

 Membrane MP4 plugin

 v0.9.0

 Table of contents

 	MPEG-4 container plugin for Membrane Framework

 	LICENSE

 	Modules

 	Membrane.MP4.Container

 	Membrane.MP4.Container.Schema

 	Membrane.MP4.Track

 	Membrane.MP4.Track.SampleTable

 	Membrane.MP4.Muxer.CMAF

 	Membrane.MP4.Muxer.ISOM

 	Membrane.MP4.Payloader.AAC

 	Membrane.MP4.Payloader.H264

 	Membrane.MP4.FileTypeBox

 	Membrane.MP4.MediaDataBox

 	Membrane.MP4.MovieBox

 	Membrane.MP4.MovieBox.MovieExtendsBox

 	Membrane.MP4.MovieBox.TrackBox

 	Membrane.MP4.MovieFragmentBox

 	Membrane.MP4.SegmentIndexBox

 	Membrane.MP4.SegmentTypeBox

MPEG-4 container plugin for Membrane Framework

[image: Hex.pm]
[image: API Docs]
[image: CircleCI]
This plugin provides utilities for MP4 container parsing and serialization along with elements for muxing the stream to MP4 or CMAF.
Installation
The package can be installed by adding membrane_mp4_plugin to your list of dependencies in mix.exs:
defp deps do
[
 {:membrane_mp4_plugin, "~> 0.9.0"}
]
end
Usage
Membrane.MP4.Muxer.ISOM
For an example of muxing streams to a regular MP4 file, refer to
examples/muxer_isom.exs.
To run the example, you can use the following command:
elixir examples/muxer_isom.exs

Membrane.MP4.Muxer.CMAF
To use the output stream of the CMAF muxer, you need a sink that will dump it to a playlist in a proper format.
In membrane_http_adaptive_stream_plugin repository you can find an example
that uses the CMAF muxer to create an HTTP Live Streaming playlist.
Updating tests
In case out_* reference files in test/fixtures/cmaf change, out_playlist.m3u8 and its dependent playlists should be updated and checked if they are still playable.
The current files have been checked with ffplay (FFmpeg) and Safari.
Copyright and License
Copyright 2019,

 LICENSE - Membrane MP4 plugin v0.9.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2018 Software Mansion

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Membrane.MP4.Container - Membrane MP4 plugin v0.9.0

Membrane.MP4.Container

Module for parsing and serializing MP4 files.
Bases on MP4 structure specification from Membrane.MP4.Container.Schema.

 Anchor for this section

 Summary

 Types

 box_name_t()

 field_name_t()

 fields_t()

 parse_error_context_t()

 serialize_error_context_t()

 t()

 Functions

 box_path(path)

 Maps a path in the MP4 box tree into sequence of keys under which that
box resides in MP4.

 get_box(mp4, path)

 Gets a box from a given path in a parsed MP4.

 parse(data)

 Parses binary data to MP4 according to Membrane.MP4.Container.Schema.schema/0.

 parse(data, schema)

 Parses binary data to MP4 according to a custom schema.

 parse!(data)

 Same as parse/1, raises on error.

 parse!(data, schema)

 Same as parse/2, raises on error.

 serialize(mp4)

 Serializes MP4 to a binary according to Membrane.MP4.Container.Schema.schema/0.

 serialize(mp4, schema)

 Serializes MP4 to a binary according to a custom schema.

 serialize!(mp4)

 Same as serialize/1, raises on error

 serialize!(mp4, schema)

 Same as serialize/2, raises on error

 update_box(mp4, path, parameter_path \\ [], f)

 Updates a box at a given path in a parsed MP4.

