

 Membrane Core

 v0.7.0

 Table of contents

 	Membrane Multimedia Framework

 	Contributing

 	License

 	Modules

 	Membrane.CrashGroup

 	Membrane.Pipeline

 	Membrane.Pipeline.Action

 	Membrane.Pipeline.CallbackContext.CrashGroupDown

 	Membrane.Pipeline.CallbackContext.Notification

 	Membrane.Pipeline.CallbackContext.Other

 	Membrane.Pipeline.CallbackContext.PlaybackChange

 	Membrane.Pipeline.CallbackContext.SpecStarted

 	Membrane.Pipeline.CallbackContext.StreamManagement

 	Membrane.Pipeline.CallbackContext.Tick

 	Membrane.Bin

 	Membrane.Bin.Action

 	Membrane.Bin.CallbackContext.CrashGroupDown

 	Membrane.Bin.CallbackContext.Notification

 	Membrane.Bin.CallbackContext.Other

 	Membrane.Bin.CallbackContext.PadAdded

 	Membrane.Bin.CallbackContext.PadRemoved

 	Membrane.Bin.CallbackContext.PlaybackChange

 	Membrane.Bin.CallbackContext.SpecStarted

 	Membrane.Bin.CallbackContext.StreamManagement

 	Membrane.Bin.CallbackContext.Tick

 	Membrane.Core.InputBuffer

 	Membrane.Element

 	Membrane.Filter

 	Membrane.Sink

 	Membrane.Source

 	Membrane.Element.Action

 	Membrane.Element.Base

 	Membrane.Element.Base.Filter

 	Membrane.Element.Base.Sink

 	Membrane.Element.Base.Source

 	Membrane.Element.WithInputPads

 	Membrane.Element.WithOutputPads

 	Membrane.Element.CallbackContext.Caps

 	Membrane.Element.CallbackContext.Demand

 	Membrane.Element.CallbackContext.Event

 	Membrane.Element.CallbackContext.Other

 	Membrane.Element.CallbackContext.PadAdded

 	Membrane.Element.CallbackContext.PadRemoved

 	Membrane.Element.CallbackContext.PlaybackChange

 	Membrane.Element.CallbackContext.Process

 	Membrane.Element.CallbackContext.StreamManagement

 	Membrane.Element.CallbackContext.Tick

 	Membrane.Element.CallbackContext.Write

 	Membrane.ParentSpec

 	Membrane.Child

 	Membrane.ChildEntry

 	Membrane.Buffer

 	Membrane.Caps

 	Membrane.Event

 	Membrane.EventProtocol

 	Membrane.KeyframeRequestEvent

 	Membrane.Notification

 	Membrane.Pad

 	Membrane.Pad.Data

 	Membrane.Payload

 	Membrane.RemoteStream

 	Membrane.Buffer.Metric

 	Membrane.Buffer.Metric.ByteSize

 	Membrane.Buffer.Metric.Count

 	Membrane.Caps.Matcher

 	Membrane.Event.Discontinuity

 	Membrane.Event.Underrun

 	Membrane.EventProtocol.DefaultImpl

 	Membrane.Payload.Behaviour

 	Membrane.Payload.Binary

 	Membrane.Logger

 	Membrane.Testing.Assertions

 	Membrane.Testing.Event

 	Membrane.Testing.Pipeline

 	Membrane.Testing.Pipeline.Options

 	Membrane.Testing.Pipeline.State

 	Membrane.Testing.Sink

 	Membrane.Testing.Source

 	Membrane.Clock

 	Membrane.ComponentPath

 	Membrane.PlaybackState

 	Membrane.Sync

 	Membrane.Telemetry

 	Membrane.Time

 	Membrane.ActionError

 	Membrane.CallbackError

 	Membrane.LinkError

 	Membrane.ParentError

 	Membrane.PipelineError

 	Membrane.Log

 	Membrane.Log.Logger

 	Membrane.Log.Logger.Base

 	Membrane.Log.Router

 	Membrane.Log.Supervisor

 	Exceptions

 	Membrane.ActionError

 	Membrane.CallbackError

 	Membrane.LinkError

 	Membrane.ParentError

 	Membrane.PipelineError

Membrane Multimedia Framework
[image: Hex.pm]
[image: API Docs]
[image: CircleCI]
Membrane Framework - if you asked me what it is, I have no idea. - Jose Valim in

 Contributing - Membrane Core v0.7.0

Contributing
Any contributions to Membrane Framework are welcome. If you would like contribute, but you're not sure how to start or have some questions, don't hesitate to contact us via channels described in README
Before subitting code please read our Coding style guide
When contributing to existing repo:
	fork it
	apply change on some branch
	create a PR from fork to our repo
	await feedback from someone from the team
	after passing the review, the PR will be merged

If you wish to create a new plugin you can give us a shout and if it's something we want as a part of our ecosystem we'll create a repo for you, guide you on your work and maintain the plugin in future.
However, if feel confident enough to maintain it on your own, you can, of course, create your own repo and hex package - we only ask you to follow the naming convetions of the framework package and modules. In that case, don't forget to let us know about your work so we could include it on the list of available plugins.

 License - Membrane Core v0.7.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2018 Software Mansion

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Membrane.CrashGroup - Membrane Core v0.7.0

Membrane.CrashGroup

Module containing types and functions for operating on crash groups.
Crash groups can be used through Membrane.ParentSpec.

