector module as one of its tasks.

 Anchor for this section

 Summary

 Functions

 add_job(app, type)

 Register an extension to the compiling queue.
With the assistance of this function, you will be able to construct a queue,
download and upload plugins in a sequential fashion from a variety of sources, and register them in your system.

 Anchor for this section

Functions

 Link to this function

 add_job(app, type)

 View Source

 @spec add_job(String.t(), atom()) :: {:error, any()} | {:ok, Oban.Job.t()}

Register an extension to the compiling queue.
With the assistance of this function, you will be able to construct a queue,
download and upload plugins in a sequential fashion from a variety of sources, and register them in your system.

 examples

 Examples

MishkaInstaller.DepCompileJob.add_job("mishka_installer", :cmd)
or
MishkaInstaller.DepCompileJob.add_job("mishka_installer", :port)

MishkaInstaller.DepUpdateJob

This module provides assistance to your software so that it may check all of the plugins and libraries that you have installed
to see whether a newer version of those extensions has been made available.

 Anchor for this section

 Summary

 Functions

 check_added_dependencies_update()

 Check and find new updates of extensions if new releases exist. This function just returns :ok atom and saves update news into ETS.

 ets()

 Start ETS table to store new updates of installed extensions.

 get(app)

 Get new release information of an extension.

 get_all()

 Get new releases information of extensions.

 subscribe()

 This function provides a channel to get new updates of extension releases; your project can subscribe and use this information.

 Anchor for this section

Functions

 Link to this function

 check_added_dependencies_update()

 View Source

 @spec check_added_dependencies_update() :: :ok

Check and find new updates of extensions if new releases exist. This function just returns :ok atom and saves update news into ETS.

 examples

 Examples

MishkaInstaller.DepUpdateJob.check_added_dependencies_update()

 Link to this function

 ets()

 View Source

Start ETS table to store new updates of installed extensions.

 examples

 Examples

MishkaInstaller.DepUpdateJob.ets()

 Link to this function

 get(app)

 View Source

 @spec get(binary()) :: nil | tuple()

Get new release information of an extension.

 examples

 Examples

MishkaInstaller.DepUpdateJob.get("test_app")

 Link to this function

 get_all()

 View Source

 @spec get_all() :: [tuple()]

Get new releases information of extensions.

 examples

 Examples

MishkaInstaller.DepUpdateJob.get_all()

 Link to this function

 subscribe()

 View Source

 @spec subscribe() :: :ok | {:error, {:already_registered, pid()}}

This function provides a channel to get new updates of extension releases; your project can subscribe and use this information.

 examples

 Examples

MishkaInstaller.DepUpdateJob.subscribe()

MishkaInstaller.Dependency

This module is for communication with Dependencies table and has essential functions such as
adding, editing, deleting, and displaying.
This module is related to module MishkaInstaller.Database.DependencySchema.

 Anchor for this section

 Summary

 Functions

 change_dependency_type_with_app(app, dependency_type)

 This is an aggregation function that includes editing a type of app.

 create(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 create(attrs, allowed_fields)

 See MishkaDeveloperTools.DB.CRUD.crud_add/1.

 create_or_update(data)

 This is an aggregation function that includes editing or adding.

 delete(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 dependencies()

 Show all dependencies.

 dependencies(atom)

 edit(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 edit(attrs, allowed_fields)

 See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 show_by_id(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 show_by_name(app)

 See MishkaDeveloperTools.DB.CRUD.crud_get_by_field/2.

 subscribe()

 If you want to get the latest changes from the Dependencies table of your database,
this function can help you to be subscribed.

 Anchor for this section

Functions

 Link to this function

 change_dependency_type_with_app(app, dependency_type)

 View Source

 @spec change_dependency_type_with_app(String.t(), String.t()) ::
 {:ok, :change_dependency_type_with_app, map()}
 | {:error, :change_dependency_type_with_app, :dependency, atom() | map()}

This is an aggregation function that includes editing a type of app.

 Link to this function

 create(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 Link to this function

 create(attrs, allowed_fields)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_add/1.

 Link to this function

 create_or_update(data)

 View Source

 @spec create_or_update(map()) :: tuple()

This is an aggregation function that includes editing or adding.

 Link to this function

 delete(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 Link to this function

 dependencies()

 View Source

Show all dependencies.

 Link to this function

 dependencies(atom)

 View Source

 Link to this function

 edit(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 Link to this function

 edit(attrs, allowed_fields)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 Link to this function

 show_by_id(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 Link to this function

 show_by_name(app)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_get_by_field/2.

 Link to this function

 subscribe()

 View Source

If you want to get the latest changes from the Dependencies table of your database,
this function can help you to be subscribed.

MishkaInstaller.DependencyEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :git | :hex | :path

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.DependencyTypeEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :none | :force_update

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.Helper.Extra

You can find some utility functions in this module. It will be merged with the other helper module.

 Anchor for this section

 Summary

 Functions

 ast_mix_file_basic_information(ast, selection, extra \\ [])

 With this function, you can extract some basic information from a mix file by AST.

 Anchor for this section

Functions

 Link to this function

 ast_mix_file_basic_information(ast, selection, extra \\ [])

 View Source

With this function, you can extract some basic information from a mix file by AST.

 examples

 Examples

MishkaInstaller.Helper.Extra .ast_mix_file_basic_information(ast, [:app, :version, :source_url], [{:tag, tag}])

 reference

 Reference

	https://elixirforum.com/t/getting-basic-information-of-a-elixir-project-from-github/48231/7

MishkaInstaller.Helper.LibraryMaker

You can find some utility functions in this module which help you to download dependencies from Hex and GitHub and prepare them as library.
Testing resource
	MishkaInstaller.Helper.Sender.package("hex", %{"app" => "req"})
	https://hex.pm/api/packages/req/releases/0.1.0
	https://api.github.com/repos/mishka-group/mishka_installer/tarball/0.0.3
	https://stackoverflow.com/questions/30267943/elixir-download-a-file-image-from-a-url

 Anchor for this section

 Summary

 Functions

 change_uploaded_file(file_path, app_name)

 download(atom, app, version)

 A function which download a package from Hex/Github and save it in the deployment/extensions folder.

 extract(atom, archived_file)

 run(type, app, version)

 Anchor for this section

Functions

 Link to this function

 change_uploaded_file(file_path, app_name)

 View Source

 @spec change_uploaded_file(String.t(), String.t()) :: [binary()]

 Link to this function

 download(atom, app, version)

 View Source

 @spec download(:github | :hex, String.t(), String.t()) ::
 list()
 | {:error, atom(), atom()}
 | {:ok, :download, :github | :hex, map(), map() | list()}

A function which download a package from Hex/Github and save it in the deployment/extensions folder.

 Link to this function

 extract(atom, archived_file)

 View Source

 @spec extract(:tar, String.t()) :: {:error, :extract} | {:ok, :extract}

 Link to this function

 run(type, app, version)

 View Source

 @spec run(:github | :hex, String.t(), String.t()) ::
 list() | {:error, atom(), atom()} | {:ok, :run, binary()}

MishkaInstaller.Helper.Sender

To begin, we look at the hex.pm website in an effort to get some fundamental information.
Despite this, after several versions of MishkaInstaller have been released,
this API may prove to be helpful for managing packages from within an administrative panel.
Reference
	https://github.com/hexpm/hexpm/issues/1124

 Anchor for this section

 Summary

 Types

 app()

 Functions

 package(arg1, app)

 This is an executor function and has several different modes, including

 Anchor for this section

Types

 Link to this type

 app()

 View Source

 @type app() :: map()

 Anchor for this section

Functions

 Link to this function

 package(arg1, app)

 View Source

 @spec package(String.t(), app()) ::
 list()
 | {:error, :package, :mix_file | :not_found | :not_tag | :unhandled}
 | {:ok, :package, any()}

This is an executor function and has several different modes, including:
	Get information from hex.pm website
	Getting information from GitHub
	Getting information from the latest GitHub releases
	Get information from the latest GitHub tags

 examples

 Examples

MishkaInstaller.Helper.Sender.package("hex", %{"app" => app})
or
MishkaInstaller.Helper.Sender.package("github", %{"url" => app.url, "tag" => app.tag})
or
MishkaInstaller.Helper.Sender.package("github_latest_release", json_data["url"])
or
MishkaInstaller.Helper.Sender.package("github_latest_tag", json_data["url"])

MishkaInstaller.Helper.Setting

This module offers a number of necessary functions that can be used to access the runtime configuration.
The owner of the system has the ability to make changes to these parameters, which will then be updated in the database.
This section was formerly a part of MishkaCMS, and the accompanying system is likewise a very straightforward
one for saving particular settings when the system is being executed.
Note: that the functionality of this section is not restricted to the 'MishkaInstaller' section;
rather, it can be utilized in other parts of your product.

 Anchor for this section

 Summary

 Functions

 delete(config_name)

 get(config_name)

 Get your required configs from ETS.

 get_all()

 Get All your required configs from ETS.

 push(config)

 Push your required configs to ETS.

 start_link(args)

 Start the ETS table :setting_ets_state and sync with the settings table in the Postgres database.

 sync_with_database()

 Sync the ETS config table with your database.

 Anchor for this section

Functions

 Link to this function

 delete(config_name)

 View Source

 Link to this function

 get(config_name)

 View Source

Get your required configs from ETS.

 Link to this function

 get_all()

 View Source

Get All your required configs from ETS.

 Link to this function

 push(config)

 View Source

Push your required configs to ETS.

 Link to this function

 start_link(args)

 View Source

Start the ETS table :setting_ets_state and sync with the settings table in the Postgres database.

 Link to this function

 sync_with_database()

 View Source

Sync the ETS config table with your database.

MishkaInstaller.Hook

In addition to being one of the most significant modules of the MishkaInstaller library,
the Hook module gives you the ability to make the library as a whole,
as well as the projects that make use of this library, more modular.
It is essential to comprehend that you may treat any action performed independently
as an event and register an unlimited number of plugins for that event.
You can do this by considering that action to be done separately.
Each plugin has the potential to have its own individual inputs and outputs,
and depending on the architecture of the area that you want to use Hook in,
you may even be able to change the output and send it to other plugins.
Throughout all of the many parts that have been built for this module,
it has been attempted to have a flexible approach to dealing with errors
and to provide the programmer with a wide variety of options.
With the additional functions at her disposal, the programmer can actually create a
gateway in their projects, where the data flow must pass through several gates,
whether it changes or remains unchanged, and a series of operations are performed.
For illustration's sake, let's suppose you want the registration system to allow users
to sign up for social networks on Twitter and Google.
When you use this library, it is conceivable that you can quickly display HTML
or even operate in the background before registering after registering.
This is a significant improvement over the standard practice,
in which you are required to modify the primary codes of your project. Create a separate plugin.
It is interesting to notice that these facilities are quite basic and convenient for the admin user.
If this opportunity is provided, the management can manage its own plugins in different ways if it has a dashboard.
It is crucial to highlight that each plugin is its own GenServer; in addition,
it is dynamically supervised, and the information is stored in the database as well as in ETS.
Furthermore, this section is very useful even if the programmer wants to perform many tasks
that are not associated with Perform defined functions.
The fact that the programmers have to introduce each plugin to the system based on a specific
behavior is one of the exciting aspects of using this section. Additionally,
the system has prepared some default behaviors to force the programmers
to introduce the plugins in the order specified by the system.
The use of custom behaviors on the part of the programmer and MishkaInstaller itself makes debugging easier;
however, this library does not leave the programmer to fend for themselves in this significant matter;
rather, a straightforward error storage system is prepared based on the particular activities being performed.
Should prevent any unpredictable behavior at any costs.
Build purpose

Imagine you are going to make an application that will have many plugins built for it in the future.
But the fact that many manipulations will be made on your source code makes it difficult to maintain the application.
For example, you present a content management system for your users,
and now they need to activate a section for registration and SMS;
the system allows you to present your desired input/output absolutely plugin oriented to your users and makes
it possible for the developers to write their required applications beyond the core source code.
We have used this library in the Mishka content management system.