 Anchor for this section

Types

 Link to this type

 box_name_t()

 View Source

 Specs

 box_name_t() :: atom()

 Link to this type

 field_name_t()

 View Source

 Specs

 field_name_t() :: atom()

 Link to this type

 fields_t()

 View Source

 Specs

 fields_t() :: %{required(field_name_t()) => term() | [term()] | fields_t()}

 Link to this type

 parse_error_context_t()

 View Source

 Specs

 parse_error_context_t() :: [
 box: box_name_t(),
 field: field_name_t(),
 data: bitstring(),
 reason:
 :box_header | {:box_size, [header: pos_integer(), actual: pos_integer()]}
]

 Link to this type

 serialize_error_context_t()

 View Source

 Specs

 serialize_error_context_t() :: [box: box_name_t(), field: field_name_t()]

 Link to this type

 t()

 View Source

 Specs

 t() :: [
 {box_name_t(), %{content: binary()} | %{fields: fields_t(), children: t()}}
]

 Anchor for this section

Functions

 Link to this function

 box_path(path)

 View Source

 Specs

 box_path(box_name_t() | [box_name_t()]) :: [atom()]

Maps a path in the MP4 box tree into sequence of keys under which that
box resides in MP4.

 Link to this function

 get_box(mp4, path)

 View Source

 Specs

 get_box(t(), box_name_t() | [box_name_t()]) :: t()

Gets a box from a given path in a parsed MP4.

 Link to this function

 parse(data)

 View Source

 Specs

 parse(binary()) :: {:ok, t()} | {:error, parse_error_context_t()}

Parses binary data to MP4 according to Membrane.MP4.Container.Schema.schema/0.

 Link to this function

 parse(data, schema)

 View Source

 Specs

 parse(binary(), Membrane.MP4.Container.Schema.t()) ::
 {:ok, t()} | {:error, parse_error_context_t()}

Parses binary data to MP4 according to a custom schema.

 Link to this function

 parse!(data)

 View Source

 Specs

 parse!(binary()) :: t()

Same as parse/1, raises on error.

 Link to this function

 parse!(data, schema)

 View Source

 Specs

 parse!(binary(), Membrane.MP4.Container.Schema.t()) :: t()

Same as parse/2, raises on error.

 Link to this function

 serialize(mp4)

 View Source

 Specs

 serialize(t()) :: {:ok, binary()} | {:error, serialize_error_context_t()}

Serializes MP4 to a binary according to Membrane.MP4.Container.Schema.schema/0.

 Link to this function

 serialize(mp4, schema)

 View Source

 Specs

 serialize(t(), Membrane.MP4.Container.Schema.t()) ::
 {:ok, binary()} | {:error, serialize_error_context_t()}

Serializes MP4 to a binary according to a custom schema.

 Link to this function

 serialize!(mp4)

 View Source

 Specs

 serialize!(t()) :: binary()

Same as serialize/1, raises on error

 Link to this function

 serialize!(mp4, schema)

 View Source

 Specs

 serialize!(t(), Membrane.MP4.Container.Schema.t()) :: binary()

Same as serialize/2, raises on error

 Link to this function

 update_box(mp4, path, parameter_path \\ [], f)

 View Source

 Specs

 update_box(t(), box_name_t() | [box_name_t()], [atom()], (term() -> term())) ::
 t()

Updates a box at a given path in a parsed MP4.
If parameter_path is set, a parameter within a box is updated.

 Membrane.MP4.Container.Schema - Membrane MP4 plugin v0.9.0

Membrane.MP4.Container.Schema

MP4 structure schema used for parsing and serialization.
Useful resources:
	https://www.iso.org/standard/79110.html
	https://www.iso.org/standard/61988.html
	https://developer.apple.com/library/archive/documentation/QuickTime/QTFF/QTFFChap2/qtff2.html
	https://github.com/DicomJ/mpeg-isobase/tree/eb09f82ff6e160715dcb34b2bf473330c7695d3b

 Anchor for this section

 Summary

 Types

 field_t()

 A box field type.

 primitive_t()

 For fields, the following primitive types are supported

 schema_def_box_t()

 schema_def_field_t()

 schema_def_primitive_t()

 schema_def_t()

 Type describing the schema definition, that is hardcoded in this module.

 t()

 The schema of MP4 structure.

 Functions

 schema()

 Returns Membrane.MP4.Container.Schema.t/0

 Anchor for this section

Types

 Link to this type

 field_t()

 View Source

 Specs

 field_t() ::
 {:reserved, bitstring()}
 | {field_name :: atom(), primitive_t() | {:list, any()} | [field_t()]}

A box field type.
It may contain a primitive, a list or nested fields. Lists last till the end of a box.

