

 Membrane RTC Engine

 v0.1.0

 Table of contents

 	Membrane RTC Engine

 	LICENSE

 	Modules

 	Membrane.RTC.Engine

 	Membrane.RTC.Engine.Peer

 	Membrane.RTC.Engine.Track

 	Membrane.RTC.Engine.Endpoint.HLS

 	Membrane.RTC.Engine.Endpoint.WebRTC

 	Membrane.RTC.Engine.Message

 	Membrane.RTC.Engine.Message.MediaEvent

 	Membrane.RTC.Engine.Message.NewPeer

 	Membrane.RTC.Engine.Message.PeerLeft

Membrane RTC Engine
[image: Hex.pm]
[image: API Docs]
[image: CircleCI]
Client and server libraries for Membrane RTC Engine.
Documentation
Documentation of client library is available at https://hexdocs.pm/membrane_rtc_engine/js
Documentation of server library is available at https://hexdocs.pm/membrane_rtc_engine
Installation
The package can be installed by adding membrane_rtc_engine to your list of dependencies in mix.exs:
def deps do
 [
 {:membrane_rtc_engine, "~> 0.1.0"}
]
end
Usage
For usage examples, please refer to our membrane_demo repository.
Developing
To make the development a little easier, we augmented mix compile and mix docs tasks so that mix compile also installs npm dependencies and compiles TypeScript code
and mix docs also generates documentation for TypeScript code.
Thanks to this, there is no need to include compiled JS code in priv/static. It will be generated each time mix compile is called.
TypeScript documentation will be generated under doc/js/.
Copyright and License
Copyright 2021,

 LICENSE - Membrane RTC Engine v0.1.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2021 Software Mansion

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Membrane.RTC.Engine - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine

RTC Engine implementation.
RTC Engine is an abstraction layer responsible for linking together different types of Endpoints.
From the implementation point of view, RTC Engine is a Membrane.Pipeline.
Messages
The RTC Engine works by sending messages which notify user logic about important events like
"There is a new peer, would you like to to accept it?".
To receive RTC Engine messages you have to register your process so that RTC Engine will
know where to send them.
All messages RTC Engine can emit are described in Membrane.RTC.Engine.Message docs.
Registering for messages
Registration can be done using register/2 e.g.
Engine.register(rtc_engine, self())
This will register your process to receive RTC Engine messages.
If your process implements GenServer behavior then all messages can be handled
by GenServer.handle_info/2, e.g.
@impl true
def handle_info(%Message.NewPeer{rtc_engine: rtc_engine, peer: peer}, state) do
 Engine.accept_peer(rtc_engine, peer.id)
 {:noreply, state}
end
You can register multiple processes to receive messages from an RTC Engine instance.
In such a case each message will be sent to each registered process.
Client Libraries
RTC Engine allows creating Client Libraries that can send and receive media tracks from it.
The current version of RTC Engine ships with WebRTC Client Library which connects to the RTC Engine
via WebRTC standard.
Communication with Client Libraries is done using Media Events.
Media Events are control messages which notify about e.g. new peer joining to the RTC Engine.
When Client Library receives Media Event it can invoke some callbacks.
In the case of WebRTC Client Library, these are e.g. onPeerJoined or onTrackAdded.
When RTC Engine receives Media Event it can emit some messages e.g. Membrane.RTC.Engine.Message.NewPeer.t/0.
More about Media Events can be read in subsequent sections.
Below there is a figure showing the architecture of the RTC Engine working in conjunction with some Client Library.
 +--------------------------------- media events -----------------------------+
 | (signaling layer) |
 | |
 | |
+--------+ +---------+ +--------+ +---------+
user	<- media ->	Client		RTC	<- media ->	user
client	events	Library	<- media ->	Engine	events	backend
logic	<- callbacks -				- messages ->	logic
+--------+ +---------+ +--------+ +---------+
Media Events
Media Events are blackbox messages that carry data important for the
RTC Engine and its Client Library, but not for the user.
There are two types of Media Events:
	Internal Media Events - generic, protocol-agnostic Media Events sent by RTC Engine itself.
Example Internal Media Events are peerJoined, peerLeft, tracksAdded or tracksRemoved.
	Custom Media Events - they can be used to send custom data from Client Library to some Endpoint inside RTC Engine
and vice versa. In the case of WebRTC Client Library, these are sdpOffer, sdpAnswer, or iceCandidate.