Plugin management system implementation theory

The library categorizes your whole software design structure into many parts;
and has an appropriate dependency that is optional with GenServer;
it considers a monitoring branch for each of your plugins, which results in fewer errors and downtime. The considered part:
	Behaviors and events
	Recalling or Hook with priority
	State management and links to the database (PostgreSQL support)

Except from the 1st item, which can be redefined based on the developer's needs in his/her personal systems,
the remaining items are almost constant, and a lot of functions will be handed to the developer to manage each plugin.
Behaviors and events

In this section, you can define a series of events for each event,
for example: after successful registration or unsuccessful purchase from “the store”,
and for each event, put a set of callbacks in one module. After completing this step,
when the user wants to create his own plugin, the @behaviour module will call you in its action module.
This helps you have a regular and error-free system, and the library uses an almost integrated structure in all of its events.
Hook with priority

In Mishka Elixir Plugin Management Library, a series of action or hook functions are given to the developer of the main plugin or software,
which helps build plugins outside the system and convert software sections into separate events.
Some of the functions of this module include the following:
	Registering a plugin outside of the system in database and ram state
	Removing plugin from database and state
	Restoring plugin
	Successful pause of plugin
	Hook plugin
	Search among the events

And other functions that help both the mother software become an event-driven system and the developer
can build the desired plugin or extension for different parts of the software and install it on the system as a separate package.
This package can also be published in hex.
State management and links to the database supporting PostgreSQL

The Hook module manages a large part of this part, and the developer of the external plugin usually does not need it much.
Still, this part creates a state on RAM for each plugin that is activated in a specific event and a dynamic supervisor for it.
This allows us in case of an error in each plugin;
the other plugins in the different events face no errors, and the system will try to restart with various strategies.
It should be noted for more stability and data storage after registering a plugin in the system;
This section also maintains a backup copy of the database and strategies for recall in the event in case of an error.
But to speed up the calling of each plugin, the website always uses state.
Using the library:

After installing this library, you must first install the required database of this package on your website,
for which a mix task has been created, which is enough to load it once in your terminal, in the project path before the start.
mix mishka_installer.db.gen.migration
After implementing the above sections, you must first implement events in your main software and place
the call function from the Hook module there to call all the plugins activated in the event you want based on priority.
And give the state you want, to these plugins in order, and the output you expect will eventually be generated.
For example, you can see the mentioned description in a function controller in phoenix after a successful registration as the following:
def login(conn, %{"user" => %{"email" => email, "password" => password}} = _params) do
 # If your conditions are passed we call an event and pass it a struct of entries
 # which our developers need to create plugin with this information
 state = %MishkaInstaller.Reference.OnUserAfterLogin{
 conn: conn,
 endpoint: :html,
 ip: user_ip, type: :email,
 user_info: user_info
 }

 hook = MishkaInstaller.Hook.call(event: "on_user_after_login", state: state)

 hook.conn
 |> renew_session()
 |> put_session(:user_id, user_info.id)
 |> put_flash(:info, "You entered to our world, well played.")
 |> redirect(to: "/home")
end
Now the event is ready in the part where you need to allow the developer to make his own plugins for it.
And it's time to write a plugin for this section. This is very simple. Consider the following example:
defmodule MishkaUser.SuccessLogin do
 alias MishkaInstaller.Reference.OnUserAfterLogin
 use MishkaInstaller.Hook,
 module: __MODULE__,
 behaviour: OnUserAfterLogin,
 event: :on_user_after_login,
 initial: []

 @spec initial(list()) :: {:ok, OnUserAfterLogin.ref(), list()}
 def initial(args) do
 event = %PluginState{name: "MishkaUser.SuccessLogin", event: Atom.to_string(@ref), priority: 1}
 Hook.register(event: event)
 {:ok, @ref, args}
 end

 @spec call(OnUserAfterLogin.t()) :: {:reply, OnUserAfterLogin.t()}
 def call(%OnUserAfterLogin{} = state) do
 new_state = Your_Code_Or_Function
 {:reply, new_state}
 end
end
As you can see in the above, we used MishkaInstaller.Reference.OnUserAfterLogin in order to activate behavior which has a few callback in it,
and you can see here.

There should be two main functions in each plugin, namely initial and also call. In the first function,
we introduce our plugin, and in the second function, whenever the action function calls this special event for which the plugin is written,
based on priority. This plugin is also called. But what is important is the final output of the call function.
This output may be the input of other plugins with higher priorities.
The order of the plugins is from small to large, and if several plugins are registered for a number,
it is sorted by name in the second parameter. And it should be noted that in any case,
if you did not want this state to go to other plugins and the last output is returned in the same plugin,
and you can replace {:reply, :halt, new_state} with {:reply, new_state}.

Subsequent plugins with higher priorities are not counted, and the loop ends here.
Notice that a GenServer will be made based on each plugin name without a supervisor,
which can be used for temporary memory in the case when the __using__ function is used as above,
which results in the following option:
use MishkaInstaller.Hook,
 module: __MODULE__,
 behaviour: OnUserAfterLogin,
 event: :on_user_after_login,
 initial: []
The last two step to use the plugin you have to put it in your Application module so that whenever the server is turned off and on,
the plugin is run again and if it is not registered, a copy of its support will be provided once in the database.
children = [
 %{id: YOUR_PLUGIN_MODULE, start: {YOUR_PLUGIN_MODULE, :start_link, [[]]}}
]
And add these config in your project like /config/config.exs
config :mishka_installer, :basic,
 repo: YOUR_Repo,
 pubsub: YOUR_PUBSUB or nil,
 html_router: YOUR_WEBSITE_ROUTER_MODULE

Module communication process of MishkaInstaller.Hook
1. call plugins

 +--------------+
 | Application |
 +------+-------+
 |
 +------v------+
 | Supervisor |
 +------+------+
 |
 |
+---------------------------+ +------------v----------------+
MishkaInstaller.PluginETS		MishkaInstaller.PluginState
+---------------+-----------+ +-------------+---------------+
 | |
 | |
 +---v---------------------------v-----+
 | |
 | MishkaInstaller.Hook.call |
 | |
 +-------------------------------------+

2. Register a plugin
 +--------------+
 | Application |
 +------+-------+
 |
 +------v------+
 | Supervisor |
 +-------+-----+
 |
 |
+---------------------------+ +-------------v---------------+
| | | |
| MishkaInstaller.PluginETS | | MishkaInstaller.PluginState |
| | | |
+-----------------^---------+ +-------------^---------------+
 | |
 | |
 +-----+-------------------------+-----+
 | |
 | MishkaInstaller.Hook.register |
 | |
 +-------------------^-----------------+
 |
 |
 +-------------+----------------+
 | Developer's plugin GenServer |
 +-------------^----------------+
 |
 |
 +-------------+----------------+
 | |
 |Developer's plugin Application|
 | |
 +------------------------------+

 Anchor for this section

 Summary

 Types

 event()

 This type can be used when you want to introduce an event

 plugin()

 This type can be used when you want to introduce an plugin

 Functions

 call(list)

 Your software will be able to call each of the active and registered plugins in the list in the order that they appear
depending on the priority that the function assigns to each plugin, and it will do so with a particular event.
The program generates a State and sends it to the first plugin in the list. This plugin, in turn,
sends the desired output changes to the remaining plugins in the list, and this process is repeated all the way down
to the plugin that is at the end of the list.

 delete(list)

 This function will delete the specified plugin from the State that you are contemplating, but there will be no change to the database due to this action.
It is important to remember that stopping a batch based on a particular occurrence is also possible.

 ensure_event(event, atom)

 The operation performed in this function is the same as ensure_event?/1, except that the output is a pattern with a special message.

 ensure_event?(event)

 You will have the opportunity to select the type of dependency, which can either be :soft or :hard,
when you are in the process of registering each plugin.
It is not necessary to check related plugins if this item is configured to use the first available option,
and a plugin can be installed in the system on its own accord if this option is selected.

 register(list)

 Registering a plugin is the first step in modularizing and event-oriented programming for your project.
You should be aware, prior to registering a custom plugin to the project and activating it in a particular section,
that the plugin is designed by a programmer and is required to adhere to a series of fundamental structures before it can be used.

 restart()

 Based on the function restart/1, restart all installed plugins.

 restart(list)

 The only difference between this method and the start/1 function is that
this function deletes from RAM any states that are associated with the plugin that you want to use.

 start(list)

 You are able to activate all the plugins that have been installed by using this feature.
It is important to point out that it is possible to activate numerous plugins at the same time as
a single plugin or even a batch based on a particular event.
This can be done in several different ways.

 stop(list)

 This function will stop the specified plugin from the State that you are contemplating, but there will be no change to the database due to this action.
It is important to remember that stopping a batch based on a particular occurrence is also possible.

 unregister(list)

 This function is very similar to the delete/1 command; however, in addition to removing the plugin from the system,
it also removes the plugin from the database.

 Anchor for this section

Types

 Link to this type

 event()

 View Source

 @type event() :: String.t()

This type can be used when you want to introduce an event

 Link to this type

 plugin()

 View Source

 @type plugin() :: event()

This type can be used when you want to introduce an plugin

 Anchor for this section

Functions

 Link to this function

 call(list)

 View Source

Your software will be able to call each of the active and registered plugins in the list in the order that they appear
depending on the priority that the function assigns to each plugin, and it will do so with a particular event.
The program generates a State and sends it to the first plugin in the list. This plugin, in turn,
sends the desired output changes to the remaining plugins in the list, and this process is repeated all the way down
to the plugin that is at the end of the list.
It is important to note that you are free to make use of the available options in accordance with the logic of the
component of your program that is responsible for loading the event you want.
	You can transmit a State to an unlimited number of plugins and perform various operations on it,
but the output of the State will not be taken into consideration, and the starting State will be used as the one that determines the final output.

	You have the ability to include a portion of the State's information in the private map.
This flag ensures that just reading is open to the public, while authoring is obviously restricted in terms of the final product.