 Link to this type

 primitive_t()

 View Source

 Specs

 primitive_t() ::
 {:int, bit_size :: non_neg_integer()}
 | {:uint, bit_size :: non_neg_integer()}
 | :bin
 | {:bin, bit_size :: non_neg_integer()}
 | :str
 | {:str, bit_size :: non_neg_integer()}
 | {:fp, int_bit_size :: non_neg_integer(), frac_bit_size :: non_neg_integer()}

For fields, the following primitive types are supported:
	{:int, bit_size} - a signed integer
	{:uint, bit_size} - an unsigned integer
	:bin - a binary lasting till the end of a box
	{:bin, bit_size} - a binary of given size
	:str - a string terminated with a null byte
	{:str, bit_size} - a string of given size
	{:fp, integer_part_bit_size, fractional_part_bit_size} - a fixed point number

 Link to this type

 schema_def_box_t()

 View Source

 Specs

 schema_def_box_t() ::
 {box_name :: atom(),
 [{:black_box?, true}]
 | [
 {:version, non_neg_integer()}
 | {:fields, [schema_def_field_t()]}
 | schema_def_box_t()
]}

 Link to this type

 schema_def_field_t()

 View Source

 Specs

 schema_def_field_t() ::
 {:reserved, bitstring()}
 | {field_name :: atom(),
 schema_def_primitive_t()
 | {:list, schema_def_primitive_t() | [schema_def_field_t()]}
 | [schema_def_field_t()]}

 Link to this type

 schema_def_primitive_t()

 View Source

 Specs

 schema_def_primitive_t() :: atom()

 Link to this type

 schema_def_t()

 View Source

 Specs

 schema_def_t() :: [schema_def_box_t()]

Type describing the schema definition, that is hardcoded in this module.
It may be useful for improving the schema definition. The actual schema that
should be operated on, or, in other words, the parsed schema definition is
specified by Membrane.MP4.Container.Schema.t/0.
The schema definition differs from the final schema in the following ways:
	primitives along with their parameters are specified as atoms, for example
:int32 instead of {:int, 32}
	child boxes are nested within their parents directly, instead of residing
under :children key.

