

 midi_synth

 v0.4.1

 Table of contents

 	MIDISynth

 	Changelog

 	LICENSE

 	Modules

 	MIDISynth

 	MIDISynth.Command

 	MIDISynth.Keyboard

MIDISynth
[image: CircleCI]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
[image: Github.com]
Play music in Elixir.
Trying it out
First, install FluidSynth.
On Linux:
sudo apt install libfluidsynth-dev
On OSX:
brew install fluidsynth
Next, either clone this library or pull it in as a dependency to your Elixir
project. The following is an example of the dependency for your mix.exs:
{:midi_synth, "~> 0.4.0"}
Fetch dependencies and build as you normally would. The first build will
download the FluidR3_GM.sf2 soundfont file. This is a Creative
Commons-licensed data file that contains all of the
General MIDI instruments. It is a
good place to start, but can be changed later on.
Try it out using IEx
Start IEx by running iex -S mix from a shell prompt.
MIDISynth is a GenServer and must be started first. The library comes with
with helpers to make playing simple things easy. For more complicated uses,
you'll want to build on this library.
OK, let's play a note. Notes are numbered sequentially. Middle C is note 60.
Here's how to play middle C for 100 ms.
iex> {:ok, synth} = MIDISynth.start_link([])
{:ok, #PID<0.226.0>}
iex> MIDISynth.Keyboard.play(synth, 60, 100)
You can play the same note with a different velocity. The velocities range from
1 to 127. Here's how to play middle C for 100 ms with velocity mezzo-forte: 80.
iex> MIDISynth.Keyboard.play(synth, 60, 100, 80)
If you don't like the piano, try switching the instrument to something else.
For example, trumpets (General MIDI instrument
57) are
nice:
iex> MIDISynth.Keyboard.change_program(synth, 57)
iex> MIDISynth.Keyboard.play(synth, 60, 500)
Percussion instruments can be played only through MIDI channel 9.
For example, this is how to play a cowbell sound:
iex> MIDISynth.Keyboard.play(synth, 56, 0, 127, 9)
The real value of this library is the ability to send raw MIDI messages to the
FluidSynth library. The Elixir code barely scratches the surface of what's
possible. If you're comfortable with raw MIDI
commands,
try this out:
iex> MIDISynth.midi(synth, <<0x90, 60, 127>>)
iex> MIDISynth.midi(synth, <<0x80, 60, 127>>)
See MIDISynth.Command for help with encoding messages, and please feel free to
add more.
License
The Elixir and C code are covered by the Apache 2 License.

Changelog
0.4.1
	Bug fixes	Fix compilation issues on OSX and make OSX default audio device portaudio.
The coreaudio default isn't working and Homebrew installs portaudio with
fluidsynth.

0.4.0
	New features	Support specification of MIDI channels in MIDISynth.Command. This is a
backwards incompatible API change if you're using MIDISynth.Command. The
previous code hardcoded the channel to 0.
	Several new commands were added to MIDISynth.Command.

Thanks to Pim Kunis for these updates!
0.3.0
This release updates the Elixir and make code to fix many issues. The library
is the functionally the same as before, but every API call has changed. The
biggest changes are that the main module was renamed to MIDISynth and it's now
a GenServer that should be manually started or added to a supervision tree of
your choosing.
MIDI command encoders are now located in MIDISynth.Command. Please send PRs
back for any other commands you may want to use.
MIDISynth.Keyboard provides a functions for playing back simple songs.
MIDISynth forwards raw MIDI commands to libfluidsynth, so it offers a lot of
functionality. The hope is that other libraries build on this and provide the
sequencers and higher level APIs to make complex music generation possible.
Enjoy!
0.2.0
	New features	Note velocity is supported. Unspecified velocities default to 127.

0.1.0
Initial release

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

MIDISynth

Play music in Elixir!

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 midi(server, data)

 Send a raw MIDI command to the synthesizer

 start_link(args, opts \\ [])

 Start a MIDI synthesizer

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 midi(server, data)

 View Source

 Specs

 midi(GenServer.server(), binary()) :: :ok

Send a raw MIDI command to the synthesizer
See MIDISynth.Command for encoding MIDI commands and MIDISynth.Keyboard
for playing simple songs.

 Examples

 iex> {:ok, synth} = MIDISynth.start_link([])
 iex> MIDISynth.midi(synth, <<0x90, 60, 127>>)
 :ok

 Link to this function

 start_link(args, opts \\ [])

 View Source

 Specs

 start_link(keyword(), GenServer.options()) :: GenServer.on_start()

Start a MIDI synthesizer
Synthesizer arguments:
	:soundfont - the path to the sound font to use for synthesize. Uses FluidR2_GM.sf2 by default.