An application is obligated to transport Media Events from an RTC Engine instance to
its Client Library, and vice versa.
When the RTC Engine needs to send a Media Event to a specific client, registered processes will
receive Membrane.RTC.Engine.Message.MediaEvent.t/0 message with to field indicating where this Media Event
should be sent to.
This can be either :broadcast, when the event should be sent to all peers, or peer_id
when the messages should be sent to the specified peer. The event is encoded in binary format,
so it is ready to send without modification.
Feeding an RTC Engine instance with Media Events from a Client Library can be done using receive_media_event/2.
Assuming the user process is a GenServer, the Media Event can be received by GenServer.handle_info/2 and
conveyed to the RTC Engine in the following way:
@impl true
def handle_info({:media_event, from, event} = msg, state) do
 Engine.receive_media_event(state.rtc_engine, from, event)
 {:noreply, state}
end
What is important, Membrane RTC Engine doesn't impose usage of any specific transport layer for carrying
Media Events through the network.
You can e.g. use Phoenix and its channels.
This can look like this:
@impl true
def handle_in("mediaEvent", %{"data" => event}, socket) do
 Engine.receive_media_event(socket.assigns.room, socket.assigns.peer_id, event)
 {:noreply, socket}
end
Peers
Each peer represents some user that can possess some metadata.
A Peer can be added in two ways:
	by sending proper Media Event from a Client Library
	using add_peer/3

Adding a peer will cause RTC Engine to emit Media Event which will notify connected clients about new peer.
Peer id
Peer ids must be assigned by application code. This is not done by the RTC Engine or its client library.
Ids can be assigned when a peer initializes its signaling layer.
Endpoints
Endpoints are Membrane.Bins able to publish their own tracks and subscribe for tracks from other Endpoints.
One can think about Endpoint as an entity responsible for handling some specific task.
An Endpoint can be added and removed using add_endpoint/3 and remove_endpoint/2 respectively.
There are two types of Endpoints:
	Standalone Endpoints - they are in most cases spawned only once per RTC Engine instance and they are not associated with any peer.
	Peer Endpoints - they are associated with some peer.
Associating Endpoint with Peer will cause RTC Engine to send some Media Events to the Enpoint's Client Library
e.g. one which indicates which tracks belong to which peer.

Currently RTC Engine ships with the implementation of two Endpoints:
	Membrane.RTC.Engine.Endpoint.WebRTC which is responsible for establishing a connection with some WebRTC
peer (mainly browser) and exchanging media with it. WebRTC Endpoint is a Peer Endpoint.
	Membrane.RTC.Engine.Endpoint.HLS which is responsible for receiving media tracks from all other Endpoints and
saving them to files by creating HLS playlists. HLS Endpoint is a Standalone Endpoint.

User can also implement custom Endpoints.
Implementing custom RTC Engine Endpoint
Each RTC Engine Endpoint has to:
	implement Membrane.Bin behavior
	specify input, output, or both input and output pads depending on what it is intended to do.
For example, if Endpoint will not publish any tracks but only subscribe for tracks from other Endpoints it can specify only input pads.
Pads should have the following form

 def_input_pad :input,
 demand_unit: :buffers,
 caps: <caps>,
 availability: :on_request

 def_output_pad :output,
 demand_unit: :buffers,
 caps: <caps>,
 availability: :on_request
Where caps are Membrane.Caps.t/0 or :any.
	publish or subscribe for some tracks using actions publish_action_t/0 or subscribe_action_t/0 respectively.
The first will cause RTC Engine to send a message in form of {:new_tracks, tracks}
where tracks is a list of Membrane.RTC.Engine.Track.t/0 to all other Endpoints.
When an Endpoint receives such a message it can subscribe for new tracks by returning action subscribe_action_t/0.
An Endpoint will be notified about track readiness it subscribed for in Membrane.Bin.handle_pad_added/3 callback.
An example implementation of handle_pad_added callback can look like this