 Anchor for this section

 Summary

 Types

 name_t()

 Anchor for this section

Types

 Link to this type

 name_t()

 View Source

 Specs

 name_t() :: any()

 Membrane.Pipeline - Membrane Core v0.7.0

Membrane.Pipeline behaviour

Module containing functions for constructing and supervising pipelines.
Pipelines are units that make it possible to instantiate, link and manage
elements and bins in convenient way (actually they should always be used inside
a pipeline). Linking pipeline children together enables them to pass data to one
another, and process it in different ways.
To create a pipeline, use the __using__/1 macro and implement callbacks
of Membrane.Pipeline behaviour. For details on instantiating and linking
children, see Membrane.ParentSpec.

 Anchor for this section

 Summary

 Types

 callback_return_t()

 Defines return values from Pipeline callback functions.

 pipeline_options_t()

 Defines options that can be passed to start/3 / start_link/3 and received
in handle_init/1 callback.

 state_t()

 Functions

 __using__(options)

 Brings all the stuff necessary to implement a pipeline.

 pipeline?(module)

 Checks whether module is a pipeline.

 play(pid)

 Changes playback state to :playing.

 prepare(pid)

 Changes playback state to :prepared.

 start(module, pipeline_options \\ nil, process_options \\ [])

 Does the same as start_link/3 but starts process outside of supervision tree.

 start_link(module, pipeline_options \\ nil, process_options \\ [])

 Starts the Pipeline based on given module and links it to the current
process.

 stop(pid)

 Changes playback state to :stopped.

 stop_and_terminate(pipeline, opts \\ [])

 Changes pipeline's playback state to :stopped and terminates its process.
It accpets two options

 Callbacks

 handle_crash_group_down(group_name, context, state)

 Callback invoked when crash of the crash group happens.

 handle_element_end_of_stream({}, context, state)

 Callback invoked when a child element finishes processing stream via given pad.

 handle_element_start_of_stream({}, context, state)

 Callback invoked when a child element starts processing stream via given pad.

 handle_init(options)

 Callback invoked on initialization of pipeline process. It should parse options
and initialize pipeline's internal state. Internally it is invoked inside
GenServer.init/1 callback.

 handle_notification(notification, element, context, state)

 Callback invoked when a notification comes in from an element.

 handle_other(message, context, state)

 Callback invoked when pipeline receives a message that is not recognized
as an internal membrane message.

 handle_playing_to_prepared(context, state)

 Callback invoked when pipeline transition from :playing to :prepared state has finished,
that is all of its children are prepared to be stopped.

 handle_prepared_to_playing(context, state)

 Callback invoked when pipeline is in :playing state, i.e. all its children
are in this state.

 handle_prepared_to_stopped(context, state)

 Callback invoked when pipeline is in :playing state, i.e. all its children
are in this state.

 handle_shutdown(reason, state)

 Callback invoked when pipeline is shutting down.
Internally called in GenServer.terminate/2 callback.

 handle_spec_started(children, context, state)

 Callback invoked when Membrane.ParentSpec is linked and in the same playback
state as pipeline.

 handle_stopped_to_prepared(context, state)

 Callback invoked when pipeline transition from :stopped to :prepared state has finished,
that is all of its children are prepared to enter :playing state.

 handle_stopped_to_terminating(context, state)

 Callback invoked when pipeline is in :terminating state, i.e. all its children
are in this state.

 handle_tick(timer_id, context, state)

 Callback invoked upon each timer tick. A timer can be started with Membrane.Pipeline.Action.start_timer_t
action.

 membrane_pipeline?()

 Enables to check whether module is membrane pipeline

 Anchor for this section

Types

 Link to this type

 callback_return_t()

 View Source

 Specs

 callback_return_t() ::
 {:ok | {:ok, [Membrane.Pipeline.Action.t()]} | {:error, any()}, state_t()}
 | {:error, any()}

Defines return values from Pipeline callback functions.

 Return values

	{:ok, state} - Save process state, with no actions to change the pipeline.
	{{:ok, [action]}, state} - Return a list of actions that will be performed within the
pipline. This can be used to start new children, or to send messages to specific children,
for example. Actions are a tuple of {type, arguments}, so may be written in the
form a keyword list. See Membrane.Pipeline.Action for more info.
	{{:error, reason}, state} - Terminates the pipeline with the given reason.
	{:error, reason} - raises a Membrane.CallbackError with the error tuple.

 Link to this type

 pipeline_options_t()

 View Source

 Specs

 pipeline_options_t() :: any()

Defines options that can be passed to start/3 / start_link/3 and received
in handle_init/1 callback.

 Link to this type

 state_t()

 View Source

 Specs

 state_t() :: map() | struct()

 Anchor for this section

Functions

 Link to this macro

 __using__(options)

 View Source

 (macro)

Brings all the stuff necessary to implement a pipeline.
Options:
	:bring_spec? - if true (default) imports and aliases Membrane.ParentSpec
	:bring_pad? - if true (default) requires and aliases Membrane.Pad

 Link to this function

 pipeline?(module)

 View Source

 Specs

 pipeline?(module()) :: boolean()

Checks whether module is a pipeline.

 Link to this function

 play(pid)

 View Source

 Specs

 play(pid()) :: :ok

Changes playback state to :playing.
An alias for Membrane.Core.PlaybackHandler.change_playback_state/2 with proper state.

 Link to this function

 prepare(pid)

 View Source

 Specs

 prepare(pid()) :: :ok

Changes playback state to :prepared.
An alias for Membrane.Core.PlaybackHandler.change_playback_state/2 with proper state.