	At the time of registration, each plugin is assigned a priority; the lower this number,
the higher the likelihood that this plugin will be called before others on the list;
if it shares the same priority as multiple other plugins, the order in which it appears in the list will be determined by its name.

 examples

 Examples

state = %MishkaInstaller.Reference.OnUserAfterLogin{conn: conn, endpoint: :html, user_info: user_info}
or load with private flag
state = %TestEvent{user_info: %{name: "shahryar"}, private: %{acl: 0, ip: "127.0.1.1", endpoint: :admin}}

MishkaInstaller.Hook.call(event: "on_user_after_login", state: state)
or
MishkaInstaller.Hook.call(event: "on_user_after_login", state: state, operation: :no_return)

Example call in a controller

def login(conn, %{"user" => %{"email" => email, "password" => password}} = _params) do
 # If your conditions are passed we call an event and pass it a struct of entries
 # which our developers need to create plugin with this information
 hook = MishkaInstaller.Hook.call(event: "on_user_after_login", state: state)

 hook.conn
 |> renew_session()
 |> put_session(:user_id, user_info.id)
 |> put_flash(:info, "You entered to our world, well played.")
 |> redirect(to: "/home")
end

 Link to this function

 delete(list)

 View Source

 @spec delete([{:event, event()} | {:extension, atom()} | {:module, plugin()}, ...]) ::
 list() | {:error, :delete, String.t()} | {:ok, :delete, String.t()}

This function will delete the specified plugin from the State that you are contemplating, but there will be no change to the database due to this action.
It is important to remember that stopping a batch based on a particular occurrence is also possible.

 examples

 Examples

MishkaInstaller.Hook.delete(module: "ensure_event_plugin")
or
MishkaInstaller.Hook.delete(event: "on_user_after_login")

 Link to this function

 ensure_event(event, atom)

 View Source

 @spec ensure_event(MishkaInstaller.PluginState.t(), :debug) ::
 {:error, :ensure_event, %{errors: list()}} | {:ok, :ensure_event, String.t()}

The operation performed in this function is the same as ensure_event?/1, except that the output is a pattern with a special message.

 examples

 Examples

test_plug =
 %MishkaInstaller.PluginState{
 name: "MishkaInstaller.Hook",
 event: "event_one",
 depend_type: :hard,
 depends: ["MishkaInstaller.PluginState"]
 }
MishkaInstaller.Hook.ensure_event(test_plug, :debug)

 Link to this function

 ensure_event?(event)

 View Source

 @spec ensure_event?(MishkaInstaller.PluginState.t()) :: boolean()

You will have the opportunity to select the type of dependency, which can either be :soft or :hard,
when you are in the process of registering each plugin.
It is not necessary to check related plugins if this item is configured to use the first available option,
and a plugin can be installed in the system on its own accord if this option is selected.
If the second choice for the desired plugin is chosen, which is hard,
then this method will be of assistance to you. It will verify each of the plugins listed in the dependent parameter,
and if there are no issues, it will return true. If there are issues, however, it will return false.

 examples

 Examples

test_plug =
 %MishkaInstaller.PluginState{
 name: "MishkaInstaller.Hook",
 event: "event_one",
 depend_type: :hard,
 depends: ["MishkaInstaller.PluginState"]
 }
MishkaInstaller.Hook.ensure_event?(test_plug)

 Link to this function

 register(list)

 View Source

 @spec register(depends: :force, event: MishkaInstaller.PluginState.t()) ::
 {:error, :register, any()} | {:ok, :register, :activated | :force}

Registering a plugin is the first step in modularizing and event-oriented programming for your project.
You should be aware, prior to registering a custom plugin to the project and activating it in a particular section,
that the plugin is designed by a programmer and is required to adhere to a series of fundamental structures before it can be used.

 each-plugin-must-meet-the-following-conditions-when-registering

 Each plugin must meet the following conditions when registering:

	Because the process of utilizing a plugin is dependent on beginning GenServer by the name of that plugin,
you need to think of it as a GenServer and begin using it.
	If you do not wish to handle this process manually, the __using__ module of the Hook package has already prepared it for you;
all you need to do is call it.
The aforementioned explanation can be found in its entirety in the code snippet.
	The definition of each plugin is determined by a certain behavior carried out by a module.
You need to have some fundamental instances of this behavior, in addition to the requirements set forth by the plugin's developer.

Some fundamental behaviors are as follows:
	initial
	call
	stop
	delete
	restart
	start

For more clarity, you can see MishkaInstaller.Reference.OnUserLoginFailure behavior.

	All plugins are stored in ETS.
	All plugins are stored in the database.
	All plugins are stored in one supervisor and another GenServer.

In order to register a plugin, you need to call it in the initial function of the module
in which you used the MishkaInstaller.Hook directive and bind it with the use directive. Take, for instance:

use MishkaInstaller.Hook,
 module: __MODULE__,
 behaviour: OnUserAfterLogin,
 event: :on_user_after_login,
 initial: []

@spec initial(list()) :: {:ok, OnUserAfterLogin.ref(), list()}
def initial(args) do
 event = %PluginState{name: "MishkaUser.SuccessLogin", event: Atom.to_string(@ref), priority: 1}
 Hook.register(event: event)
 {:ok, @ref, args}
end
After being added to the MishkaInstaller.PluginState module struct, each plug-in is required to be registered in the system,
as demonstrated by the preceding line of code.
It is important to know that each plugin in your project can be registered in one of two different ways.
	By diagnosing problems and ensuring that the requested plugin is operational.
	By requiring the test stages to be completed or by ignoring the requirements of the plug-in itself.

 examples

 Examples

event = %PluginState{name: "MishkaUser.SuccessLogin", event: Atom.to_string(@ref), priority: 1}
MishkaInstaller.Hook.register(event: event)
or
MishkaInstaller.Hook.register(event: event, depends: :force)

 Link to this function

 restart()

 View Source

Based on the function restart/1, restart all installed plugins.

 examples

 Examples

MishkaInstaller.Hook.restart()

 Link to this function

 restart(list)

 View Source

 @spec restart(depends: :force, event: event(), module: plugin()) ::
 list() | {:error, :restart, any()} | {:ok, :restart, String.t()}

The only difference between this method and the start/1 function is that
this function deletes from RAM any states that are associated with the plugin that you want to use.

 examples

 Examples

MishkaInstaller.Hook.restart(module: "ensure_event_plugin")
or
MishkaInstaller.Hook.restart(module: "ensure_event_plugin", depends: :force)
or
MishkaInstaller.Hook.restart(event: "on_user_after_login")
or
MishkaInstaller.Hook.restart(event: "on_user_after_login", depends: :force)

 Link to this function

 start(list)

 View Source

 @spec start([
 {:depends, :force}
 | {:event, event()}
 | {:extension, atom()}
 | {:module, plugin()},
 ...
]) ::
 list() | {:error, :start, binary() | [...]} | {:ok, :start, :force | binary()}

You are able to activate all the plugins that have been installed by using this feature.
It is important to point out that it is possible to activate numerous plugins at the same time as
a single plugin or even a batch based on a particular event.
This can be done in several different ways.
Much like the register/1 function, this function has two modes,
which can be altered by looking at the needs of a plugin and the forced mode, respectively.
Note: When running in debug mode, the referred-to plugin in the project must
be set to Application.load/1, and Application.unload/1 cannot be started.
Note: If your plugin has other dependencies, all of them must be activated before restarting.
For more information, see ensure_event?/1 and ensure_event/2 functions.

 examples

 Examples

MishkaInstaller.Hook.start(module: "ensure_event_plugin")
or
MishkaInstaller.Hook.start(module: "ensure_event_plugin", depends: :force)
or
MishkaInstaller.Hook.start(event: "on_user_after_login")
or
MishkaInstaller.Hook.start(event: "on_user_after_login", depends: :force)

 Link to this function

 stop(list)

 View Source

 @spec stop(event: event(), module: plugin(), extension: atom()) ::
 list() | {:error, :stop, String.t()} | {:ok, :stop, String.t()}

This function will stop the specified plugin from the State that you are contemplating, but there will be no change to the database due to this action.
It is important to remember that stopping a batch based on a particular occurrence is also possible.

 examples

 Examples

MishkaInstaller.Hook.stop(module: "ensure_event_plugin")
or
MishkaInstaller.Hook.stop(event: "on_user_after_login")

 Link to this function

 unregister(list)

 View Source

 @spec unregister(event: event(), module: plugin(), extension: atom()) ::
 list() | {:error, :unregister, any()} | {:ok, :unregister, Stream.timer()}

This function is very similar to the delete/1 command; however, in addition to removing the plugin from the system,
it also removes the plugin from the database.

 examples

 Examples

MishkaInstaller.Hook.unregister(module: "ensure_event_plugin")
or
MishkaInstaller.Hook.unregister(event: "on_user_after_login")

MishkaInstaller.Installer.DepChangesProtector

This module serializes how to get and install a library and add it to your system.
Based on the structure of MishkaInstaller, this module should not be called independently.
	The reason for the indirect call is to make the queue and also to run the processes in the background.
	For this purpose, two workers have been created for this module, which can handle the update operation and add a library.

Below you can see the graph of connecting this module to another module.

+---------------------------------------+
| |
| <-----------------------------------+
| MishkaInstaller.Installer.DepHandler | |
| | +---------------------------+------+
| | | |
+-------------------+-----------------^-+ | |
 | | | MishkaInstaller.DepCompileJob |
 | | | <-----------+
 | | | | |
 | | +----------------------------------+ |
 | | |
 | | +----------------------------------+ |
 | | | | |
 | | | | |
 | | | MishkaInstaller.DepUpdateJob | |
 | +---------+ | |
 | | | |
 | +-^--------------------------------+ |
 | | |
+-------------------v---------------------------+ | +---+
MishkaInstaller.Installer.DepChangesProtector +-+	MishkaInstaller.Installer.Live.DepGetter		
+---------------------+-------------------------+ +---+
 |
 |
 +-------------------v-----------------------+
 | |
 | MishkaInstaller.Installer.RunTimeSourcing |
 | |
 +---+

As you can see in the graph above, most of the requests, except the update request, pass through the path of the
MishkaInstaller.DepCompileJob module and call some functions of the MishkaInstaller.Installer.DepHandler module.
After completing the operation process, this module finally serializes the queued requests and broadcasts the output by means of Pubsub.
	Warning: Direct use of this module causes conflict in long operations and causes you to receive an error,
or the system is completely down.
	Warning: The update operation is connected to the worker of the MishkaInstaller.DepUpdateJob module.
	Warning: this section should be limited to the super admin user because it is directly related to the core of the system.
	Warning: User should always be notified to get backup.
	Warning: Do not send timeout request to Genserver of this module.
	Warning: This module must be supervised in the Application.ex file and loaded at runtime.
	Warning: this module has a direct relationship with the extension.json file, so it checks this file every few seconds and
fixes it if it is not created or has a problem.
	Warning: If you put Pubsub in your configuration settings and the value is not nil, this module will automatically send
a timeout several times until your Pubsub process goes live.
	Warning: at the time of starting Genserver, this module also starts MishkaInstaller.DepUpdateJob.ets/0 runtime database.
	Warning: All possible errors are stored in the database introduced in the configuration, and you can access it with the
functions of the MishkaInstaller.Activity module.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 deps(app, type \\ :port)

 This function is actually an action function and aggregator.
You call this GenServer.cast function with three inputs {:deps, app, type}, which executes with a very small timeout.
Warning: It is highly recommended not to call this function directly and use the worker (MishkaInstaller.DepCompileJob)
to compile. Finally, this function calls the MishkaInstaller.Installer.RunTimeSourcing.do_deps_compile/2 function with the help of
Task.Supervisor.async_nolink/2.
It is worth mentioning that you can view and monitor the output by subscribing to this module.

 get()

 is_dependency_compiling?()

 This function checks if any process is running or not.
if true means no job is being done, if false means there is a job is being done.

 subscribe()

 This function helps the programmer to join the channel of this module(MishkaInstaller.Installer.DepChangesProtector)
and receive the output as a broadcast in the form of {status, :dep_changes_protector, answer, app}.
It uses Phoenix.PubSub.subscribe/2.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 deps(app, type \\ :port)

 View Source

 @spec deps(String.t(), atom()) :: :ok

This function is actually an action function and aggregator.
You call this GenServer.cast function with three inputs {:deps, app, type}, which executes with a very small timeout.
Warning: It is highly recommended not to call this function directly and use the worker (MishkaInstaller.DepCompileJob)
to compile. Finally, this function calls the MishkaInstaller.Installer.RunTimeSourcing.do_deps_compile/2 function with the help of
Task.Supervisor.async_nolink/2.
It is worth mentioning that you can view and monitor the output by subscribing to this module.

 examples

 Examples

MishkaInstaller.Installer.DepChangesProtector.deps(app_name, output_type)

 Link to this function

 get()

 View Source

 @spec get() :: map()

 Link to this function

 is_dependency_compiling?()

 View Source

 @spec is_dependency_compiling?() :: boolean()