 @impl true
 def handle_pad_added(Pad.ref(:input, _track_id) = pad, _ctx, state) do
 links = [
 link_bin_input(pad)
 |> via_in(pad)
 |> to(:my_element)
]

 {{:ok, spec: %ParentSpec{links: links}}, state}
 end
Where :my_element is a custom Membrane element responsible for processing track.
Endpoint will be also notified when some tracks it subscribed for are removed with
{:removed_tracks, tracks} message where tracks is a list of Membrane.RTC.Engine.Track.t/0.

 Anchor for this section

 Summary

 Types

 custom_media_event_action_t()

 Membrane action that will generate Custom Media Event.

 endpoint_options_t()

 Endpoint configuration options.

 options_t()

 RTC Engine configuration options.

 publish_action_t()

 Membrane action that will cause RTC Engine to publish some message to all other endpoints.

 publish_message_t()

 Types of messages that can be published to other Endpoints.

 subscribe_action_t()

 Membrane action that make subscribtion for tracks in given format.

 track_ready_action_t()

 Membrane action that will inform RTC Engine about track readiness.

 Functions

 accept_peer(pid, peer_id)

 Allows peer for joining to the RTC Engine

 add_endpoint(pid, endpoint, opts)

 Adds endpoint to the RTC Engine

 add_peer(pid, peer_id, data \\ %{})

 Adds peer to the RTC Engine

 deny_peer(pid, peer_id)

 Deny peer from joining to the RTC Engine.

 deny_peer(pid, peer_id, data)

 The same as deny_peer/2 but allows for passing any data that will be returned to the client.

 get_registry_name()

 play(pipeline)

 Changes playback state of pipeline to :playing.

 prepare(pipeline)

 Changes playback state to :prepared.

 receive_media_event(rtc_engine, media_event)

 Sends Media Event to RTC Engine.

 register(rtc_engine, who \\ self())

 Registers process with pid who for receiving messages from RTC Engine

 remove_endpoint(rtc_engine, id)

 Removes endpoint from the RTC Engine

 remove_peer(rtc_engine, peer_id)

 Removes peer from RTC Engine.

 start(options, process_options)

 start_link(options, process_options)

 stop(pid)

 Changes playback state to :stopped.

 stop_and_terminate(pipeline, opts \\ [])

 Changes pipeline's playback state to :stopped and terminates its process.

 unregister(rtc_engine, who \\ self())

 Unregisters process with pid who from receiving messages from RTC Engine

 Anchor for this section

Types

 Link to this type

 custom_media_event_action_t()

 View Source

 Specs

 custom_media_event_action_t() ::
 {:notify, {:custom_media_event, data :: binary()}}

Membrane action that will generate Custom Media Event.

 Link to this type

 endpoint_options_t()

 View Source

 Specs

 endpoint_options_t() :: [
 endpoint_id: String.t(),
 peer_id: String.t(),
 node: node()
]

Endpoint configuration options.
	peer_id - associate endpoint with exisiting peer
	endpoint_id - assign endpoint id. If not provided it will be generated by RTC Engine. This option cannot be used together with peer_id.
Endpoints associated with peers have the id peer_id.
	node - node on which endpoint should be spawned. If not provided, current node is used.

 Link to this type

 options_t()

 View Source

 Specs

 options_t() :: [{:id, String.t()}]

RTC Engine configuration options.
id is used by logger. If not provided it will be generated.

 Link to this type

 publish_action_t()

 View Source

 Specs

 publish_action_t() :: {:notify, {:publish, publish_message_t()}}

Membrane action that will cause RTC Engine to publish some message to all other endpoints.