The schema definition is the following:
[
 ftyp: [
 fields: [
 major_brand: :str32,
 major_brand_version: :uint32,
 compatible_brands: {:list, :str32}
]
],
 moov: [
 mvhd: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 creation_time: :uint32,
 modification_time: :uint32,
 timescale: :uint32,
 duration: :uint32,
 rate: :fp16d16,
 volume: :fp8d8,
 reserved: <<0, 0, 0, 0, 0, 0, 0, 0, 0, 0>>,
 matrix_value_A: :fp16d16,
 matrix_value_B: :fp16d16,
 matrix_value_U: :fp2d30,
 matrix_value_C: :fp16d16,
 matrix_value_D: :fp16d16,
 matrix_value_V: :fp2d30,
 matrix_value_X: :fp16d16,
 matrix_value_Y: :fp16d16,
 matrix_value_W: :fp2d30,
 quicktime_preview_time: :uint32,
 quicktime_preview_duration: :uint32,
 quicktime_poster_time: :uint32,
 quicktime_selection_time: :uint32,
 quicktime_selection_duration: :uint32,
 quicktime_current_time: :uint32,
 next_track_id: :uint32
]
],
 trak: [
 tkhd: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 creation_time: :uint32,
 modification_time: :uint32,
 track_id: :uint32,
 reserved: <<0, 0, 0, 0>>,
 duration: :uint32,
 reserved: <<0, 0, 0, 0, 0, 0, 0, 0>>,
 layer: :int16,
 alternate_group: :int16,
 volume: :fp8d8,
 reserved: <<0, 0>>,
 matrix_value_A: :fp16d16,
 matrix_value_B: :fp16d16,
 matrix_value_U: :fp2d30,
 matrix_value_C: :fp16d16,
 matrix_value_D: :fp16d16,
 matrix_value_V: :fp2d30,
 matrix_value_X: :fp16d16,
 matrix_value_Y: :fp16d16,
 matrix_value_W: :fp2d30,
 width: :fp16d16,
 height: :fp16d16
]
],
 mdia: [
 mdhd: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 creation_time: :uint32,
 modification_time: :uint32,
 timescale: :uint32,
 duration: :uint32,
 reserved: <<0::size(1)>>,
 language: :uint15,
 reserved: <<0, 0>>
]
],
 hdlr: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 reserved: <<0, 0, 0, 0>>,
 handler_type: :str32,
 reserved: <<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>>,
 name: :str
]
],
 minf: [
 vmhd: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 graphics_mode: :uint16,
 opcolor: :uint48
]
],
 smhd: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 balance: :fp8d8,
 reserved: <<0, 0>>
]
],
 dinf: [
 dref: [
 version: 0,
 fields: [version: :uint8, flags: :uint24, entry_count: :uint32],
 url: [version: 0, fields: [version: :uint8, flags: :uint24]]
]
],
 stbl: [
 stsd: [
 version: 0,
 fields: [version: :uint8, flags: :uint24, entry_count: :uint32],
 avc1: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 num_of_entries: :uint32,
 reserved: <<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>>,
 width: :uint16,
 height: :uint16,
 horizresolution: :fp16d16,
 vertresolution: :fp16d16,
 reserved: <<0, 0, 0, 0>>,
 frame_count: :uint16,
 compressor_name: :str256,
 depth: :uint16,
 reserved: <<255, 255>>
],
 avcC: [black_box?: true],
 pasp: [fields: [h_spacing: :uint32, v_spacing: :uint32]]
],
 mp4a: [
 fields: [
 reserved: <<0, 0, 0, 0, 0, 0>>,
 data_reference_index: :uint16,
 encoding_version: :uint16,
 encoding_revision: :uint16,
 encoding_vendor: :uint32,
 channel_count: :uint16,
 sample_size: :uint16,
 compression_id: :uint16,
 packet_size: :uint16,
 sample_rate: :fp16d16
],
 esds: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 elementary_stream_descriptor: :bin
]
]
]
],
 stts: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 entry_count: :uint32,
 entry_list: {:list,
 [sample_count: :uint32, sample_delta: :uint32]}
]
],
 stss: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 entry_count: :uint32,
 entry_list: {:list, [sample_number: :uint32]}
]
],
 stsc: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 entry_count: :uint32,
 entry_list: {:list,
 [
 first_chunk: :uint32,
 samples_per_chunk: :uint32,
 sample_description_index: :uint32
]}
]
],
 stsz: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 sample_size: :uint32,
 sample_count: :uint32,
 entry_list: {:list, [entry_size: :uint32]}
]
],
 stco: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 entry_count: :uint32,
 entry_list: {:list, [chunk_offset: :uint32]}
]
]
]
]
]
],
 mvex: [
 trex: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 track_id: :uint32,
 default_sample_description_index: :uint32,
 default_sample_duration: :uint32,
 default_sample_size: :uint32,
 default_sample_flags: :uint32
]
]
]
],
 styp: [
 fields: [
 major_brand: :str32,
 major_brand_version: :uint32,
 compatible_brands: {:list, :str32}
]
],
 sidx: [
 version: 1,
 fields: [
 version: :uint8,
 flags: :uint24,
 reference_id: :uint32,
 timescale: :uint32,
 earliest_presentation_time: :uint64,
 first_offset: :uint64,
 reserved: <<0, 0>>,
 reference_count: :uint16,
 reference_type: :bin1,
 referenced_size: :uint31,
 subsegment_duration: :uint32,
 starts_with_sap: :bin1,
 sap_type: :uint3,
 sap_delta_time: :uint28
]
],
 moof: [
 mfhd: [
 version: 0,
 fields: [version: :uint8, flags: :uint24, sequence_number: :uint32]
],
 traf: [
 tfhd: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 track_id: :uint32,
 default_sample_duration: :uint32,
 default_sample_size: :uint32,
 default_sample_flags: :uint32
]
],
 tfdt: [
 version: 1,
 fields: [
 version: :uint8,
 flags: :uint24,
 base_media_decode_time: :uint64
]
],
 trun: [
 version: 0,
 fields: [
 version: :uint8,
 flags: :uint24,
 sample_count: :uint32,
 data_offset: :int32,
 samples: {:list,
 [
 sample_duration: :uint32,
 sample_size: :uint32,
 sample_flags: :bin32
]}
]
]
]
],
 mdat: [black_box?: true]
]