This function checks if any process is running or not.
if true means no job is being done, if false means there is a job is being done.

 examples

 Examples

MishkaInstaller.Installer.DepChangesProtector.is_dependency_compiling?()

 Link to this function

 subscribe()

 View Source

 @spec subscribe() :: :ok | {:error, {:already_registered, pid()}}

This function helps the programmer to join the channel of this module(MishkaInstaller.Installer.DepChangesProtector)
and receive the output as a broadcast in the form of {status, :dep_changes_protector, answer, app}.
It uses Phoenix.PubSub.subscribe/2.

 examples

 Examples

Subscribe to `MishkaInstaller.Installer.DepChangesProtector` module
MishkaInstaller.Installer.DepChangesProtector.subscribe()

Getting the answer as Pubsub for examples in LiveView
@impl Phoenix.LiveView
def handle_info({status, :dep_changes_protector, answer, app}, socket) do
 {:noreply, socket}
end

MishkaInstaller.Installer.DepHandler

A module aggregates several operational functions to simplify the integration of all activities,
including adding - removing, and updating a library in the project.
For this purpose, you can use this module directly in your program or just call some helper functions.
It should be noted that this module, like the MishkaInstaller.Installer.RunTimeSourcing module,
has a primary function that performs all the mentioned operations based on the request type (run/2).
Also, to perform some activities before applying any changes, the database and extensions.json file of your project will be rechecked.
For example, these are output from Json file and this module struct
[
 %{
 app: :mishka_installer,
 version: "0.0.2",
 type: :git, # :hex, if user upload elixir libraries (path), we should keep them in a temporary folder, and Docker should make it valume
 url: "https://github.com/mishka-group/mishka_installer", # if it is hex: https://hex.pm/packages/mishka_installer
 git_tag: "0.0.2", # we consider it when it is a git, and if does not exist we get master,
 custom_command: "ecto.migrate", # you can write nil or you task file like ecto.migrate
 dependency_type: :none, # :force_update, When you use this, the RunTime sourcing check what dependencies you use
 # in your program have a higher version compared to the old source. it just notice admin there is a update,
 # it does not force the source to be updated.
 dependencies: [# this part let mishka_installer to know can update or not dependencies of a app, we should consider a backup file
 %{app: :mishka_developer_tools, max: "0.0.2", min: "0.0.1"},
 %{app: :mishka_social, max: "0.0.2", min: "0.0.1"}
]
 }
]
OR
%MishkaInstaller.Installer.DepHandler{
 app: "mishka_social",
 version: "0.0.2 ",
 type: "hex",
 url: "https://hex.pm/packages/mishka_social",
 git_tag: nil,
 custom_command: nil,
 dependency_type: "force_update",
 dependencies: [
 %{app: :phoenix, min: "1.6"},
 %{app: :phoenix_live_view, max: "0.17.7", min: "0.17.7"},
 %{app: :ueberauth, max: "0.17.7", min: "0.17.7"},
 %{app: :ueberauth_github, min: "0.8.1"},
 %{app: :ueberauth_google, min: "0.10.1"},
]
}

Below you can see the graph of connecting this module to another module.
+----------------------------+ +-------------------------------------+
| | | |
| MishkaInstaller.Dependency | | MishkaInstaller.Installer.MixCreator|
| <---+ +----> |
+----------------------------+ | | +-------------------------------------+
 | |
 | | +---+
 | | | |
 | | |MishkaInstaller.Installer.RunTimeSourcing|
 | | | |
 | | +---^-------------------------------------+
 | | |
+--------------------------------+-+---+ |
| | |
| MishkaInstaller.Installer.DepHandler +----+
| |
+----------------------------^---------+
 |
 |
 +------------------------+---------------+
 | |
 |MishkaInstaller.Installer.Live.DepGetter|
 | |
 +--+

 Anchor for this section

 Summary

 Types

 app_info()

 This type can be used when you want to introduce an app to install

 installed_apps()

 This is delegate of Application.loaded_applications/0 output

 run()

 This type can be used when you want to introduce method of install a dependency

 t()

 This type can be used when you want to put your data in this module struct

 Functions

 add_new_app(app_info)

 This function helps developers to decide what they should do when an app is going to be updated.
For example, each of the extensions maybe has states or necessary jobs; hence they can register their app for on_change_dependency event.

 append_mix(list)

 This function mixes your current list of dependencies with your added-dependencies from extensions.json.

 check_or_create_deps_json(project_path \\ MishkaInstaller.get_config(:project_path))

 With this function, you can check and create extensions.json and its path.

 compare_dependencies_with_json(installed_apps \\ Application.loaded_applications())

 A function to compare dependencies between extensions.json and Application.loaded_applications/0; if an app exists, it returns.

 compare_installed_deps_with_app_file(app)

 This function compare installed app based on their files in _build and deps directory.

 compare_sub_dependencies_with_json(installed_apps \\ Application.loaded_applications())

 This function works like compare_dependencies_with_json/0, but there is a difference which is in this part of the code,
we compare the installed app with sup-dependencies based on min and max versions that are allowed.

 compare_version_with_installed_app(app, version)

 This function helps you to compare an app version with its installed version, it returns true or false.
Based on Application.spec/2

 create_deps_json_file(project_path)

 This function creates extensions.json as a json file.

 create_mix_file()

 For more information, please read create_mix_file_and_start_compile/2, but consider this function just
re-creates mix.exs file and does not compile an app. This function is based on the Sourceror library.

 create_mix_file_and_start_compile(app_name, output_type)

 This function provides an option to edit and start compiling from a mix.exs file.
It should be considered to use this facility as a helper because it might be deleted on the next version from our primary process;
create_mix_file_and_start_compile/2 is kept to let developers use this based on their problems.
You must put two entries, the first one is the app name, and the second one is the type of compiling, which can be shown in a terminal
as stream outputs or sent with Pubsub and Port.
This function is based on the Sourceror library, and the types we discussed include :cmd and :port.

 extensions_json_path()

 This functions returns extensions.json file path based on :project_path.

 get_deps_from_mix(mix_module)

 It returns dependencies as a list of maps from mix.exs

 get_deps_from_mix_lock()

 It returns dependencies as a list of maps from mix.lock, based on Mix.Dep.Lock.read

 mix_read_from_json()

 This function uses read_dep_json/0 to read extensions.json file and returns list of dependencies-map.

 move_and_replace_compiled_app_build(app_list)

 With this function help you can move built app file to _build folder.

 read_dep_json(json \\ File.read!(extensions_json_path()))

 This Function is for interacting with the external extensions.json file to load added-libraries.

 run(type, app, output_type \\ :cmd)

 The run/2 function is actually the function of the installer and assembler of all the modules that this module is connected to.
This function has two inputs that you can see in the examples below. The first input is an atom, which specifies how to install a
library in the system.
Depending on the installation method, the second entry can be the dependency information requested for the installation.

 Anchor for this section

Types

 Link to this type

 app_info()

 View Source

 @type app_info() :: String.t() | atom() | map() | list()

This type can be used when you want to introduce an app to install

 Link to this type

 installed_apps()

 View Source

 @type installed_apps() :: {atom(), description :: charlist(), vsn :: charlist()}

This is delegate of Application.loaded_applications/0 output

 Link to this type

 run()

 View Source

 @type run() :: :hex | :git | :upload

This type can be used when you want to introduce method of install a dependency

 Link to this type

 t()

 View Source

 @type t() :: %MishkaInstaller.Installer.DepHandler{
 app: String.t() | nil,
 custom_command: String.t() | nil,
 dependencies: [map()],
 dependency_type: String.t() | nil,
 git_tag: String.t() | nil,
 type: String.t() | nil,
 url: String.t() | nil,
 version: String.t() | nil
}

This type can be used when you want to put your data in this module struct

 Anchor for this section

Functions

 Link to this function

 add_new_app(app_info)

 View Source

 @spec add_new_app(t()) ::
 {:ok, :add_new_app, any()} | {:error, :add_new_app, :changeset | :file, any()}

This function helps developers to decide what they should do when an app is going to be updated.
For example, each of the extensions maybe has states or necessary jobs; hence they can register their app for on_change_dependency event.

 examples

 Examples

old_ueberauth = %DepHandler{
 app: "ueberauth",
 version: "0.6.3",
 type: "hex",
 url: "https://hex.pm/packages/ueberauth",
 git_tag: nil,
 custom_command: nil,
 dependency_type: "force_update",
 dependencies: [
 %{app: :plug, min: "1.5.0"}
]
}
MishkaInstaller.Installer.DepHandler.add_new_app(old_ueberauth)

 Link to this function

 append_mix(list)

 View Source

 @spec append_mix([tuple()]) :: list()

This function mixes your current list of dependencies with your added-dependencies from extensions.json.

 this-function-calls-1-other-function-including

 This function calls 1 other function including:

	mix_read_from_json/0

 examples

 Examples

list_of_deps =
 [
 {:finch, "~> 0.12.0"},
 {:ex_doc, ">= 0.0.0", only: :dev, runtime: false},
 {:ueberauth, git: "url", tag: "0.6.3"}
]
MishkaInstaller.Installer.DepHandler.append_mix(list_of_deps)

 Link to this function

 check_or_create_deps_json(project_path \\ MishkaInstaller.get_config(:project_path))

 View Source

 @spec check_or_create_deps_json(binary()) ::
 {:ok, :check_or_create_deps_json, String.t()}
 | {:error, :check_or_create_deps_json, String.t()}

With this function, you can check and create extensions.json and its path.

 examples

 Examples

MishkaInstaller.Installer.DepHandler.check_or_create_deps_json()

 Link to this function

 compare_dependencies_with_json(installed_apps \\ Application.loaded_applications())

 View Source

 @spec compare_dependencies_with_json(installed_apps() | any()) ::
 list() | {:error, :compare_dependencies_with_json, String.t()}

A function to compare dependencies between extensions.json and Application.loaded_applications/0; if an app exists, it returns.

 this-function-calls-3-other-functions-including

 This function calls 3 other functions including:

	check_or_create_deps_json/0
	Application.loaded_applications/0
	read_dep_json/1

 examples

 Examples

MishkaInstaller.Installer.DepHandler.compare_dependencies_with_json()

 Link to this function

 compare_installed_deps_with_app_file(app)

 View Source

 @spec compare_installed_deps_with_app_file(String.t()) ::
 {:error, :compare_installed_deps_with_app_file, String.t()}
 | {:ok, :compare_installed_deps_with_app_file, list()}

This function compare installed app based on their files in _build and deps directory.

 this-function-calls-4-other-functions-including

 This function calls 4 other functions including:

	MishkaInstaller.Installer.RunTimeSourcing.read_app/2
	MishkaInstaller.Installer.RunTimeSourcing.consult_app_file/1
	compare_version_with_installed_app/2
	File.dir?/1

 examples

 Examples

MishkaInstaller.Installer.DepHandler.compare_installed_deps_with_app_file("app_name")

 Link to this function

 compare_sub_dependencies_with_json(installed_apps \\ Application.loaded_applications())

 View Source

 @spec compare_sub_dependencies_with_json(any()) ::
 list() | {:error, :compare_sub_dependencies_with_json, String.t()}

This function works like compare_dependencies_with_json/0, but there is a difference which is in this part of the code,
we compare the installed app with sup-dependencies based on min and max versions that are allowed.

 examples

 Examples

MishkaInstaller.Installer.DepHandler.compare_sub_dependencies_with_json()

 reference

 Reference

	How to improve sort of maps in a list which have duplicate key (https://elixirforum.com/t/47486)

 Link to this function

 compare_version_with_installed_app(app, version)