 Link to this type

 publish_message_t()

 View Source

 Specs

 publish_message_t() ::
 {:new_tracks, [Membrane.RTC.Engine.Track.t()]}
 | {:removed_tracks, [Membrane.RTC.Engine.Track.t()]}

Types of messages that can be published to other Endpoints.

 Link to this type

 subscribe_action_t()

 View Source

 Specs

 subscribe_action_t() ::
 {:notify,
 {:subscribe,
 tracks :: [
 {Membrane.RTC.Engine.Track.id(), Membrane.RTC.Engine.Track.format()}
]}}

Membrane action that make subscribtion for tracks in given format.
Endpoint will be notified about track readiness in Membrane.Bin.handle_pad_added/3 callback.
tracks is a list in form of pairs {track_id, track_format}, where track_id is id of track this endpoint subscribes for
and track_format is the format of track that this endpoint is willing to receive.
If track_format is :raw Endpoint will receive track in Membrane.RTC.Engine.Track.encoding/0 format.

 Link to this type

 track_ready_action_t()

 View Source

 Specs

 track_ready_action_t() ::
 {:notify,
 {:track_ready, Membrane.RTC.Engine.Track.id(),
 Membrane.RTC.Engine.Track.encoding(),
 depayloading_filter :: Membrane.ParentSpec.child_spec_t()}}

Membrane action that will inform RTC Engine about track readiness.

 Anchor for this section

Functions

 Link to this function

 accept_peer(pid, peer_id)

 View Source

 Specs

 accept_peer(pid :: pid(), peer_id :: String.t()) :: :ok

Allows peer for joining to the RTC Engine

 Link to this function

 add_endpoint(pid, endpoint, opts)

 View Source

 Specs

 add_endpoint(
 pid :: pid(),
 endpoint :: Membrane.ParentSpec.child_spec_t(),
 opts :: endpoint_options_t()
) :: :ok | :error

Adds endpoint to the RTC Engine
Returns :error when there are both peer_id and endpoint_id specified in opts.
For more information refer to endpoint_options_t/0.

 Link to this function

 add_peer(pid, peer_id, data \\ %{})

 View Source

 Specs

 add_peer(pid :: pid(), peer_id :: String.t(), data :: any()) :: :ok

Adds peer to the RTC Engine

 Link to this function

 deny_peer(pid, peer_id)

 View Source

 Specs

 deny_peer(pid :: pid(), peer_id :: String.t()) :: :ok

Deny peer from joining to the RTC Engine.

 Link to this function

 deny_peer(pid, peer_id, data)

 View Source

 Specs

 deny_peer(pid :: pid(), peer_id :: String.t(), [{:data, any()}]) :: :ok

The same as deny_peer/2 but allows for passing any data that will be returned to the client.
This can be used for passing reason of peer refusal.

 Link to this function

 get_registry_name()

 View Source

 Specs

 get_registry_name() :: atom()

 Link to this function

 play(pipeline)

 View Source

 Specs

 play(pid()) :: :ok

Changes playback state of pipeline to :playing.

 Link to this function

 prepare(pipeline)

 View Source

 Specs

 prepare(pid()) :: :ok

Changes playback state to :prepared.

 Link to this function

 receive_media_event(rtc_engine, media_event)

 View Source

 Specs

 receive_media_event(
 rtc_engine :: pid(),
 media_event :: {:media_event, pid(), any()}
) :: :ok

Sends Media Event to RTC Engine.

 Link to this function

 register(rtc_engine, who \\ self())

 View Source

 Specs

 register(rtc_engine :: pid(), who :: pid()) :: :ok

Registers process with pid who for receiving messages from RTC Engine

 Link to this function

 remove_endpoint(rtc_engine, id)

 View Source

 Specs

 remove_endpoint(pid :: pid(), id :: String.t()) :: :ok

Removes endpoint from the RTC Engine

 Link to this function

 remove_peer(rtc_engine, peer_id)

 View Source

 Specs

 remove_peer(rtc_engine :: pid(), peer_id :: any()) :: :ok

Removes peer from RTC Engine.