 Link to this function

 start(module, pipeline_options \\ nil, process_options \\ [])

 View Source

 Specs

 start(
 module(),
 pipeline_options :: pipeline_options_t(),
 process_options :: GenServer.options()
) :: GenServer.on_start()

Does the same as start_link/3 but starts process outside of supervision tree.

 Link to this function

 start_link(module, pipeline_options \\ nil, process_options \\ [])

 View Source

 Specs

 start_link(
 module(),
 pipeline_options :: pipeline_options_t(),
 process_options :: GenServer.options()
) :: GenServer.on_start()

Starts the Pipeline based on given module and links it to the current
process.
Pipeline options are passed to module's handle_init/1 callback.
Process options are internally passed to GenServer.start_link/3.
Returns the same values as GenServer.start_link/3.

 Link to this function

 stop(pid)

 View Source

 Specs

 stop(pid()) :: :ok

Changes playback state to :stopped.
An alias for Membrane.Core.PlaybackHandler.change_playback_state/2 with proper state.

 Link to this function

 stop_and_terminate(pipeline, opts \\ [])

 View Source

 Specs

 stop_and_terminate(pipeline :: pid(), Keyword.t()) :: :ok | {:error, :timeout}

Changes pipeline's playback state to :stopped and terminates its process.
It accpets two options:
	blocking? - tells whether to stop the pipeline synchronously
	timeout - if blocking? is set to true it tells how much
time (ms) to wait for pipeline to get terminated. Defaults to 5000.

 Anchor for this section

Callbacks

 Link to this callback

 handle_crash_group_down(group_name, context, state)

 View Source

 (optional)

 Specs

 handle_crash_group_down(
 group_name :: Membrane.CrashGroup.name_t(),
 context :: Membrane.Pipeline.CallbackContext.CrashGroupDown.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when crash of the crash group happens.

 Link to this callback

 handle_element_end_of_stream({}, context, state)

 View Source

 (optional)

 Specs

 handle_element_end_of_stream(
 {Membrane.Child.name_t(), Membrane.Pad.ref_t()},
 context :: Membrane.Pipeline.CallbackContext.StreamManagement.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when a child element finishes processing stream via given pad.

 Link to this callback

 handle_element_start_of_stream({}, context, state)

 View Source

 (optional)

 Specs

 handle_element_start_of_stream(
 {Membrane.Child.name_t(), Membrane.Pad.ref_t()},
 context :: Membrane.Pipeline.CallbackContext.StreamManagement.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when a child element starts processing stream via given pad.

 Link to this callback

 handle_init(options)

 View Source

 (optional)

 Specs

 handle_init(options :: pipeline_options_t()) :: callback_return_t()

Callback invoked on initialization of pipeline process. It should parse options
and initialize pipeline's internal state. Internally it is invoked inside
GenServer.init/1 callback.

 Link to this callback

 handle_notification(notification, element, context, state)

 View Source

 (optional)

 Specs

 handle_notification(
 notification :: Membrane.Notification.t(),
 element :: Membrane.Child.name_t(),
 context :: Membrane.Pipeline.CallbackContext.Notification.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when a notification comes in from an element.

 Link to this callback

 handle_other(message, context, state)

 View Source

 (optional)

 Specs

 handle_other(
 message :: any(),
 context :: Membrane.Pipeline.CallbackContext.Other.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when pipeline receives a message that is not recognized
as an internal membrane message.
Useful for receiving data sent from NIFs or other stuff.

 Link to this callback

 handle_playing_to_prepared(context, state)

 View Source

 (optional)

 Specs

 handle_playing_to_prepared(
 context :: Membrane.Pipeline.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when pipeline transition from :playing to :prepared state has finished,
that is all of its children are prepared to be stopped.

 Link to this callback

 handle_prepared_to_playing(context, state)

 View Source

 (optional)

 Specs

 handle_prepared_to_playing(
 context :: Membrane.Pipeline.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when pipeline is in :playing state, i.e. all its children
are in this state.

 Link to this callback

 handle_prepared_to_stopped(context, state)

 View Source

 (optional)

 Specs

 handle_prepared_to_stopped(
 context :: Membrane.Pipeline.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when pipeline is in :playing state, i.e. all its children
are in this state.

 Link to this callback

 handle_shutdown(reason, state)

 View Source

 (optional)

 Specs

 handle_shutdown(reason, state :: state_t()) :: :ok
when reason: :normal | :shutdown | {:shutdown, any()} | term()

Callback invoked when pipeline is shutting down.
Internally called in GenServer.terminate/2 callback.
Useful for any cleanup required.

 Link to this callback

 handle_spec_started(children, context, state)

 View Source

 (optional)

 Specs

 handle_spec_started(
 children :: [Membrane.Child.name_t()],
 context :: Membrane.Pipeline.CallbackContext.SpecStarted.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when Membrane.ParentSpec is linked and in the same playback
state as pipeline.
This callback can be started from handle_init/1 callback or as
Membrane.Pipeline.Action.spec_t/0 action.

 Link to this callback

 handle_stopped_to_prepared(context, state)

 View Source

 (optional)

 Specs

 handle_stopped_to_prepared(
 context :: Membrane.Pipeline.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when pipeline transition from :stopped to :prepared state has finished,
that is all of its children are prepared to enter :playing state.

 Link to this callback

 handle_stopped_to_terminating(context, state)

 View Source

 (optional)

 Specs

 handle_stopped_to_terminating(
 context :: Membrane.Pipeline.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when pipeline is in :terminating state, i.e. all its children
are in this state.