 View Source

This function helps you to compare an app version with its installed version, it returns true or false.
Based on Application.spec/2

 examples

 Examples

MishkaInstaller.Installer.DepHandler.compare_version_with_installed_app(app, version)

 Link to this function

 create_deps_json_file(project_path)

 View Source

 @spec create_deps_json_file(binary()) ::
 {:error, :check_or_create_deps_json, binary()}
 | {:ok, :check_or_create_deps_json, binary()}

This function creates extensions.json as a json file.

 examples

 Examples

MishkaInstaller.Installer.DepHandler.create_deps_json_file(project_path)

 Link to this function

 create_mix_file()

 View Source

 @spec create_mix_file() :: :ok

For more information, please read create_mix_file_and_start_compile/2, but consider this function just
re-creates mix.exs file and does not compile an app. This function is based on the Sourceror library.

 examples

 Examples

MishkaInstaller.Installer.DepHandler.create_mix_file()

 Link to this function

 create_mix_file_and_start_compile(app_name, output_type)

 View Source

 @spec create_mix_file_and_start_compile(String.t() | atom(), atom()) :: :ok

This function provides an option to edit and start compiling from a mix.exs file.
It should be considered to use this facility as a helper because it might be deleted on the next version from our primary process;
create_mix_file_and_start_compile/2 is kept to let developers use this based on their problems.
You must put two entries, the first one is the app name, and the second one is the type of compiling, which can be shown in a terminal
as stream outputs or sent with Pubsub and Port.
This function is based on the Sourceror library, and the types we discussed include :cmd and :port.

 this-function-calls-3-other-functions-including

 This function calls 3 other functions including:

	create_deps_json_file/1
	MishkaInstaller.Installer.MixCreator.backup_mix/1
	MishkaInstaller.Installer.DepChangesProtector.deps/2

 examples

 Examples

MishkaInstaller.Installer.DepHandler.create_mix_file_and_start_compile(app, type)

 Link to this function

 extensions_json_path()

 View Source

 @spec extensions_json_path() :: binary()

This functions returns extensions.json file path based on :project_path.

 examples

 Examples

MishkaInstaller.Installer.DepHandler.extensions_json_path()

 Link to this function

 get_deps_from_mix(mix_module)

 View Source

 @spec get_deps_from_mix(module()) :: list()

It returns dependencies as a list of maps from mix.exs

 examples

 Examples

MishkaInstaller.Installer.DepHandler.get_deps_from_mix(MishkaInstaller.MixProject)

 Link to this function

 get_deps_from_mix_lock()

 View Source

 @spec get_deps_from_mix_lock() :: list()

It returns dependencies as a list of maps from mix.lock, based on Mix.Dep.Lock.read

 examples

 Examples

MishkaInstaller.Installer.DepHandler.get_deps_from_mix_lock()

 Link to this function

 mix_read_from_json()

 View Source

 @spec mix_read_from_json() :: list()

This function uses read_dep_json/0 to read extensions.json file and returns list of dependencies-map.

 examples

 Examples

MishkaInstaller.Installer.DepHandler.mix_read_from_json()

 Link to this function

 move_and_replace_compiled_app_build(app_list)

 View Source

With this function help you can move built app file to _build folder.

 this-function-calls-3-other-functions-including

 This function calls 3 other functions including:

	MishkaInstaller.Installer.RunTimeSourcing.do_runtime/2
	MishkaInstaller.Installer.RunTimeSourcing.get_build_path/0
	File.cp_r/3

 examples

 Examples

MishkaInstaller.Installer.DepHandler.move_and_replace_compiled_app_build(app_list)

 Link to this function

 read_dep_json(json \\ File.read!(extensions_json_path()))

 View Source

 @spec read_dep_json(any()) ::
 {:error, :read_dep_json, String.t()} | {:ok, :read_dep_json, list()}

This Function is for interacting with the external extensions.json file to load added-libraries.

 examples

 Examples

MishkaInstaller.Installer.DepHandler.read_dep_json()
or
MishkaInstaller.Installer.DepHandler.mix_read_from_json(JSON_PATH)

 Link to this function

 run(type, app, output_type \\ :cmd)

 View Source

 @spec run(:git | :hex | :upload, app_info(), atom()) :: map()

The run/2 function is actually the function of the installer and assembler of all the modules that this module is connected to.
This function has two inputs that you can see in the examples below. The first input is an atom, which specifies how to install a
library in the system.
Depending on the installation method, the second entry can be the dependency information requested for the installation.

 examples

 Examples

Application.spec(:timex, :vsn)

MishkaInstaller.Installer.DepHandler.run(:hex, "faker")

app = %{url: "https://github.com/bitwalker/timex", tag: "3.7.5"}
MishkaInstaller.Installer.DepHandler.run(:git, app)

app = %{url: "https://github.com/bitwalker/timex", tag: "3.7.6"}
MishkaInstaller.Installer.DepHandler.run(:git, app)

app = %{url: "https://github.com/bitwalker/timex", tag: "3.7.8"}
MishkaInstaller.Installer.DepHandler.run(:git, app)

app = %{url: "https://github.com/elixirs/faker", tag: "v0.17.0"}
MishkaInstaller.Installer.DepHandler.run(:git, app)

app = %{url: "https://github.com/martinsvalin/html_entities", tag: "v0.5.1"}
MishkaInstaller.Installer.DepHandler.run(:git, app)

app = %{url: "https://github.com/beatrichartz/csv", tag: "v2.3.0"}
MishkaInstaller.Installer.DepHandler.run(:git, app)

MishkaInstaller.Installer.DepHandler.run(:upload, ["../mishka_installer/deployment/extensions/timex-3.7.8.zip"])

 reference

 Reference

	Fix phoenix reload issue when a dependency is compiled (https://github.com/phoenixframework/phoenix/issues/4278)
	Phoenix.CodeReloader.reload/1 (https://hexdocs.pm/phoenix/Phoenix.CodeReloader.html#reload/1)

MishkaInstaller.Installer.Live.DepGetter

Allows you to work with installed extensions in a simple and efficient manner.
Some important tools and removal/installation facilities are accessible for usage.
It's not necessary to install this module; you may do it in a matter of seconds.
Using this dashboard will need the usage of Phoenix LiveView, as it was built entirely using this library.
Bootstrap is used to construct the HTML components, but if you don't have it, you'll need to add the CSS yourself.
Real-time services are available in this section.
A different LiveView file can also be used, as can calling it directly from the router.
It is through this layer that the Port and Phoenix Pubsub modules are linked to keep tabs on the installation.
	Note: This dashboard is currently modest, but greater management tools will be provided in the future,
therefore we recommend that you utilize it now.

	Note: For this reason, make important to set up authentication and authorization procedures and
provide it access to your superuser before using this dashboard.

Below you can see the graph of connecting this module to another module.
+--+
| |
|MishkaInstaller.Installer.Live.DepGetter+-------+
| | |
+------------------+---------------------+ |
 | |
 | |
 | |
 +----------------v-------------------+ |
MishkaInstaller.Installer.DepHandler	
 +----------------+-------------------+ |
 | |
 | |
 | |
+------------------v--------------------------+ |
MishkaInstaller.Installer.DepChangesProtector	
+-----+---------------------------------------+ |
 | |
 | |
 | |
 | +--------------------v-+
 | | |
 | | MishkaInstaller.Hook |
 | | |
 | +---------+------------+
 | |
 | |
 | +--------------------v------------------------+
 | | |
 | | MishkaInstaller.Reference.OnChangeDependency|
 | | |
 | +---+
 |
 |
 +----------------+-------------------------+
 | |
 +--------------------v--------------------+ |
MishkaInstaller.Installer.RunTimeSourcing	
 +---+ |
 |
 |
 +------------------------------+ |
 |MishkaInstaller.DepCompileJob +----->
 +------------------------------+ |
 |
 |
 +--------------------------v-+
 |MishkaInstaller.DepUpdateJob|
 +----------------------------+

 Anchor for this section

 Summary

 Functions

 error_to_string(atom)

 Anchor for this section

Functions

 Link to this function

 error_to_string(atom)

 View Source

 @spec error_to_string(:not_accepted | :too_large | :too_many_files) :: String.t()

MishkaInstaller.Installer.MixCreator

In version 0.0.2, the MishkaInstaller library was used to download a dependency from the project's own mix.exs file,
so this module was written to edit this file.
In fact, this module uses the Sourceror library to change the mentioned mix.exs file (with AST).
Another use of this module is reading information from the programmer's Git or custom link.
	Warning: in the next versions of MishkaInstaller, instead of mix.exs, the client project will be downloaded directly from
Git or hex.pm site. If this update is executed, the original project will not be changed.
	This module is not going to be deleted in new versions.

 Anchor for this section

 Summary

 Functions

 backup_mix(mix_path)

 With the help of this function, you can make a backup copy of mix.exs and mix.lock of your project and keep it in the
deployment/extensions path.
If this function is used with one input, it targets the mix.exs file, and if the second input is :lock atom,
it targets the mix.lock file to keep a backup copy.
With the help of this function, you can make a backup copy of mix.exs and mix.lock of your project and keep
it in the deployment/extensions path.
If this function is used with one input, it targets the mix.exs file, and if the second input is :lock atom,
it targets the mix.lock file to keep a backup copy.

 backup_mix(lock_path, atom)

 Read backup_mix/1 description.

 create_mix(list_of_deps, mix_path)

 This function receives a list of libraries stored in the extensions.json file along with the mix.exs path of the file
that needs to be changed, and after that, it changes the deps function in mix.exs and overwrites it with the new libraries.

 restore_mix(mix_path)

 This function is also the same as the backup_mix/1 function, with the difference that it returns the backed-up version
to the project path. Both functions use the File.copy/2 function just to improve the naming and also to warn the programmer
that it has been replaced in this file.

 restore_mix(lock_path, atom)

 Read restore_mix/1 description.

 Anchor for this section

Functions

 Link to this function

 backup_mix(mix_path)

 View Source

 @spec backup_mix(binary()) :: {:error, atom()} | {:ok, non_neg_integer()}

With the help of this function, you can make a backup copy of mix.exs and mix.lock of your project and keep it in the
deployment/extensions path.
If this function is used with one input, it targets the mix.exs file, and if the second input is :lock atom,
it targets the mix.lock file to keep a backup copy.
With the help of this function, you can make a backup copy of mix.exs and mix.lock of your project and keep
it in the deployment/extensions path.
If this function is used with one input, it targets the mix.exs file, and if the second input is :lock atom,
it targets the mix.lock file to keep a backup copy.

 examples

 Examples

MishkaInstaller.Installer.MixCreator.backup_mix("mix.exs")
MishkaInstaller.Installer.MixCreator.backup_mix("mix.lock", :lock)

 Link to this function

 backup_mix(lock_path, atom)

 View Source

 @spec backup_mix(binary(), :lock) :: {:error, atom()} | {:ok, non_neg_integer()}

Read backup_mix/1 description.

 Link to this function

 create_mix(list_of_deps, mix_path)

 View Source

 @spec create_mix([tuple()], binary()) :: :ok | {:error, atom()}

This function receives a list of libraries stored in the extensions.json file along with the mix.exs path of the file
that needs to be changed, and after that, it changes the deps function in mix.exs and overwrites it with the new libraries.

 examples

 Examples

mix_path = MishkaInstaller.get_config(:mix)
MixCreator.create_mix(mix_path.project[:deps], "mix_path")
As you see, we pass the current dependencies to let this function merge it with extensions.json

 Link to this function

 restore_mix(mix_path)

 View Source

 @spec restore_mix(binary()) :: {:error, atom()} | {:ok, non_neg_integer()}

This function is also the same as the backup_mix/1 function, with the difference that it returns the backed-up version
to the project path. Both functions use the File.copy/2 function just to improve the naming and also to warn the programmer
that it has been replaced in this file.

 examples

 Examples

MishkaInstaller.Installer.MixCreator.restore_mix("mix.exs")
MishkaInstaller.Installer.MixCreator.restore_mix("mix.lock", :lock)

 Link to this function

 restore_mix(lock_path, atom)

 View Source

 @spec restore_mix(binary(), :lock) :: {:error, atom()} | {:ok, non_neg_integer()}

Read restore_mix/1 description.