 Link to this type

 t()

 View Source

 Specs

 t() :: %{
 required(box_name :: atom()) =>
 %{black_box?: true}
 | %{
 black_box?: false,
 version: non_neg_integer(),
 fields: [field_t()],
 children: map()
 }
}

The schema of MP4 structure.
An MP4 file consists of boxes, that all have the same header and different internal
structures. Boxes can be nested with one another.
Each box has at most 4-letter name and may have the following parameters:
	black_box? - if true, the box content is unspecified and is treated as an opaque
binary. Defaults to false.
	version - the box version. Versions usually differ by the sizes of particular fields.
	fields - a list of key-value parameters
	children - the nested boxes

 Anchor for this section

Functions

 Link to this function

 schema()

 View Source

 Specs

 schema() :: t()

Returns Membrane.MP4.Container.Schema.t/0

 Membrane.MP4.Track - Membrane MP4 plugin v0.9.0

Membrane.MP4.Track

A module defining a structure that represents an MPEG-4 track.
All new samples of a track must be stored in the structure first in order
to build a sample table of a regular MP4 container. Samples that were stored
can be flushed later in form of chunks.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 current_chunk_duration(map)

 finalize(track, movie_timescale)

 flush_chunk(track, chunk_offset)

 new(config)

 store_sample(track, buffer)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.MP4.Track{
 content: struct(),
 duration: non_neg_integer() | nil,
 height: non_neg_integer(),
 id: pos_integer(),
 movie_duration: non_neg_integer() | nil,
 sample_table: Membrane.MP4.Track.SampleTable.t(),
 timescale: pos_integer(),
 width: non_neg_integer()
}

 Anchor for this section

Functions

 Link to this function

 current_chunk_duration(map)

 View Source

 Specs

 current_chunk_duration(t()) :: non_neg_integer()

 Link to this function

 finalize(track, movie_timescale)

 View Source

 Specs

 finalize(t(), pos_integer()) :: t()

 Link to this function

 flush_chunk(track, chunk_offset)

 View Source

 Specs

 flush_chunk(t(), non_neg_integer()) :: {binary(), t()}

 Link to this function

 new(config)

 View Source

 Specs

 new(%{
 id: pos_integer(),
 content: struct(),
 height: non_neg_integer(),
 width: non_neg_integer(),
 timescale: pos_integer()
}) :: t()

 Link to this function

 store_sample(track, buffer)

 View Source

 Specs

 store_sample(t(), Membrane.Buffer.t()) :: t()

 Membrane.MP4.Track.SampleTable - Membrane MP4 plugin v0.9.0

Membrane.MP4.Track.SampleTable

A module that defines a structure and functions allowing to store samples,
assemble them into chunks and flush when needed. Its public functions take
care of recording information required to build a sample table.
For performance reasons, the module uses prepends when storing information
about new samples. To compensate for it, use &Membrane.MP4.Track.SampleTable.reverse/1
when it's known that no more samples will be stored.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 chunk_duration(sample_table)

 flush_chunk(sample_table, chunk_offset)

 reverse(sample_table)

 store_sample(sample_table, buffer)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.MP4.Track.SampleTable{
 chunk: [binary()],
 chunk_first_timestamp: non_neg_integer() | nil,
 chunk_offsets: [non_neg_integer()],
 decoding_deltas: [%{sample_delta: Ratio.t(), sample_count: pos_integer()}],
 last_timestamp: non_neg_integer() | nil,
 sample_count: non_neg_integer(),
 sample_sizes: [pos_integer()],
 samples_per_chunk: [
 %{first_chunk: pos_integer(), sample_count: pos_integer()}
],
 sync_samples: [pos_integer()]
}

 Anchor for this section

Functions

 Link to this function

 chunk_duration(sample_table)

 View Source

 Specs

 chunk_duration(t()) :: non_neg_integer()

 Link to this function

 flush_chunk(sample_table, chunk_offset)