 Link to this function

 start(options, process_options)

 View Source

 Specs

 start(options :: options_t(), process_options :: GenServer.options()) ::
 GenServer.on_start()

 Link to this function

 start_link(options, process_options)

 View Source

 Specs

 start_link(options :: options_t(), process_options :: GenServer.options()) ::
 GenServer.on_start()

 Link to this function

 stop(pid)

 View Source

 Specs

 stop(pid()) :: :ok

Changes playback state to :stopped.

 Link to this function

 stop_and_terminate(pipeline, opts \\ [])

 View Source

 Specs

 stop_and_terminate(pid(), Keyword.t()) :: :ok

Changes pipeline's playback state to :stopped and terminates its process.

 Link to this function

 unregister(rtc_engine, who \\ self())

 View Source

 Specs

 unregister(rtc_engine :: pid(), who :: pid()) :: :ok

Unregisters process with pid who from receiving messages from RTC Engine

 Membrane.RTC.Engine.Peer - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Peer

Module describing Peer.

 Anchor for this section

 Summary

 Types

 id()

 t()

 Functions

 new(id, metadata)

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 Specs

 id() :: any()

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RTC.Engine.Peer{id: id(), metadata: any()}

 Anchor for this section

Functions

 Link to this function

 new(id, metadata)

 View Source

 Specs

 new(id :: id(), metadata :: any()) :: t()

 Membrane.RTC.Engine.Track - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Track

Module representing media track.
Media track is a single audio or video. Tracks that are related to each other
(e.g. audio from microphone that corresponds to video from a web cam) can be grouped into the same stream by
assigning each of them the same stream id.

 Anchor for this section

 Summary

 Types

 encoding()

 format()

 id()

 t()

 This module contains

 Functions

 new(type, stream_id, opts \\ [])

 Creates a new track.

 stream_id()

 Generates stream id, that can be used to mark tracks belonging to the same stream.

 Anchor for this section

Types

 Link to this type

 encoding()

 View Source

 Specs

 encoding() :: atom()

 Link to this type

 format()

 View Source

 Specs

 format() :: [atom()]

 Link to this type

 id()

 View Source

 Specs

 id() :: String.t()

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RTC.Engine.Track{
 active?: boolean(),
 ctx: map(),
 encoding: encoding(),
 fmtp: ExSDP.Attribute.FMTP,
 format: format(),
 id: id(),
 metadata: any(),
 stream_id: String.t(),
 type: :audio | :video
}

This module contains:
	type - audio or video,
	stream_id - media stream this track belongs to. Relationship between tracks (e.g. audio and video)
can be indicated by assigning each of them the same stream_id. One stream_id can be assign to any
number of tracks.
	id - track id
	encoding - track encoding
	format - list of available track formats. At this moment max two formats can be specified.
One of them has to be :raw which indicates that other Endpoints will receive this track in format
of encoding. The other one can be any atom (e.g. :RTP).
	fmtp - struct describing format specific parameters e.g. for H264 it contains profile_level_id
	active? - indicates whether track is still available or not (because peer left a room)
	metadata - any data passed by user to be linked with this track
	ctx - any data Endpoints need to associate with Membrane.RTC.Engine.Track.t() for internal usage

 Anchor for this section

Functions

 Link to this function

 new(type, stream_id, opts \\ [])

 View Source

 Specs

 new(:audio | :video, stream_id :: String.t(),
 id: String.t(),
 encoding: encoding(),
 format: format(),
 fmtp: ExSDP.Attribute.FMTP,
 metadata: any(),
 ctx: map()
) :: t()

Creates a new track.
Tracks belonging to the same stream should have the same stream_id,
that can be generated with stream_id/0.

 Link to this function

 stream_id()

 View Source

 Specs

 stream_id() :: String.t()

Generates stream id, that can be used to mark tracks belonging to the same stream.