MishkaInstaller.Installer.RunTimeSourcing

Using this module, you can independently add a downloaded-library while your system is running, with minimal dependencies.
The important thing to note is that you are actually adding a complete dependency and a complete Elixir project which is
compiled to the system, and this is not Hot Coding.
At the time of this section's development, we have been very aware that with the least dependence and only with the Erlang
and Elixir functions do all the process.
We covered the whole process, but without informing different sectors and being able to notify the installation, removing,
and updating process, it would be incomplete. We couldn't leave the programmers.
Hence, the Phoenix Pubsub library can be an excellent option to notice processes are subscribed to in the MishkaInstaller channel.
The purpose of this section is divided into two categories as follows:
	View in the terminal
	Send Ported Output by Pubsub

This module requires the import_path as a variable system, which is your project's path.

Below you can see the graph of connecting this module to another module.

+--+
| |
| |
| MishkaInstaller.Installer.DepHandler +--------------------+
| | |
| | |
+--+ |
+---+ +-----------------v-------------------------+
| | | |
| MishkaInstaller.Installer.Live.DepGetter +-------> MishkaInstaller.Installer.RunTimeSourcing |
| | | |
+---+ +------------------^------------------------+
 |
+--+ |
MishkaInstaller.Installer.DepChangesProtector	
+---------------------+	
+--+

	Warning: This module is independent and surrounded by operational functions to create a custom system by developers themselves.
Suppose you want to have an action function that makes an exemplary process by managing errors and the download queue. In that case,
it is best to use two MishkaInstaller.Installer.DepHandler and MishkaInstaller.Installer.Live.DepGetter modules.
	Warning: In this version, we use the project mix.exs so that this file does not change, and the new library is not added to it;
it is impossible to use these functions. For your convenience, we added a module named mix creator as MishkaInstaller.Installer.MixCreator
module. If you don't want to change mix.exs and download a dependency, you need to prepper the library file directly and compile it.
	Warning: Being limited to mix.exs will be deleted in the future.

 Anchor for this section

 Summary

 Types

 app_name()

 This type can be used when you want to send an app name

 do_runtime()

 This type can be used when you want to prepend a compiled-project

 ensure()

 This type can be used when you want to ensure or start a project

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 compare_dependencies(installed_apps \\ Application.loaded_applications(), files_list)

 This function helps you compare the installed libraries and the ones you want to install and displays the ones not installed in a list.
The first entry is the installed apps, which can be left blank. it is loaded from Application.loaded_applications/0.

 consult_app_file(bin)

 This function converts loaded .app file as elixir type like list and tuple

 do_deps_compile(app, type \\ :cmd)

 This aggregator function is an action function to download and compile requested dependencies.
You can decide what your default output is. It should be noted that this part of the project
supports Terminal output with System.cmd/2 function and sending Pubsub with Port.open/2 module.

 do_runtime(app, atom)

 This function is made in three different situations that you can load according to your own needs.
The overall purpose of this function with different patterns is to add - update and delete a library on your Elixir project
without the need for Downtime.

 get_build_path(mode \\ Mix.env())

 It displays the build directory path based on MishkaInstaller.get_config/1.
Hence you should bind :project_path on runtime or before running the CMS in your config.
The first entry is the Environment status, which can be left blank. it is loaded from Mix.env/0.

 prepend_compiled_apps(files_list)

 Prepending path means that after getting and compiling a dependency, you can determine a made ebin folder as an item of dependencies.
Hence, you need to move a compiled app with its sup-apps.

 read_app(lib_path, sub_app)

 This function loads a .app file as binary.

 subscribe()

 This function helps the programmer to join the channel of this module(MishkaInstaller.Installer.RunTimeSourcing)
and receive the output as a broadcast in the form of {:run_time_sourcing, answer}. It uses Phoenix.PubSub.subscribe/2.

 Anchor for this section

Types

 Link to this type

 app_name()

 View Source

 @type app_name() :: String.t() | atom()

This type can be used when you want to send an app name

 Link to this type

 do_runtime()

 View Source

 @type do_runtime() :: :application_ensure | :prepend_compiled_apps

This type can be used when you want to prepend a compiled-project

 Link to this type

 ensure()

 View Source

 @type ensure() :: :bad_directory | :load | :no_directory | :sure_all_started

This type can be used when you want to ensure or start a project

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 compare_dependencies(installed_apps \\ Application.loaded_applications(), files_list)

 View Source

 @spec compare_dependencies([tuple()], [String.t()]) :: [String.t()]

This function helps you compare the installed libraries and the ones you want to install and displays the ones not installed in a list.
The first entry is the installed apps, which can be left blank. it is loaded from Application.loaded_applications/0.

 examples

 Examples

MishkaInstaller.Installer.RunTimeSourcing.compare_dependencies(["the_app_does_not_exist", "compiler"])

 Link to this function

 consult_app_file(bin)

 View Source

 @spec consult_app_file(binary()) ::
 {:error,
 {non_neg_integer() | {non_neg_integer(), pos_integer()}, atom(), any()}}
 | {:ok, any()}
 | {:error,
 {non_neg_integer() | {non_neg_integer(), pos_integer()}, atom(), any()},
 non_neg_integer() | {non_neg_integer(), pos_integer()}}

This function converts loaded .app file as elixir type like list and tuple

 references

 References:

	https://elixirforum.com/t/how-to-get-vsn-from-app-file/48132/2
	https://github.com/elixir-lang/elixir/blob/main/lib/mix/lib/mix/tasks/compile.all.ex#L153-L154

 Link to this function

 do_deps_compile(app, type \\ :cmd)

 View Source

This aggregator function is an action function to download and compile requested dependencies.
You can decide what your default output is. It should be noted that this part of the project
supports Terminal output with System.cmd/2 function and sending Pubsub with Port.open/2 module.
Warning: the routing of this function may change in future versions.
Please check it in each version if you use this function directly.
Please consider after each operation; the directory reference gets back to the project path.

 examples

 Examples

MishkaInstaller.Installer.RunTimeSourcing.do_deps_compile("test_app", :cmd)
MishkaInstaller.Installer.RunTimeSourcing.do_deps_compile("test_app", :port)

 Link to this function

 do_runtime(app, atom)

 View Source

 @spec do_runtime(atom(), atom()) ::
 {:ok, :application_ensure} | {:error, do_runtime(), ensure(), any()}

This function is made in three different situations that you can load according to your own needs.
The overall purpose of this function with different patterns is to add - update and delete a library on your Elixir project
without the need for Downtime.

The first pattern is :add.
This function adds a library that is neither already installed nor loaded on your project.

 the-overall-activity-of-this-function-can-be-divided-into-several-parts

 The overall activity of this function can be divided into several parts:

	Routing of compiled sub-libraries (requested library dependencies)
	Check compiled dependencies with installed-dependencies
	Introducing and addressing dependencies (in terms of files)
	Introducing and starting dependencies on the system

As we have mentioned in option 4 when a state dependency is started, it also starts working; now, these items can
be called directly by the programmer or placed in the Application.ex of the plugin itself as a Genserver.
The first entry is the dependency name. This name must be exactly the name mentioned in the mix.exs file of the requested dependency.
For this purpose, the type of the library name must be an atom type and the second entry is :add.

 examples

 Examples

MishkaInstaller.Installer.RunTimeSourcing.do_runtime(:mishka_developer_tools, :add)

Or

MishkaInstaller.Installer.RunTimeSourcing.do_runtime(:mishka_social, :add)

 this-function-calls-6-other-functions-including

 This function calls 6 other functions including:

	get_build_path/0
	File.ls!/1
	Enum.reject/2
	compare_dependencies/2
	prepend_compiled_apps/2
	application_ensure/2

The second pattern is :force_update.
This pattern is similar to :add, except that you no longer check the installed dependencies with the compiled ones.
This pattern is mostly used for updates or when you are sure everything is already in place.

 examples-1

 Examples

MishkaInstaller.Installer.RunTimeSourcing.do_runtime(:mishka_developer_tools, :force_update)

Or

MishkaInstaller.Installer.RunTimeSourcing.do_runtime(:mishka_social, :force_update)

 this-function-calls-5-other-functions-including

 This function calls 5 other functions including:

	get_build_path/0
	File.ls!/1
	Enum.reject/2
	prepend_compiled_apps/2
	application_ensure/2

The third pattern is :uninstall.
This function stops an already installed library and removes it from the list of installed libraries(unload an app).
After deleting by the Application module functions, the compiled directory of the requested library is also deleted.

 examples-2

 Examples

MishkaInstaller.Installer.RunTimeSourcing.do_runtime(:mishka_developer_tools, :uninstall)

Or

MishkaInstaller.Installer.RunTimeSourcing.do_runtime(:mishka_social, :uninstall)

 this-function-calls-5-other-functions-including-1

 This function calls 5 other functions including:

	File.ls!/1
	Application.stop/1
	Application.unload/1
	delete_app_dir/1
	get_build_path/1

 Link to this function

 get_build_path(mode \\ Mix.env())

 View Source

 @spec get_build_path(atom()) :: binary()

It displays the build directory path based on MishkaInstaller.get_config/1.
Hence you should bind :project_path on runtime or before running the CMS in your config.
The first entry is the Environment status, which can be left blank. it is loaded from Mix.env/0.

 examples

 Examples

MishkaInstaller.Installer.RunTimeSourcing.get_build_path(:dev) # Or :test, Mix.env()
MishkaInstaller.Installer.RunTimeSourcing.get_build_path()

 Link to this function

 prepend_compiled_apps(files_list)

 View Source

 @spec prepend_compiled_apps(any()) ::
 {:ok, :prepend_compiled_apps} | {:error, do_runtime(), ensure(), list()}

Prepending path means that after getting and compiling a dependency, you can determine a made ebin folder as an item of dependencies.
Hence, you need to move a compiled app with its sup-apps.
This function calls Code.prepend_path/1.

 examples

 Examples

MishkaInstaller.Installer.RunTimeSourcing.prepend_compiled_apps(["test_app", "mishka_developer_tools"])

 Link to this function

 read_app(lib_path, sub_app)

 View Source

 @spec read_app(binary(), app_name()) :: {:error, atom()} | {:ok, binary()}

This function loads a .app file as binary.

 references

 References:

	https://elixirforum.com/t/how-to-get-vsn-from-app-file/48132/2
	https://github.com/elixir-lang/elixir/blob/main/lib/mix/lib/mix/tasks/compile.all.ex#L153-L154

 Link to this function

 subscribe()

 View Source

 @spec subscribe() :: :ok | {:error, {:already_registered, pid()}}

This function helps the programmer to join the channel of this module(MishkaInstaller.Installer.RunTimeSourcing)
and receive the output as a broadcast in the form of {:run_time_sourcing, answer}. It uses Phoenix.PubSub.subscribe/2.

 examples

 Examples

Subscribe to `MishkaInstaller.Installer.RunTimeSourcing` module
MishkaInstaller.Installer.RunTimeSourcing.subscribe()

Getting the answer as Pubsub for examples in LiveView
@impl Phoenix.LiveView
def handle_info({:run_time_sourcing, answer}, socket) when is_binary(answer) do
 {:noreply, socket}
end

MishkaInstaller.Plugin

This module is for communication with Plugins table and has essential functions such as
adding, editing, deleting, and displaying.
This module is related to module MishkaInstaller.Database.PluginSchema.