 Link to this callback

 handle_tick(timer_id, context, state)

 View Source

 (optional)

 Specs

 handle_tick(
 timer_id :: any(),
 context :: Membrane.Pipeline.CallbackContext.Tick.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked upon each timer tick. A timer can be started with Membrane.Pipeline.Action.start_timer_t
action.

 Link to this callback

 membrane_pipeline?()

 View Source

 Specs

 membrane_pipeline?() :: true

Enables to check whether module is membrane pipeline

 Membrane.Pipeline.Action - Membrane Core v0.7.0

Membrane.Pipeline.Action

This module contains type specifications of actions that can be returned
from pipeline callbacks.
Returning actions is a way of pipeline interaction with
other components and parts of framework. Each action may be returned by any
callback (except for Membrane.Pipeline.handle_shutdown/2, as it
does not support returning any actions) unless explicitly stated otherwise.

 Anchor for this section

 Summary

 Types

 forward_t()

 Action that sends a message to a child identified by name.

 log_metadata_t()

 Action that sets Logger metadata for the pipeline and all its descendants.

 remove_child_t()

 Action that stops, unlinks and removes specified child/children from the pipeline.

 spec_t()

 Action that instantiates children and links them according to Membrane.ParentSpec.

 start_timer_t()

 Starts a timer that will invoke Membrane.Pipeline.handle_tick/3 callback
every interval according to the given clock.

 stop_timer_t()

 Stops a timer started with start_timer_t/0 action.

 t()

 Type describing actions that can be returned from pipeline callbacks.

 timer_interval_t()

 Changes interval of a timer started with start_timer_t/0.

 Anchor for this section

Types

 Link to this type

 forward_t()

 View Source

 Specs

 forward_t() ::
 {:forward,
 {Membrane.Child.name_t(), any()} | [{Membrane.Child.name_t(), any()}]}

Action that sends a message to a child identified by name.

 Link to this type

 log_metadata_t()

 View Source

 Specs

 log_metadata_t() :: {:log_metadata, Keyword.t()}

Action that sets Logger metadata for the pipeline and all its descendants.
Uses Logger.metadata/1 underneath.

 Link to this type

 remove_child_t()

 View Source

 Specs

 remove_child_t() ::
 {:remove_child, Membrane.Child.name_t() | [Membrane.Child.name_t()]}

Action that stops, unlinks and removes specified child/children from the pipeline.

 Link to this type

 spec_t()

 View Source

 Specs

 spec_t() :: {:spec, Membrane.ParentSpec.t()}

Action that instantiates children and links them according to Membrane.ParentSpec.
Children's playback state is changed to the current pipeline state.
Membrane.Pipeline.handle_spec_started/3 callback is executed once it happens.

 Link to this type

 start_timer_t()

 View Source

 Specs

 start_timer_t() ::
 {:start_timer,
 {timer_id :: any(), interval :: Ratio.t() | non_neg_integer() | :no_interval}
 | {timer_id :: any(),
 interval :: Ratio.t() | non_neg_integer() | :no_interval,
 clock :: Membrane.Clock.t()}}

Starts a timer that will invoke Membrane.Pipeline.handle_tick/3 callback
every interval according to the given clock.
The timer's id is passed to the Membrane.Pipeline.handle_tick/3
callback and can be used for changing its interval via timer_interval_t/0
or stopping it via stop_timer_t/0.
If interval is set to :no_interval, the timer won't issue any ticks until
the interval is set with timer_interval_t/0 action.
If no clock is passed, pipeline clock is chosen.
Timers use Process.send_after/3 under the hood.

 Link to this type

 stop_timer_t()

 View Source

 Specs

 stop_timer_t() :: {:stop_timer, timer_id :: any()}

Stops a timer started with start_timer_t/0 action.
This action is atomic: stopping timer guarantees that no ticks will arrive from it.

 Link to this type

 t()

 View Source

 Specs

 t() ::
 forward_t()
 | spec_t()
 | remove_child_t()
 | log_metadata_t()
 | start_timer_t()
 | timer_interval_t()
 | stop_timer_t()

Type describing actions that can be returned from pipeline callbacks.
Returning actions is a way of pipeline interaction with its children and
other parts of framework.

 Link to this type

 timer_interval_t()

 View Source

 Specs

 timer_interval_t() ::
 {:timer_interval,
 {timer_id :: any(), interval :: Ratio.t() | non_neg_integer() | :no_interval}}

Changes interval of a timer started with start_timer_t/0.
Permitted only from Membrane.Pipeline.handle_tick/3, unless the interval
was previously set to :no_interval.
If the interval is :no_interval, the timer won't issue any ticks until
another timer_interval_t/0 action. Otherwise, the timer will issue ticks every
new interval. The next tick after interval change is scheduled at
new_interval + previous_time, where previous_time is the time of the latest
tick or the time of returning start_timer_t/0 action if no tick has been
sent yet. Note that if current_time - previous_time > new_interval, a burst
of div(current_time - previous_time, new_interval) ticks is issued immediately.