 View Source

 Specs

 flush_chunk(t(), non_neg_integer()) :: {binary(), t()}

 Link to this function

 reverse(sample_table)

 View Source

 Specs

 reverse(t()) :: t()

 Link to this function

 store_sample(sample_table, buffer)

 View Source

 Specs

 store_sample(t(), Membrane.Buffer.t()) :: t()

 Membrane.MP4.Muxer.CMAF - Membrane MP4 plugin v0.9.0

Membrane.MP4.Muxer.CMAF

Puts payloaded stream into Common Media Application Format,
an MP4-based container commonly used in adaptive streaming over HTTP.
Currently one input stream is supported.
If a stream contains non-key frames (like H264 P or B frames), they should be marked
with a mp4_payload: %{key_frame?: false} metadata entry.
Element options
Passed via struct Membrane.MP4.Muxer.CMAF.t/0
	segment_duration
Time.t()
Default value: 2 |> Membrane.Time.seconds()

Pads
:input
	Availability	:always
	Caps	Membrane.MP4.Payload
	Demand unit	:buffers
	Direction	:input
	Mode	:pull
	Name	:input

:output
	Availability	:always
	Caps	Membrane.CMAF.Track
	Direction	:output
	Mode	:pull
	Name	:output

 Anchor for this section

 Summary

 Types

 t()

 Struct containing options for Membrane.MP4.Muxer.CMAF

 Functions

 membrane_pads()

 Returns pads descriptions for Membrane.MP4.Muxer.CMAF

 options()

 Returns description of options available for this module

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.MP4.Muxer.CMAF{segment_duration: Membrane.Time.t()}

Struct containing options for Membrane.MP4.Muxer.CMAF

 Anchor for this section

Functions

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.MP4.Muxer.CMAF

 Link to this function

 options()

 View Source

 Specs

 options() :: keyword()

Returns description of options available for this module

 Membrane.MP4.Muxer.ISOM - Membrane MP4 plugin v0.9.0

Membrane.MP4.Muxer.ISOM

Puts payloaded streams into an MPEG-4 container.
Element options
Passed via struct Membrane.MP4.Muxer.ISOM.t/0
	fast_start
boolean
Default value: false
Generates a container more suitable for streaming by allowing media players to start
playback as soon as they start to receive its media data.
When set to true, the container metadata (moov atom) will be placed before media
data (mdat atom). The equivalent of FFmpeg's -movflags faststart option.

	chunk_duration
Time.t()
Default value: 1000000000
Expected duration of each chunk in the resulting MP4 container.
Once the total duration of samples received on one of the input pads exceeds
that threshold, a chunk containing these samples is flushed. Interleaving chunks
belonging to different tracks may have positive impact on performance of media players.

Pads
:input
	Availability	:on_request
	Caps	Membrane.MP4.Payload
	Demand unit	:buffers
	Direction	:input
	Mode	:pull
	Name	:input

:output
	Availability	:always
	Caps	:buffers
	Direction	:output
	Mode	:pull
	Name	:output

 Anchor for this section

 Summary

 Types

 t()

 Struct containing options for Membrane.MP4.Muxer.ISOM

 Functions

 membrane_pads()

 Returns pads descriptions for Membrane.MP4.Muxer.ISOM

 options()

 Returns description of options available for this module

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.MP4.Muxer.ISOM{
 chunk_duration: Membrane.Time.t(),
 fast_start: boolean()
}

Struct containing options for Membrane.MP4.Muxer.ISOM

 Anchor for this section

Functions

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.MP4.Muxer.ISOM

 Link to this function

 options()

 View Source

 Specs

 options() :: keyword()

Returns description of options available for this module

 Membrane.MP4.Payloader.AAC - Membrane MP4 plugin v0.9.0

Membrane.MP4.Payloader.AAC

Payloads AAC stream so it can be embedded in MP4.
Resources:
	Packaging/Encapsulation And Setup Data section of https://wiki.multimedia.cx/index.php/Understanding_AACElement options

Passed via struct Membrane.MP4.Payloader.AAC.t/0
	avg_bit_rate
any
Default value: 0
Average stream bitrate. Should be set to 0 if unknown.

	max_bit_rate
any
Default value: 0
Maximal stream bitrate. Should be set to 0 if unknown.