 Anchor for this section

 Summary

 Functions

 add_or_edit_by_name(state)

 This is an aggregation function that includes editing or adding by name of plugin.

 create(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 create(attrs, allowed_fields)

 See MishkaDeveloperTools.DB.CRUD.crud_add/1.

 delete(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 delete_plugins(event)

 Delete all the plugins of an event by an event name.

 edit(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 edit(attrs, allowed_fields)

 See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 plugins()

 plugins(list)

 Show plugins by event name or all the plugin.

 show_by_id(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 show_by_name(name)

 See MishkaDeveloperTools.DB.CRUD.crud_get_by_field/2.

 Anchor for this section

Functions

 Link to this function

 add_or_edit_by_name(state)

 View Source

This is an aggregation function that includes editing or adding by name of plugin.

 Link to this function

 create(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 Link to this function

 create(attrs, allowed_fields)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_add/1.

 Link to this function

 delete(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 Link to this function

 delete_plugins(event)

 View Source

Delete all the plugins of an event by an event name.

 Link to this function

 edit(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 Link to this function

 edit(attrs, allowed_fields)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 Link to this function

 plugins()

 View Source

 Link to this function

 plugins(list)

 View Source

Show plugins by event name or all the plugin.

 Link to this function

 show_by_id(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 Link to this function

 show_by_name(name)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_get_by_field/2.

MishkaInstaller.PluginDependTypeEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :soft | :hard | :none

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.PluginETS

This module provides a series of essential functions for storing plugins on ETS.

 Anchor for this section

 Summary

 Functions

 delete(list)

 	Deleting a plug-in from the ETS table.
	Deleting plugins from the ETS table based on a specific event.

Examples
MishkaInstaller.PluginETS.delete(module: "TestModule.a_plugin")
or
MishkaInstaller.PluginETS.delete(event: "test_event")

 get(list)

 Getting a plug-in from the ETS table.

 get_all(list)

 Getting all plug-ins from the ETS table.

 push(state)

 Storing a plug-in on the ETS table.

 start_link(args)

 sync_with_database()

 Initializing ETS table with database

 Anchor for this section

Functions

 Link to this function

 delete(list)

 View Source

	Deleting a plug-in from the ETS table.
	Deleting plugins from the ETS table based on a specific event.

 examples

 Examples

MishkaInstaller.PluginETS.delete(module: "TestModule.a_plugin")
or
MishkaInstaller.PluginETS.delete(event: "test_event")

 Link to this function

 get(list)

 View Source

Getting a plug-in from the ETS table.

 examples

 Examples

 MishkaInstaller.PluginETS.get_all(module: "TestModule.a_plugin")

 Link to this function

 get_all(list)

 View Source

Getting all plug-ins from the ETS table.

 examples

 Examples

 MishkaInstaller.PluginETS.get_all(event: "test_event")

 Link to this function

 push(state)

 View Source

Storing a plug-in on the ETS table.

 examples

 Examples

event = %MishkaInstaller.PluginState{name: "MishkaUser.SuccessLogin", event: Atom.to_string(@ref), priority: 1}
MishkaInstaller.PluginETS.push(event)

 Link to this function

 start_link(args)

 View Source

 Link to this function

 sync_with_database()

 View Source

Initializing ETS table with database

 examples

 Examples

MishkaInstaller.PluginETS.sync_with_database()

MishkaInstaller.PluginState

This module served as the first layer in the domain of plugin state management in earlier versions;
however, following optimization using ETS, it is now regarded as the main structure in the second layer.
If a developer chooses to construct a custom plugin by using the use MishkaInstaller.Hook directive,
then the developer actually implements this module as the first layer to register a plugin and the second layer as a supervisor.
The scope of a plugin's state management is not restricted to the automatically specified duties performed by the MishkaInstaller;
for instance, it provides developers with a temporary state and offers them the freedom to act in accordance with whatever method they choose.
Each plugin should have these parameters
 defstruct [:name, :event, priority: 1, status: :started, depend_type: :soft, depends: [], extra: [], parent_pid: nil]
Module communication process of MishkaInstaller.PluginState
 +--+
 | |
 | |
+------+ MishkaInstaller.PluginStateDynamicSupervisor |
| | |
| | |
| +--------------------------------------+----^----+
+------------------------+			
+------> PluginStateRegistry | | |
 | | | |
 +--------^---------------+ | |
 | | |
 | | |
 | | |
 | | |
 | +--------------------v----+-----+
 | | |
 | | MishkaInstaller.PluginState |
 +--------+ |
 +--------------------+--------^-+
 | |
 | |
 | |
 | |
 +----------------------------+ | |
 | | | |
 | MishkaInstaller.PluginETS <------+ |
 | | |
 +----------------------------+ |
 |
 |
 |
 +--------------------+-+
 | |
 +-------------+ MishkaInstaller.Hook |
 | | |
 | +----------------------+
 |
 |
 +---------v----------------------+
 | |
 | Behaviour References |
 | |
 +--------------------------------+

 Anchor for this section

 Summary

 Types

 event_name()

 This type can be used when you want to introduce an event name

 extension()

 This type can be used when you want to introduce an event owner extension

 id()

 This type can be used when you want to introduce an ID of a plugin

 module_name()

 This type can be used when you want to introduce an plugin name

 params()

 This type can be used when you want to introduce the parameters of a plugin

 plugin()

 This type can be used when you want to introduce an event

 t()

 This type can be used when you want to introduce an event

 Functions

 delete(list)

 Delete a plugin or plugins based on a specific event from the state.

 delete_child(list)

 Terminate a PID from the supervisor directly.

 get(list)

 It gets a plugin information from the state.

 get_all()

 This function gets all information of plugins which are pushed on the state.

 get_all(list)

 This function gets all information of plugins which are under a specific event.

 push(element)

 This function helps you to create the state of a plugin. Please see plugin/0 type documents. This function does not wait for a response.

 push_call(element)

 This function does the same thing as the push/1 function, except that it waits for a response.

 start_link(args)

 You should in no way use this function in its direct form. The supervisor coverage needs to run before using this function since
it will establish a state for your plugin and save its PID in the registry.
Make use of the function named MishkaInstaller.PluginStateDynamicSupervisor.start_job/1.

 stop(list)

 Stop a plugin state.

 terminate_all_pids()

 Terminate all PIDs of the plugin state from the supervisor directly.

 Anchor for this section

Types

 Link to this type

 event_name()

 View Source

 @type event_name() :: String.t()

This type can be used when you want to introduce an event name

 Link to this type

 extension()

 View Source

 @type extension() :: String.t()

This type can be used when you want to introduce an event owner extension

 Link to this type

 id()

 View Source

 @type id() :: String.t()

This type can be used when you want to introduce an ID of a plugin

 Link to this type

 module_name()

 View Source

 @type module_name() :: String.t()

This type can be used when you want to introduce an plugin name

 Link to this type

 params()

 View Source

 @type params() :: map()

This type can be used when you want to introduce the parameters of a plugin

 Link to this type

 plugin()

 View Source

 @type plugin() :: %MishkaInstaller.PluginState{
 depend_type: :soft | :hard,
 depends: [String.t()],
 event: event_name(),
 extension: module(),
 extra: [map()],
 name: module_name(),
 parent_pid: any(),
 priority: integer(),
 status: :started | :stopped | :restarted
}

This type can be used when you want to introduce an event

 Link to this type

 t()

 View Source

 @type t() :: plugin()

This type can be used when you want to introduce an event

 Anchor for this section

Functions

 Link to this function

 delete(list)

 View Source

Delete a plugin or plugins based on a specific event from the state.

 examples

 Examples

MishkaInstaller.PluginState.delete(module: "PluginTest")
or
MishkaInstaller.PluginState.delete(event: "EventTest")

 Link to this function

 delete_child(list)

 View Source

Terminate a PID from the supervisor directly.

 examples

 Examples

MishkaInstaller.PluginState.delete_child(module: "PluginTest")

 Link to this function

 get(list)

 View Source

 @spec get([{:module, module_name()}]) :: plugin() | {:error, :get, :not_found}

It gets a plugin information from the state.

 examples

 Examples

MishkaInstaller.PluginState.get(module: "PluginTest")

 Link to this function

 get_all()

 View Source

This function gets all information of plugins which are pushed on the state.

 examples

 Examples

MishkaInstaller.PluginState.get_all()

 Link to this function

 get_all(list)

 View Source

This function gets all information of plugins which are under a specific event.

 examples

 Examples

MishkaInstaller.PluginState.get_all(event: "event_test")

 Link to this function

 push(element)

 View Source

 @spec push(t()) :: :ok | {:error, :push, any()}

This function helps you to create the state of a plugin. Please see plugin/0 type documents. This function does not wait for a response.

 examples

 Examples

plugin =
 %MishkaInstaller.PluginState{
 name: "unnested_plugin_five",
 event: "nested_event_one",
 depend_type: :hard,
 depends: ["unnested_plugin_four"]
 }
MishkaInstaller.PluginState.push(plugin)

 Link to this function

 push_call(element)

 View Source

 @spec push_call(t()) :: :ok | {:error, :push, any()}

This function does the same thing as the push/1 function, except that it waits for a response.

 Link to this function

 start_link(args)

 View Source

You should in no way use this function in its direct form. The supervisor coverage needs to run before using this function since
it will establish a state for your plugin and save its PID in the registry.
Make use of the function named MishkaInstaller.PluginStateDynamicSupervisor.start_job/1.

 Link to this function

 stop(list)

 View Source

Stop a plugin state.

 examples

 Examples

MishkaInstaller.PluginState.stop(module: PluginTest)
or
MishkaInstaller.PluginState.stop(event: "event_test")

 Link to this function

 terminate_all_pids()

 View Source

Terminate all PIDs of the plugin state from the supervisor directly.

 examples

 Examples

MishkaInstaller.PluginState.terminate_all_pids()

MishkaInstaller.PluginStateDynamicSupervisor

This module supervises the states created during the registration of each plugin.
Module communication process of this module
 +--+
 | |
 | |
+------+ MishkaInstaller.PluginStateDynamicSupervisor |
| | |
| | |
| +--------------------------------------+----^----+
+--------------------------+			
+------> PluginStateRegistry | | |
 | | | |
 +--------^-----------------+ | |
 | | |
 | | |
 | | |
 | | |
 | +--------------------v----+-----+
 | | |
 | | MishkaInstaller.PluginState |
 +--------+ |
 +--------------------+----------+
 |
 |
 |
 |
 +----------------------------+ |
 | | |
 | MishkaInstaller.PluginETS <------+
 | |
 +----------------------------+

 Anchor for this section

 Summary

 Functions

 get_plugin_pid(module_name)

 Get PID based on the name of a plugin from PluginStateRegistry Registry.

 running_imports()

 Show all PIDs of PluginStateDynamicSupervisor module from PluginStateRegistry Registry.

 running_imports(event_name)

 Show all PIDs of PluginStateDynamicSupervisor module based on a specific event from PluginStateRegistry Registry.

 start_job(args)

 Start supervising plugin States.

 terminate_childeren()

 You are able to terminate all children that this module is responsible for supervising with the assistance of this function.