 Membrane.Pipeline.CallbackContext.CrashGroupDown - Membrane Core v0.7.0

Membrane.Pipeline.CallbackContext.CrashGroupDown

Structure representing a context that is passed to the bin
when a crash group is down.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pipeline.CallbackContext.CrashGroupDown{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 members: [Membrane.Child.name_t()],
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Pipeline.CallbackContext.Notification - Membrane Core v0.7.0

Membrane.Pipeline.CallbackContext.Notification

Structure representing a context that is passed to the callback when
pipeline receives a notification.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pipeline.CallbackContext.Notification{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Pipeline.CallbackContext.Other - Membrane Core v0.7.0

Membrane.Pipeline.CallbackContext.Other

Structure representing a context that is passed to the callback when
pipeline receives an unrecognized message.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pipeline.CallbackContext.Other{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Pipeline.CallbackContext.PlaybackChange - Membrane Core v0.7.0

Membrane.Pipeline.CallbackContext.PlaybackChange

Structure representing a context that is passed to the callback of the pipeline
when it changes its playback state

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pipeline.CallbackContext.PlaybackChange{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Pipeline.CallbackContext.SpecStarted - Membrane Core v0.7.0

Membrane.Pipeline.CallbackContext.SpecStarted

Structure representing a context that is passed to the callback of the pipeline
when it instantiates children and links them according to Membrane.ParentSpec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pipeline.CallbackContext.SpecStarted{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Pipeline.CallbackContext.StreamManagement - Membrane Core v0.7.0

Membrane.Pipeline.CallbackContext.StreamManagement

Structure representing a context that is passed to the pipeline
when handling start and end of stream events.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pipeline.CallbackContext.StreamManagement{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Pipeline.CallbackContext.Tick - Membrane Core v0.7.0

Membrane.Pipeline.CallbackContext.Tick

Structure representing a context that is passed to the callback when
pipeline handles timer tick.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pipeline.CallbackContext.Tick{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin - Membrane Core v0.7.0

Membrane.Bin behaviour

Bins, similarly to pipelines, are containers for elements.
However, at the same time, they can be placed and linked within pipelines.
Although bin is a separate Membrane entity, it can be perceived as a pipeline within an element.
Bins can also be nested within one another.
There are two main reasons why bins are useful:
	they enable creating reusable element groups
	they allow managing their children, for instance by dynamically spawning or replacing them as the stream changes.

In order to create bin use Membrane.Bin in your callback module.

 Anchor for this section

 Summary

 Types

 callback_return_t()

 name_t()

 Type that defines a bin name by which it is identified.

 options_t()

 Defines options that can be passed to start_link/3 and received
in handle_init/1 callback.

 state_t()

 Functions

 __using__(options)

 Brings all the stuff necessary to implement a bin.

 bin?(module)

 Checks whether module is a bin.

 def_clock(doc \\ "")

 Defines that bin exposes a clock which is a proxy to one of its children.

 def_input_pad(name, spec)

 Macro that defines input pad for the bin.

 def_options(options)

 Macro defining options that parametrize bin.

 def_output_pad(name, spec)

 Macro that defines output pad for the bin.

 Callbacks

 handle_element_end_of_stream({}, context, state)

 Callback invoked when a child element finishes processing stream via given pad.

 handle_element_start_of_stream({}, context, state)

 Callback invoked when a child element starts processing stream via given pad.

 handle_init(options)

 Callback invoked on initialization of bin process. It should parse options
and initialize bin's internal state. Internally it is invoked inside
GenServer.init/1 callback.

 handle_notification(notification, element, context, state)

 Callback invoked when a notification comes in from an element.

 handle_other(message, context, state)

 Callback invoked when bin receives a message that is not recognized
as an internal membrane message.

 handle_pad_added(pad, context, state)

 Callback that is called when new pad has beed added to bin. Executed
ONLY for dynamic pads.

 handle_pad_removed(pad, context, state)

 Callback that is called when some pad of the bin has beed removed. Executed
ONLY for dynamic pads.

 handle_playing_to_prepared(context, state)

 Callback invoked when bin transition from :playing to :prepared state has finished,
that is all of its children are prepared to be stopped.

 handle_prepared_to_playing(context, state)

 Callback invoked when bin is in :playing state, i.e. all its children
are in this state.

 handle_prepared_to_stopped(context, state)

 Callback invoked when bin is in :playing state, i.e. all its children
are in this state.

 handle_shutdown(reason, state)

 Callback invoked when bin is shutting down.
Internally called in GenServer.terminate/2 callback.

 handle_spec_started(children, context, state)

 Callback invoked when Membrane.ParentSpec is linked and in the same playback
state as bin.

 handle_stopped_to_prepared(context, state)

 Callback invoked when bin transition from :stopped to :prepared state has finished,
that is all of its children are prepared to enter :playing state.

 handle_stopped_to_terminating(context, state)

 Callback invoked when bin is in :terminating state, i.e. all its children
are in this state.

 handle_tick(timer_id, context, state)

 Callback invoked upon each timer tick. A timer can be started with Membrane.Bin.Action.start_timer_t/0
action.

 membrane_bin?()

 Enables to check whether module is membrane bin.

 membrane_clock?()

 Automatically implemented callback used to determine whether bin exports clock.

 Anchor for this section

Types

 Link to this type

 callback_return_t()

 View Source

 Specs

 callback_return_t() ::
 {:ok | {:ok, [Membrane.Bin.Action.t()]} | {:error, any()}, state_t()}
 | {:error, any()}

 Link to this type

 name_t()

 View Source

 Specs

 name_t() :: any()

Type that defines a bin name by which it is identified.

 Link to this type

 options_t()

 View Source

 Specs

 options_t() :: struct() | nil

Defines options that can be passed to start_link/3 and received
in handle_init/1 callback.

 Link to this type

 state_t()

 View Source

 Specs

 state_t() :: map() | struct()

 Anchor for this section

Functions

 Link to this macro

 __using__(options)

 View Source

 (macro)

Brings all the stuff necessary to implement a bin.
Options:
	:bring_spec? - if true (default) imports and aliases Membrane.ParentSpec
	:bring_pad? - if true (default) requires and aliases Membrane.Pad

 Link to this function

 bin?(module)

 View Source

 Specs

 bin?(module()) :: boolean()

Checks whether module is a bin.