 Membrane.RTC.Engine.Endpoint.HLS - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Endpoint.HLS

An Endpoint responsible for converting incoming tracks to HLS playlist.
Bin options
Passed via struct Membrane.RTC.Engine.Endpoint.HLS.t/0
	output_directory
Path.t()
Default value: "hls_output"
Path to directory under which HLS output will be saved

Pads
:input
	Availability	:on_request
	Caps	:any
	Demand unit	:buffers
	Direction	:input
	Mode	:pull
	Name	:input

 Anchor for this section

 Summary

 Types

 t()

 Struct containing options for Membrane.RTC.Engine.Endpoint.HLS

 Functions

 membrane_pads()

 Returns pads descriptions for Membrane.RTC.Engine.Endpoint.HLS

 options()

 Returns description of options available for this module

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RTC.Engine.Endpoint.HLS{output_directory: Path.t()}

Struct containing options for Membrane.RTC.Engine.Endpoint.HLS

 Anchor for this section

Functions

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.RTC.Engine.Endpoint.HLS

 Link to this function

 options()

 View Source

 Specs

 options() :: keyword()

Returns description of options available for this module

 Membrane.RTC.Engine.Endpoint.WebRTC - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Endpoint.WebRTC

An Endpoint responsible for communicatiing with WebRTC peer.
It is responsible for sending and receiving media tracks from other WebRTC peer (e.g. web browser).
Bin options
Passed via struct Membrane.RTC.Engine.Endpoint.WebRTC.t/0
	ice_name
String.t()
Required
Ice name is used in creating credentials for ice connnection

	stun_servers
[ExLibnice.stun_server()]
Default value: []
List of stun servers

	turn_servers
[ExLibnice.relay_info()]
Default value: []
List of turn servers

	port_range
Range.t()
Default value: 0..0
Port range to be used by Membrane.ICE.Bin

	handshake_opts
Keyword.t()
Default value: []
Keyword list with options for handshake module. For more information please
refer to Membrane.ICE.Bin

	filter_codecs
({RTPMapping.t(), FMTP.t() | nil} -> boolean())
Default value: &Membrane.WebRTC.SDP.filter_mappings/1
Defines function which will filter SDP m-line by codecs

	log_metadata
:list
Default value: []
Logger metadata used for endpoint bin and all its descendants

	webrtc_extensions
[Membrane.WebRTC.Extension.t()]
Default value: []
List of WebRTC extensions to use.
At this moment only VAD (RFC 6464) is supported.
Enabling it will cause RTC Engine sending {:vad_notification, val, endpoint_id} messages.

	extensions
%{encoding_name :: atom() | :any => [Membrane.RTP.SessionBin.extension_t()]}
Default value: %{}
A map pointing from encoding names to lists of extensions that should be used for given encodings.
Encoding ":any" indicates that extensions should be applied regardless of encoding.
A sample usage would be to add silence discarder to OPUS tracks when VAD extension is enabled.
It can greatly reduce CPU usage in rooms when there are a lot of people but only a few of
them are actively speaking.

	integrated_turn_options
Membrane.ICE.Bin.integrated_turn_options_t()
Default value: [use_integrated_turn: false]

	owner
pid()
Required
Pid of parent all notifications will be send to.
To see possible notifications please refer to module docs.

	trace_context
:list
Default value: []
Trace context for otel propagation

Pads
:input
	Availability	:on_request
	Caps	:any
	Demand unit	:buffers
	Direction	:input
	Mode	:pull
	Name	:input

:output
	Availability	:on_request
	Caps	:any
	Demand unit	:buffers
	Direction	:output
	Mode	:pull
	Name	:output

 Anchor for this section

 Summary

 Types

 stun_server_t()

 t()

 Struct containing options for Membrane.RTC.Engine.Endpoint.WebRTC

 turn_server_t()

 Functions

 membrane_pads()

 Returns pads descriptions for Membrane.RTC.Engine.Endpoint.WebRTC

 options()