MIDISynth.Command

Convert MIDI commands to raw bytes

 Anchor for this section

 Summary

 Types

 channel()

 A MIDI channel number

 duration()

 The duration in milliseconds for which to hold down a note.

 int7()

 A 7-bit integer

 note()

 A MIDI note

 program()

 A MIDI program

 velocity()

 The velocity to strike the note.

 volume()

 A channel volume

 Functions

 change_control(channel, control_number, control_value \\ 0)

 Change the MIDI controller value of a channel.

 change_program(channel, prog)

 Change the current program (e.g. instrument) of a channel.

 change_sound_bank(channel, bank)

 Change the sound bank of a channel.

 change_volume(channel, volume)

 Change the volume of a MIDI channel.
This change is applied to all playing and future notes.

 note_off(channel, note)

 Turn a note in a channel off.

 note_off_all(channel)

 Turn all active notes in a channel off.

 note_on(channel, note, velocity)

 Turn a note in a channel on.

 pan(channel, pan)

 Change the panoramic (pan) of a channel.
This shifts the sound from the left or right ear in when playing stereo.
Values below 64 moves the sound to the left, and above to the right.

 pitch_bend(channel, bend)

 Bend the pitch of notes playing in a channel.
Values below 0x2000 will decrease the pitch, and higher values will increase it.

 Anchor for this section

Types

 Link to this type

 channel()

 View Source

 Specs

 channel() :: 0..15

A MIDI channel number

 Link to this type

 duration()

 View Source

 Specs

 duration() :: non_neg_integer()

The duration in milliseconds for which to hold down a note.

 Link to this type

 int7()

 View Source

 Specs

 int7() :: 0..127

A 7-bit integer

 Link to this type

 note()

 View Source

 Specs

 note() :: int7()

A MIDI note
For non-percussion instruments, the frequency of a note
is 440 * 2^((n − 69) / 12) where n is the note number.
Middle C is 60

 Link to this type

 program()

 View Source

 Specs

 program() :: int7()

A MIDI program

 Link to this type

 velocity()

 View Source

 Specs

 velocity() :: int7()

The velocity to strike the note.
127 = maximum velocity

 Link to this type

 volume()

 View Source

 Specs

 volume() :: int7()

A channel volume

 Anchor for this section

Functions

 Link to this function

 change_control(channel, control_number, control_value \\ 0)

 View Source

 Specs

 change_control(channel(), int7(), int7()) :: <<_::24>>

Change the MIDI controller value of a channel.

 Link to this function

 change_program(channel, prog)

 View Source

 Specs

 change_program(channel(), program()) :: <<_::16>>

Change the current program (e.g. instrument) of a channel.

 Link to this function

 change_sound_bank(channel, bank)

 View Source

 Specs

 change_sound_bank(channel(), integer()) :: <<_::48>>

Change the sound bank of a channel.

 Link to this function

 change_volume(channel, volume)

 View Source

 Specs

 change_volume(channel(), int7()) :: <<_::24>>

Change the volume of a MIDI channel.
This change is applied to all playing and future notes.

 Link to this function

 note_off(channel, note)

 View Source

 Specs

 note_off(channel(), note()) :: <<_::24>>

Turn a note in a channel off.

 Link to this function

 note_off_all(channel)

 View Source

 Specs

 note_off_all(channel()) :: <<_::24>>

Turn all active notes in a channel off.

 Link to this function

 note_on(channel, note, velocity)

 View Source

 Specs

 note_on(channel(), note(), velocity()) :: <<_::24>>

Turn a note in a channel on.

 Link to this function

 pan(channel, pan)

 View Source

 Specs

 pan(channel(), int7()) :: <<_::24>>

Change the panoramic (pan) of a channel.
This shifts the sound from the left or right ear in when playing stereo.
Values below 64 moves the sound to the left, and above to the right.

 Link to this function

 pitch_bend(channel, bend)

 View Source

 Specs

 pitch_bend(channel(), integer()) :: <<_::24>>

Bend the pitch of notes playing in a channel.
Values below 0x2000 will decrease the pitch, and higher values will increase it.

MIDISynth.Keyboard

Simple keyboard functions for sending MIDI commands to the synthesizer

 Anchor for this section

 Summary

 Functions

 change_program(server, prog, channel \\ 0)

 Change the current program (e.g., the current instrument)

 play(server, note, duration, velocity \\ 127, channel \\ 0)

 Play a note

 Anchor for this section

Functions

 Link to this function

 change_program(server, prog, channel \\ 0)

 View Source

 Specs

 change_program(
 GenServer.server(),
 MIDISynth.Command.program(),
 MIDISynth.Command.channel()
) :: :ok

Change the current program (e.g., the current instrument)
The soundfont that's supplied to MIDISynth.start_link/2 determines the
mapping from program numbers to instruments. The default is to use a general
MIDI soundfont, and instrument mappings for those can be found by looking at
the General MIDI
1 and
General MIDI 2
specifications.

 Example

 # Play a violin
 iex> {:ok, synth} = MIDISynth.start_link([])
 iex> MIDISynth.Keyboard.change_program(synth, 41)
 :ok
 iex> MIDISynth.Keyboard.play(synth, 60, 100)
 :ok

 Link to this function

 play(server, note, duration, velocity \\ 127, channel \\ 0)

 View Source

 Specs

 play(
 GenServer.server(),
 MIDISynth.Command.note(),
 MIDISynth.Command.duration(),
 MIDISynth.Command.velocity(),
 MIDISynth.Command.channel()
) :: :ok

Play a note
This is a utility method for pressing a note down and then releasing it after
a duration.

 Example

 iex> {:ok, synth} = MIDISynth.start_link([])
 iex> MIDISynth.Keyboard.play(synth, 60, 100)
 :ok
 iex> MIDISynth.Keyboard.play(synth, 60, 100, 80)
 :ok

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