 Link to this macro

 def_clock(doc \\ "")

 View Source

 (macro)

Defines that bin exposes a clock which is a proxy to one of its children.
If this macro is not called, no ticks will be forwarded to parent, regardless
of clock definitions in its children.

 Link to this macro

 def_input_pad(name, spec)

 View Source

 (macro)

Macro that defines input pad for the bin.
Allows to use one_of/1 and range/2 functions from Membrane.Caps.Matcher
without module prefix.
It automatically generates documentation from the given definition
and adds compile-time caps specs validation.
The type Membrane.Pad.bin_spec_t/0 describes how the definition of pads should look.

 Link to this macro

 def_options(options)

 View Source

 (macro)

Macro defining options that parametrize bin.
It automatically generates appropriate struct and documentation.
Options are defined by a keyword list, where each key is an option name and
is described by another keyword list with following fields:
	type: atom, used for parsing
	spec: typespec for value in struct. If ommitted, for types:
[:atom, :boolean, :caps, :keyword, :string, :struct, :time] the default typespec is provided,
for others typespec is set to any/0
	default: default value for option. If not present, value for this option
will have to be provided each time options struct is created
	inspector: function converting fields' value to a string. Used when
creating documentation instead of inspect/1
	description: string describing an option. It will be used for generating the docs

 Link to this macro

 def_output_pad(name, spec)

 View Source

 (macro)

Macro that defines output pad for the bin.
Allows to use one_of/1 and range/2 functions from Membrane.Caps.Matcher
without module prefix.
It automatically generates documentation from the given definition
and adds compile-time caps specs validation.
The type Membrane.Pad.bin_spec_t/0 describes how the definition of pads should look.

 Anchor for this section

Callbacks

 Link to this callback

 handle_element_end_of_stream({}, context, state)

 View Source

 (optional)

 Specs

 handle_element_end_of_stream(
 {Membrane.Child.name_t(), Membrane.Pad.ref_t()},
 context :: Membrane.Bin.CallbackContext.StreamManagement.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when a child element finishes processing stream via given pad.

 Link to this callback

 handle_element_start_of_stream({}, context, state)

 View Source

 (optional)

 Specs

 handle_element_start_of_stream(
 {Membrane.Child.name_t(), Membrane.Pad.ref_t()},
 context :: Membrane.Bin.CallbackContext.StreamManagement.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when a child element starts processing stream via given pad.

 Link to this callback

 handle_init(options)

 View Source

 (optional)

 Specs

 handle_init(options :: options_t()) :: callback_return_t()

Callback invoked on initialization of bin process. It should parse options
and initialize bin's internal state. Internally it is invoked inside
GenServer.init/1 callback.

 Link to this callback

 handle_notification(notification, element, context, state)

 View Source

 (optional)

 Specs

 handle_notification(
 notification :: Membrane.Notification.t(),
 element :: Membrane.Child.name_t(),
 context :: Membrane.Bin.CallbackContext.Notification.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when a notification comes in from an element.

 Link to this callback

 handle_other(message, context, state)

 View Source

 (optional)

 Specs

 handle_other(
 message :: any(),
 context :: Membrane.Bin.CallbackContext.Other.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when bin receives a message that is not recognized
as an internal membrane message.
Useful for receiving data sent from NIFs or other stuff.

 Link to this callback

 handle_pad_added(pad, context, state)

 View Source

 (optional)

 Specs

 handle_pad_added(
 pad :: Membrane.Pad.ref_t(),
 context :: Membrane.Bin.CallbackContext.PadAdded.t(),
 state :: state_t()
) :: callback_return_t()

Callback that is called when new pad has beed added to bin. Executed
ONLY for dynamic pads.

 Link to this callback

 handle_pad_removed(pad, context, state)

 View Source

 (optional)

 Specs

 handle_pad_removed(
 pad :: Membrane.Pad.ref_t(),
 context :: Membrane.Bin.CallbackContext.PadRemoved.t(),
 state :: state_t()
) :: callback_return_t()

Callback that is called when some pad of the bin has beed removed. Executed
ONLY for dynamic pads.

 Link to this callback

 handle_playing_to_prepared(context, state)

 View Source

 (optional)

 Specs

 handle_playing_to_prepared(
 context :: Membrane.Bin.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when bin transition from :playing to :prepared state has finished,
that is all of its children are prepared to be stopped.

 Link to this callback

 handle_prepared_to_playing(context, state)

 View Source

 (optional)

 Specs

 handle_prepared_to_playing(
 context :: Membrane.Bin.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when bin is in :playing state, i.e. all its children
are in this state.

 Link to this callback

 handle_prepared_to_stopped(context, state)

 View Source

 (optional)

 Specs

 handle_prepared_to_stopped(
 context :: Membrane.Bin.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when bin is in :playing state, i.e. all its children
are in this state.

 Link to this callback

 handle_shutdown(reason, state)

 View Source

 (optional)

 Specs

 handle_shutdown(reason, state :: state_t()) :: :ok
when reason: :normal | :shutdown | {:shutdown, any()} | term()

Callback invoked when bin is shutting down.
Internally called in GenServer.terminate/2 callback.
Useful for any cleanup required.

 Link to this callback

 handle_spec_started(children, context, state)

 View Source

 (optional)

 Specs

 handle_spec_started(
 children :: [Membrane.Child.name_t()],
 context :: Membrane.Bin.CallbackContext.SpecStarted.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when Membrane.ParentSpec is linked and in the same playback
state as bin.
This callback can be started from handle_init/1 callback or as
Membrane.Bin.Action.spec_t/0 action.