 Returns description of options available for this module

 Anchor for this section

Types

 Link to this type

 stun_server_t()

 View Source

 Specs

 stun_server_t() :: ExLibnice.stun_server()

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RTC.Engine.Endpoint.WebRTC{
 extensions: %{
 required(encoding_name :: atom() | :any) => [
 Membrane.RTP.SessionBin.extension_t()
]
 },
 filter_codecs:
 ({ExSDP.Attribute.RTPMapping.t(), ExSDP.Attribute.FMTP.t() | nil} ->
 boolean()),
 handshake_opts: Keyword.t(),
 ice_name: String.t(),
 integrated_turn_options: Membrane.ICE.Bin.integrated_turn_options_t(),
 log_metadata: :list,
 owner: pid(),
 port_range: Range.t(),
 stun_servers: [ExLibnice.stun_server()],
 trace_context: :list,
 turn_servers: [ExLibnice.relay_info()],
 webrtc_extensions: [Membrane.WebRTC.Extension.t()]
}

Struct containing options for Membrane.RTC.Engine.Endpoint.WebRTC

 Link to this type

 turn_server_t()

 View Source

 Specs

 turn_server_t() :: ExLibnice.relay_info()

 Anchor for this section

Functions

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.RTC.Engine.Endpoint.WebRTC

 Link to this function

 options()

 View Source

 Specs

 options() :: keyword()

Returns description of options available for this module

 Membrane.RTC.Engine.Message - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Message

Module describing messages RTC Engine can emit.
Each Message contains RTC Engine PID under rtc_engine field.
Thanks to it you can distinguish between the same messages but from different RTC Engine instances.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() ::
 Membrane.RTC.Engine.Message.MediaEvent.t()
 | Membrane.RTC.Engine.Message.NewPeer.t()

 Membrane.RTC.Engine.Message.MediaEvent - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Message.MediaEvent

Message emitted when RTC Engine need to send some Media Event to the Client Library.

 Anchor for this section

 Summary

 Types

 t()

 Describes MediaEvent Message structure.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RTC.Engine.Message.MediaEvent{
 data: binary(),
 rtc_engine: pid(),
 to: Membrane.RTC.Engine.Peer.id() | :broadcast
}

Describes MediaEvent Message structure.
	rtc_engine - pid of RTC Engine instance which emitted this message
	to - informs where this Media Event should be sent. If set to :broadcast, the Media Event
should be sent to all peers. When set to t:Membrane.RTC.Engine.Peer.id(), the Media Event
should be sent to that specified peer.
	data - Media Event in serialized i.e. binary form

 Membrane.RTC.Engine.Message.NewPeer - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Message.NewPeer

Message emmited when a new peer from Client Library tries to join RTC Engine.
You can reply to this message using: Membrane.RTC.Engine.accept_peer/2 and
Membrane.RTC.Engine.deny_peer/2 or Membrane.RTC.Engine.deny_peer/3.

 Anchor for this section

 Summary

 Types

 t()

 Describes NewPeer Message structure.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RTC.Engine.Message.NewPeer{
 peer: Membrane.RTC.Engine.Peer.t(),
 rtc_engine: pid()
}

Describes NewPeer Message structure.
	rtc_engine - pid of RTC Engine instance which emitted this message
	peer - peer that tries to join to RTC Engine

 Membrane.RTC.Engine.Message.PeerLeft - Membrane RTC Engine v0.1.0

Membrane.RTC.Engine.Message.PeerLeft

Message emmitted when a peer left RTC Engine.

 Anchor for this section

 Summary

 Types

 t()

 Describes PeerLeft Message structure.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RTC.Engine.Message.PeerLeft{
 peer: Membrane.RTC.Engine.Peer.t(),
 rtc_engine: pid()
}

Describes PeerLeft Message structure.
	rtc_engine - pid of RTC Engine instance which emitted this message
	peer - peer that left RTC Engine

OEBPS/dist/app-db64fcdc429a9b460caa.js