Pads
:input
	Availability	:always
	Caps	Membrane.AAC, restrictions:
 encapsulation: :none
	Demand unit	:buffers
	Direction	:input
	Mode	:pull
	Name	:input

:output
	Availability	:always
	Caps	Membrane.MP4.Payload
	Direction	:output
	Mode	:pull
	Name	:output

 Anchor for this section

 Summary

 Types

 t()

 Struct containing options for Membrane.MP4.Payloader.AAC

 Functions

 membrane_pads()

 Returns pads descriptions for Membrane.MP4.Payloader.AAC

 options()

 Returns description of options available for this module

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.MP4.Payloader.AAC{avg_bit_rate: any(), max_bit_rate: any()}

Struct containing options for Membrane.MP4.Payloader.AAC

 Anchor for this section

Functions

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.MP4.Payloader.AAC

 Link to this function

 options()

 View Source

 Specs

 options() :: keyword()

Returns description of options available for this module

 Membrane.MP4.Payloader.H264 - Membrane MP4 plugin v0.9.0

Membrane.MP4.Payloader.H264

Payloads H264 stream so it can be embedded in MP4.
Pads
:input
	Availability	:always
	Caps	Membrane.Caps.Video.H264, restrictions:
 stream_format: :byte_stream,
 alignment: :au,
 nalu_in_metadata?: true
	Demand unit	:buffers
	Direction	:input
	Mode	:pull
	Name	:input

:output
	Availability	:always
	Caps	Membrane.MP4.Payload
	Direction	:output
	Mode	:pull
	Name	:output

 Anchor for this section

 Summary

 Functions

 membrane_pads()

 Returns pads descriptions for Membrane.MP4.Payloader.H264

 Anchor for this section

Functions

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.MP4.Payloader.H264

 Membrane.MP4.FileTypeBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.FileTypeBox

A module containing a function for assembling an MPEG-4 file type box.
The file type box (ftyp atom) is a top-level box that contains specifications
and compatibility information that media players can use to correctly interpret
an MPEG-4 container.
For more information about the file type box, refer to
ISO/IEC 14496-12.

 Anchor for this section

 Summary

 Functions

 assemble(major_brand, compatible_brands, major_brand_version \\ 512)

 Anchor for this section

Functions

 Link to this function

 assemble(major_brand, compatible_brands, major_brand_version \\ 512)

 View Source

 Specs

 assemble(String.t(), [String.t()], integer()) :: Membrane.MP4.Container.t()

 Membrane.MP4.MediaDataBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.MediaDataBox

A module containing a function for assembling an MPEG-4 media data box.
The media data box (mdat atom) is a top-level box that contains actual media data
(e.g. encoded video frames or audio samples). The data is logically divided into so
called "chunks" that consist of "samples". There are no assumptions made about chunks
arrangement or sizes in the MPEG-4 specification and chunks belonging to different tracks
can (and should) be interleaved.
For more information about media data box, refer to
ISO/IEC 14496-12.

 Anchor for this section

 Summary

 Functions

 assemble(media_data)

 Anchor for this section

Functions

 Link to this function

 assemble(media_data)

 View Source

 Specs

 assemble(binary()) :: Membrane.MP4.Container.t()

 Membrane.MP4.MovieBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.MovieBox

A module providing a function assembling an MPEG-4 movie box.
The movie box (moov) is a top-level box that contains information about
a presentation as a whole. It consists of:
	exactly one movie header (mvhd atom)
The movie header contains media-independent data, such as the
number of tracks, volume, duration or timescale (presentation-wide).

	one or more track box (trak atom)

	zero or one movie extends box (mvex atom)

For more information about movie box and its contents, refer to documentation of
Membrane.MP4.MovieBox submodules or to ISO/IEC 14496-12.