 Link to this callback

 handle_stopped_to_prepared(context, state)

 View Source

 (optional)

 Specs

 handle_stopped_to_prepared(
 context :: Membrane.Bin.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when bin transition from :stopped to :prepared state has finished,
that is all of its children are prepared to enter :playing state.

 Link to this callback

 handle_stopped_to_terminating(context, state)

 View Source

 (optional)

 Specs

 handle_stopped_to_terminating(
 context :: Membrane.Bin.CallbackContext.PlaybackChange.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked when bin is in :terminating state, i.e. all its children
are in this state.

 Link to this callback

 handle_tick(timer_id, context, state)

 View Source

 (optional)

 Specs

 handle_tick(
 timer_id :: any(),
 context :: Membrane.Bin.CallbackContext.Tick.t(),
 state :: state_t()
) :: callback_return_t()

Callback invoked upon each timer tick. A timer can be started with Membrane.Bin.Action.start_timer_t/0
action.

 Link to this callback

 membrane_bin?()

 View Source

 Specs

 membrane_bin?() :: true

Enables to check whether module is membrane bin.

 Link to this callback

 membrane_clock?()

 View Source

 (optional)

 Specs

 membrane_clock?() :: boolean()

Automatically implemented callback used to determine whether bin exports clock.

 Membrane.Bin.Action - Membrane Core v0.7.0

Membrane.Bin.Action

This module contains type specifications of actions that can be returned
from bin callbacks.
Returning actions is a way of bin interaction with
other components and parts of framework. Each action may be returned by any
callback (except for Membrane.Bin.handle_shutdown/2, as it
does not support returning any actions) unless explicitly stated otherwise.

 Anchor for this section

 Summary

 Types

 forward_t()

 Action that sends a message to a child identified by name.

 log_metadata_t()

 Action that sets Logger metadata for the bin and all its descendants.

 remove_child_t()

 Action that stops, unlinks and removes specified child/children from the bin.

 spec_t()

 Action that instantiates children and links them according to Membrane.ParentSpec.

 start_timer_t()

 Starts a timer that will invoke Membrane.Bin.handle_tick/3 callback
every interval according to the given clock.

 stop_timer_t()

 Stops a timer started with start_timer_t/0 action.

 t()

 Type describing actions that can be returned from bin callbacks.

 timer_interval_t()

 Changes interval of a timer started with start_timer_t/0.

 Anchor for this section

Types

 Link to this type

 forward_t()

 View Source

 Specs

 forward_t() ::
 {:forward,
 {Membrane.Child.name_t(), any()} | [{Membrane.Child.name_t(), any()}]}

Action that sends a message to a child identified by name.

 Link to this type

 log_metadata_t()

 View Source

 Specs

 log_metadata_t() :: {:log_metadata, Keyword.t()}

Action that sets Logger metadata for the bin and all its descendants.
Uses Logger.metadata/1 underneath.

 Link to this type

 remove_child_t()

 View Source

 Specs

 remove_child_t() ::
 {:remove_child, Membrane.Child.name_t() | [Membrane.Child.name_t()]}

Action that stops, unlinks and removes specified child/children from the bin.

 Link to this type

 spec_t()

 View Source

 Specs

 spec_t() :: {:spec, Membrane.ParentSpec.t()}

Action that instantiates children and links them according to Membrane.ParentSpec.
Children's playback state is changed to the current bin state.
c:Membrane.Parent.handle_spec_started/3 callback is executed once it happens.

 Link to this type

 start_timer_t()

 View Source

 Specs

 start_timer_t() ::
 {:start_timer,
 {timer_id :: any(), interval :: Ratio.t() | non_neg_integer() | :no_interval}
 | {timer_id :: any(),
 interval :: Ratio.t() | non_neg_integer() | :no_interval,
 clock :: Membrane.Clock.t()}}

Starts a timer that will invoke Membrane.Bin.handle_tick/3 callback
every interval according to the given clock.
The timer's id is passed to the Membrane.Bin.handle_tick/3
callback and can be used for changing its interval via timer_interval_t/0
or stopping it via stop_timer_t/0.
If interval is set to :no_interval, the timer won't issue any ticks until
the interval is set with timer_interval_t/0 action.
If no clock is passed, parent clock is chosen.
Timers use Process.send_after/3 under the hood.

 Link to this type

 stop_timer_t()

 View Source

 Specs

 stop_timer_t() :: {:stop_timer, timer_id :: any()}

Stops a timer started with start_timer_t/0 action.
This action is atomic: stopping timer guarantees that no ticks will arrive from it.

 Link to this type

 t()

 View Source

 Specs

 t() ::
 forward_t()
 | spec_t()
 | remove_child_t()
 | log_metadata_t()
 | start_timer_t()
 | timer_interval_t()
 | stop_timer_t()

Type describing actions that can be returned from bin callbacks.
Returning actions is a way of bin interaction with its children and
other parts of framework.

 Link to this type

 timer_interval_t()

 View Source

 Specs

 timer_interval_t() ::
 {:timer_interval,
 {timer_id :: any(), interval :: Ratio.t() | non_neg_integer() | :no_interval}}

Changes interval of a timer started with start_timer_t/0.
Permitted only from Membrane.Bin.handle_tick/3, unless the interval
was previously set to :no_interval.
If the interval is :no_interval, the timer won't issue any ticks until
another timer_interval_t/0 action. Otherwise, the timer will issue ticks every
new interval. The next tick after interval change is scheduled at
new_interval + previous_time, where previous_time is the time of the latest
tick or the time of returning start_timer_t/0 action if no tick has been
sent yet. Note that if current_time - previous_time > new_interval, a burst
of div(current_time - previous_time, new_interval) ticks is issued immediately.