 Anchor for this section

Functions

 Link to this function

 get_plugin_pid(module_name)

 View Source

 @spec get_plugin_pid(String.t()) ::
 {:error, :get_plugin_pid} | {:ok, :get_plugin_pid, pid()}

Get PID based on the name of a plugin from PluginStateRegistry Registry.

 examples

 Examples

MishkaInstaller.PluginStateDynamicSupervisor.get_plugin_pid("Plugin.TestName")

 Link to this function

 running_imports()

 View Source

Show all PIDs of PluginStateDynamicSupervisor module from PluginStateRegistry Registry.

 examples

 Examples

MishkaInstaller.PluginStateDynamicSupervisor.running_imports()

 Link to this function

 running_imports(event_name)

 View Source

Show all PIDs of PluginStateDynamicSupervisor module based on a specific event from PluginStateRegistry Registry.

 examples

 Examples

MishkaInstaller.PluginStateDynamicSupervisor.running_imports("event_test_name")

 Link to this function

 start_job(args)

 View Source

 @spec start_job(%{id: String.t(), type: String.t(), parent_pid: any()}) ::
 :ignore | {:error, any()} | {:ok, :add | :edit, pid()}

Start supervising plugin States.

 Link to this function

 terminate_childeren()

 View Source

You are able to terminate all children that this module is responsible for supervising with the assistance of this function.

 examples

 Examples

MishkaInstaller.PluginStateDynamicSupervisor.terminate_childeren()

MishkaInstaller.PluginStatusEnum

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cast(arg1)

 Callback implementation for Ecto.Type.cast/1.

 dump(term)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(int)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 valid_value?(value)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: :started | :stopped | :restarted

 Anchor for this section

Functions

 Link to this function

 cast(arg1)

 View Source

Callback implementation for Ecto.Type.cast/1.

 Link to this function

 dump(term)

 View Source

Callback implementation for Ecto.Type.dump/1.

 Link to this function

 embed_as(_)

 View Source

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 load(int)

 View Source

Callback implementation for Ecto.Type.load/1.

 Link to this function

 type()

 View Source

Callback implementation for Ecto.Type.type/0.

 Link to this function

 valid_value?(value)

 View Source

MishkaInstaller.Reference.OnAfterDependency behaviour

 Note: Please do not use it, it will be changed in the next version

 Anchor for this section

 Summary

 Types

 app()

 This type can be used when you want to introduce an app

 optional_callbacks()

 This type can be used when you want to show the output of optional callbacks

 output()

 This type can be used when you want to introduce output of finished compiling/installing

 reason()

 This type can be used when you want to introduce a plugin output

 ref()

 This type can be used when you want to introduce an app's reference name

 registerd_info()

 This type can be used when you want to register an app

 state()

 This type can be used when you want to introduce an app as a plugin

 status()

 This type can be used when you want to introduce an app's status

 t()

 This type can be used when you want to introduce an app as a plugin

 Callbacks

 call(state)

 This Callback can be used when you want to call a plugin

 delete(registerd_info)

 This Callback can be used when you want to delete a plugin

 initial(list)

 This Callback can be used when you want to register a plugin

 restart(registerd_info)

 This Callback can be used when you want to restart a plugin

 start(registerd_info)

 This Callback can be used when you want to start a plugin

 stop(registerd_info)

 This Callback can be used when you want to stop a plugin

 unregister(registerd_info)

 This Callback can be used when you want to unregister a plugin

 Anchor for this section

Types

 Link to this type

 app()

 View Source

 @type app() :: atom()

This type can be used when you want to introduce an app

 Link to this type

 optional_callbacks()

 View Source

 @type optional_callbacks() ::
 {:ok, ref(), registerd_info()} | {:error, ref(), reason()}

This type can be used when you want to show the output of optional callbacks

 Link to this type

 output()

 View Source

 @type output() :: String.t()

This type can be used when you want to introduce output of finished compiling/installing

 Link to this type

 reason()

 View Source

 @type reason() :: map() | String.t()

This type can be used when you want to introduce a plugin output

 Link to this type

 ref()

 View Source

 @type ref() :: :on_after_dependency

This type can be used when you want to introduce an app's reference name

 Link to this type

 registerd_info()

 View Source

 @type registerd_info() :: MishkaInstaller.PluginState.t()

This type can be used when you want to register an app

 Link to this type

 state()

 View Source

 @type state() :: %MishkaInstaller.Reference.OnAfterDependency{
 app: app(),
 output: output(),
 status: state()
}

This type can be used when you want to introduce an app as a plugin

 Link to this type

 status()

 View Source

 @type status() :: :add | :update | :force_update

This type can be used when you want to introduce an app's status

 Link to this type

 t()

 View Source

 @type t() :: state()

This type can be used when you want to introduce an app as a plugin

 Anchor for this section

Callbacks

 Link to this callback

 call(state)

 View Source

 @callback call(state()) :: {:reply, state()} | {:reply, :halt, state()}

This Callback can be used when you want to call a plugin

 Link to this callback

 delete(registerd_info)

 View Source

 (optional)

 @callback delete(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to delete a plugin

 Link to this callback

 initial(list)

 View Source

 @callback initial(list()) :: {:ok, ref(), list()} | {:error, ref(), reason()}

This Callback can be used when you want to register a plugin

 Link to this callback

 restart(registerd_info)

 View Source

 (optional)

 @callback restart(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to restart a plugin

 Link to this callback

 start(registerd_info)

 View Source

 (optional)

 @callback start(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to start a plugin

 Link to this callback

 stop(registerd_info)

 View Source

 (optional)

 @callback stop(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to stop a plugin

 Link to this callback

 unregister(registerd_info)

 View Source

 (optional)

 @callback unregister(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to unregister a plugin

MishkaInstaller.Reference.OnChangeDependency behaviour

 Note: Please do not use it, it will be changed in the next version
 This event is kicked off anytime a plugin is moved into the installation or update stage of the process.
 In the event that a plugin from this area is carrying out the after completing all the above-mentioned procedures,
 the developer will have access to the output in real time.
 Note: Treat this event as a no return flag while analyzing it.
 It is currently being renovated, and in the future it might look different.

 Anchor for this section

 Summary

 Types

 app()

 This type can be used when you want to introduce an app

 optional_callbacks()

 This type can be used when you want to show the output of optional callbacks

 output()

 This type can be used when you want to introduce each line of compiling/installing

 reason()

 This type can be used when you want to introduce a plugin output

 ref()

 This type can be used when you want to introduce an app's reference name

 registerd_info()

 This type can be used when you want to register an app

 state()

 This type can be used when you want to introduce an app as a plugin

 status()

 This type can be used when you want to introduce an app's status

 t()

 This type can be used when you want to introduce an app as a plugin

 Callbacks

 call(state)

 This Callback can be used when you want to call a plugin

 delete(registerd_info)

 This Callback can be used when you want to delete a plugin

 initial(list)

 This Callback can be used when you want to register a plugin

 restart(registerd_info)

 This Callback can be used when you want to restart a plugin

 start(registerd_info)

 This Callback can be used when you want to start a plugin

 stop(registerd_info)

 This Callback can be used when you want to stop a plugin

 unregister(registerd_info)

 This Callback can be used when you want to unregister a plugin

 Anchor for this section

Types

 Link to this type

 app()

 View Source

 @type app() :: atom()

This type can be used when you want to introduce an app

 Link to this type

 optional_callbacks()

 View Source

 @type optional_callbacks() ::
 {:ok, ref(), registerd_info()} | {:error, ref(), reason()}

This type can be used when you want to show the output of optional callbacks

 Link to this type

 output()

 View Source

 @type output() :: String.t()

This type can be used when you want to introduce each line of compiling/installing

 Link to this type

 reason()

 View Source

 @type reason() :: map() | String.t()

This type can be used when you want to introduce a plugin output

 Link to this type

 ref()

 View Source

 @type ref() :: :on_change_dependency

This type can be used when you want to introduce an app's reference name

 Link to this type

 registerd_info()

 View Source

 @type registerd_info() :: MishkaInstaller.PluginState.t()

This type can be used when you want to register an app

 Link to this type

 state()

 View Source

 @type state() :: %MishkaInstaller.Reference.OnChangeDependency{
 app: app(),
 output: output(),
 status: state()
}

This type can be used when you want to introduce an app as a plugin

 Link to this type

 status()

 View Source

 @type status() :: :add | :update | :force_update

This type can be used when you want to introduce an app's status

 Link to this type

 t()

 View Source

 @type t() :: state()

This type can be used when you want to introduce an app as a plugin

 Anchor for this section

Callbacks

 Link to this callback

 call(state)

 View Source

 @callback call(state()) :: {:reply, state()} | {:reply, :halt, state()}

This Callback can be used when you want to call a plugin

 Link to this callback

 delete(registerd_info)

 View Source

 (optional)

 @callback delete(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to delete a plugin

 Link to this callback

 initial(list)

 View Source

 @callback initial(list()) :: {:ok, ref(), list()} | {:error, ref(), reason()}

This Callback can be used when you want to register a plugin

 Link to this callback

 restart(registerd_info)

 View Source

 (optional)

 @callback restart(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to restart a plugin

 Link to this callback

 start(registerd_info)

 View Source

 (optional)

 @callback start(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to start a plugin

 Link to this callback

 stop(registerd_info)

 View Source

 (optional)

 @callback stop(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to stop a plugin

 Link to this callback

 unregister(registerd_info)

 View Source

 (optional)

 @callback unregister(registerd_info()) :: optional_callbacks()

This Callback can be used when you want to unregister a plugin

MishkaInstaller.Reference.OnInit

 Note: Please do not use it, it will be changed in the next version

MishkaInstaller.Setting

This module is for communication with Settings table and has essential functions such as
adding, editing, deleting, and displaying.
This module is related to module MishkaInstaller.Database.SettingSchema.

 Anchor for this section

 Summary

 Functions

 add_or_edit_by_name(data)

 This is an aggregation function that includes editing or adding by name.

 allowed_fields(atom)

 create(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 create(attrs, allowed_fields)

 See MishkaDeveloperTools.DB.CRUD.crud_add/1.

 delete(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 edit(attrs)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 edit(attrs, allowed_fields)

 See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 settings()

 settings(list)

 Show all settings.

 show_by_id(id)

 Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 show_by_name(name)

 See MishkaDeveloperTools.DB.CRUD.crud_get_by_field/2.

 subscribe()

 If you want to get the latest changes from the Settings table of your database,
this function can help you to be subscribed.

 Anchor for this section

Functions

 Link to this function

 add_or_edit_by_name(data)

 View Source

This is an aggregation function that includes editing or adding by name.

 Link to this function

 allowed_fields(atom)

 View Source

 @spec allowed_fields(:atom | :string) :: nil | list()

 Link to this function

 create(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.create/1.

 Link to this function

 create(attrs, allowed_fields)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_add/1.

 Link to this function

 delete(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.delete/1.

 Link to this function

 edit(attrs)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.edit/1.

 Link to this function

 edit(attrs, allowed_fields)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_edit/1.

 Link to this function

 settings()

 View Source

 Link to this function

 settings(list)

 View Source

 @spec settings([
 {:conditions, {String.t() | integer(), String.t() | integer()}}
 | {:filters, map()},
 ...
]) :: any()

Show all settings.

 Link to this function

 show_by_id(id)

 View Source

Callback implementation for MishkaDeveloperTools.DB.CRUD.show_by_id/1.

 Link to this function

 show_by_name(name)

 View Source

See MishkaDeveloperTools.DB.CRUD.crud_get_by_field/2.

 Link to this function

 subscribe()

 View Source

If you want to get the latest changes from the Settings table of your database,
this function can help you to be subscribed.

mix mishka_installer.db.gen.migration

Generates MishkaInstallers required migrations.

 Anchor for this section

 Summary

 Functions

 generated_file(filename, source_path, path)

 timestamp()

 Anchor for this section

Functions

 Link to this function

 generated_file(filename, source_path, path)

 View Source

 @spec generated_file(binary(), binary(), binary()) :: boolean()

 Link to this function

 timestamp()

 View Source

 @spec timestamp() :: binary()

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