 Anchor for this section

 Summary

 Functions

 assemble(tracks, extensions \\ [])

 Anchor for this section

Functions

 Link to this function

 assemble(tracks, extensions \\ [])

 View Source

 Specs

 assemble(
 [
 %Membrane.MP4.Track{
 content: term(),
 duration: term(),
 height: term(),
 id: term(),
 movie_duration: term(),
 sample_table: term(),
 timescale: term(),
 width: term()
 }
],
 Membrane.MP4.Container.t()
) :: Membrane.MP4.Container.t()

 Membrane.MP4.MovieBox.MovieExtendsBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.MovieBox.MovieExtendsBox

The module provides a function that assembles an MPEG-4 movie extends box (mvex atom).
The movie extends box provides information about movie fragment boxes in case when
media data is fragmented (for example in CMAF). It has to contain as many track
extends box (trex atoms) as there are tracks in the movie box.
For more information about the movie extends box, refer to ISO/IEC 14496-12.

 Anchor for this section

 Summary

 Functions

 assemble(tracks)

 Anchor for this section

Functions

 Link to this function

 assemble(tracks)

 View Source

 Specs

 assemble([Membrane.MP4.Track.t()]) :: Membrane.MP4.Container.t()

 Membrane.MP4.MovieBox.TrackBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.MovieBox.TrackBox

A module containing a set of utilities for assembling an MPEG-4 track box.
The track box (trak atom) describes a single track of a presentation. This description includes
information like its timescale, duration, volume, media-specific data (media handlers, sample
descriptions) as well as a sample table, which allows media players to find and interpret
track's data in the media data box.
For more information about the track box, refer to ISO/IEC 14496-12.

 Anchor for this section

 Summary

 Functions

 assemble(track)

 Anchor for this section

Functions

 Link to this function

 assemble(track)

 View Source

 Specs

 assemble(Membrane.MP4.Track.t()) :: Membrane.MP4.Container.t()

 Membrane.MP4.MovieFragmentBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.MovieFragmentBox

A module containing a function for assembling an MPEG-4 movie fragment box.
The movie fragment box (moof atom) is a top-level box and consists of:
	exactly one movie fragment header (mfhd atom)
The movie fragment header contains a sequence number that is
increased for every subsequent movie fragment in order in which
they occur.

	zero or more track fragment box (traf atom)
The track fragment box provides information related to a track
fragment's presentation time, duration and physical location of
its samples in the media data box.

This box is required by Common Media Application Format.
For more information about movie fragment box and its contents refer to
ISO/IEC 14496-12 or to
ISO/IEC 23000-19.

 Anchor for this section

 Summary

 Functions

 assemble(config)

 Anchor for this section

Functions

 Link to this function

 assemble(config)

 View Source

 Specs

 assemble(%{
 sequence_number: integer(),
 elapsed_time: integer(),
 timescale: integer(),
 duration: integer(),
 samples_table: [%{sample_size: integer(), sample_flags: integer()}]
}) :: Membrane.MP4.Container.t()

 Membrane.MP4.SegmentIndexBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.SegmentIndexBox

A module containing a function for assembling a CMAF segment index box.
The segment index box (sidx atom) contains information related to presentation
time and byte-range locations of other boxes belonging to its segment.
For more information about segment index box refer to
ISO/IEC 23000-19.

 Anchor for this section

 Summary

 Functions

 assemble(config)

 Anchor for this section

Functions

 Link to this function

 assemble(config)

 View Source

 Specs

 assemble(%{
 elapsed_time: integer(),
 referenced_size: integer(),
 timescale: integer(),
 duration: integer()
}) :: Membrane.MP4.Container.t()

 Membrane.MP4.SegmentTypeBox - Membrane MP4 plugin v0.9.0

Membrane.MP4.SegmentTypeBox

A module containing a function for assembling a CMAF segment type box.
The segment type box (styp atom) is a top-level box that contains specifications
and compatibility information that media players can use to correctly interpret
a CMAF segment.
For more information about the segment type box, refer to
ISO/IEC 23000-19.

 Anchor for this section

 Summary

 Functions

 assemble(major_brand, compatible_brands, major_brand_version \\ 0)

 Anchor for this section

Functions

 Link to this function

 assemble(major_brand, compatible_brands, major_brand_version \\ 0)

 View Source

 Specs

 assemble(String.t(), [String.t()], integer()) :: Membrane.MP4.Container.t()

OEBPS/dist/app-79dd8c5f31bc273f4a64.js