 Membrane.Bin.CallbackContext.CrashGroupDown - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.CrashGroupDown

Structure representing a context that is passed to the pipeline
when a crash group is down.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.CrashGroupDown{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 members: [Membrane.Child.name_t()],
 name: Membrane.Bin.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.Notification - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.Notification

Structure representing a context that is passed to the callback when
bin receives notification.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.Notification{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 name: Membrane.Bin.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.Other - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.Other

Structure representing a context that is passed to the callback when
bin receives unrecognized message.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.Other{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 name: Membrane.Bin.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.PadAdded - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.PadAdded

Structure representing a context that is passed to the bin
when a new dynamic pad instance added is created

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.PadAdded{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 direction: :input | :output,
 name: Membrane.Bin.name_t(),
 options: Keyword.t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.PadRemoved - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.PadRemoved

Structure representing a context that is passed to the bin
when a dynamic pad is removed

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.PadRemoved{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 direction: :input | :output,
 name: Membrane.Bin.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.PlaybackChange - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.PlaybackChange

Structure representing a context that is passed to the callback of the bin
when it changes playback state

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.PlaybackChange{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 name: Membrane.Bin.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.SpecStarted - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.SpecStarted

Structure representing a context that is passed to the callback of the bin
when it instantiates children and links them according to Membrane.ParentSpec

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.SpecStarted{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 name: Membrane.Bin.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.StreamManagement - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.StreamManagement

Structure representing a context that is passed to the bin
when handling start and end of stream events.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.StreamManagement{
 children: %{required(Membrane.Child.name_t()) => Membrane.ChildEntry.t()},
 clock: Membrane.Clock.t(),
 name: Membrane.Bin.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t(),
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Bin.CallbackContext.Tick - Membrane Core v0.7.0

Membrane.Bin.CallbackContext.Tick

Structure representing a context that is passed to the callback when
bin handles timer tick.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Bin.CallbackContext.Tick{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Core.InputBuffer - Membrane Core v0.7.0

Membrane.Core.InputBuffer

Buffer that is attached to the :input pad when working in a :pull mode.
It stores Membrane.Buffer, Membrane.Event and Membrane.Caps structs and
prevents the situation where the data in a stream contains the discontinuities.
It also guarantees that element won't be flooded with the incoming data.

 Anchor for this section

 Summary

 Types

 output_t()

 output_value_t()

 props_t()

 Properties that can be passed when creating new InputBuffer

 t()

 Functions

 empty?(input_buffer)

 enable_toilet(buf)

 init(demand_unit, demand_pid, demand_pad, log_tag, props)

 parse_props(input)

 store(input_buf, type \\ :buffers, v)

 take_and_demand(input_buf, count, demand_pid, demand_pad)

 Anchor for this section

Types

 Link to this type

 output_t()

 View Source

 Specs

 output_t() :: {:empty | :value, [output_value_t()]}

 Link to this type

 output_value_t()

 View Source

 Specs

 output_value_t() :: {:event | :caps, any()} | {:buffers, list(), pos_integer()}

 Link to this type

 props_t()

 View Source

 Specs

 props_t() :: [
 preferred_size: pos_integer(),
 min_demand: pos_integer(),
 warn_size: pos_integer(),
 fail_size: pos_integer()
]

Properties that can be passed when creating new InputBuffer
Available options are:
	:preferred_size - size which will be the 'target' for InputBuffer - it will make demands
trying to grow to this size. Its default value depends on the set Membrane.Buffer.Metric and is
obtained via Membrane.Buffer.Metric.input_buf_preferred_size/0
	:min_demand - the minimal size of a demand that can be sent to the linked output pad.
This prevents from excessive message passing between elements. Defaults to a quarter of
preferred size.
	warn_size - in toilet mode (connecting push output to pull input pad), receiving more data
than this size triggers a warning. By default it is equal to twice the preferred size.
	fail_size - in toilet mode (connecting push output to pull input pad), receiving more data
than this results in an element failure. By default, it is four times the preferred size.

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Core.InputBuffer{
 current_size: non_neg_integer(),
 demand: non_neg_integer(),
 log_tag: String.t(),
 metric: module(),
 min_demand: pos_integer(),
 preferred_size: pos_integer(),
 q: Qex.t(),
 toilet?: boolean(),
 toilet_props: %{warn: pos_integer(), fail: pos_integer()}
}

 Anchor for this section

Functions

 Link to this function

 empty?(input_buffer)

 View Source

 Specs

 empty?(t()) :: boolean()

 Link to this function

 enable_toilet(buf)

 View Source

 Specs

 enable_toilet(t()) :: t()

 Link to this function

 init(demand_unit, demand_pid, demand_pad, log_tag, props)

 View Source

 Specs

 init(
 Membrane.Buffer.Metric.unit_t(),
 pid(),
 Membrane.Pad.ref_t(),
 String.t(),
 props_t()
) :: t()

 Link to this function

 parse_props(input)

 View Source

 Specs

 parse_props(keyword()) :: {:error, reason :: any()} | {:ok, props_t()}

 Link to this function

 store(input_buf, type \\ :buffers, v)

 View Source

 Specs

 store(t(), atom(), any()) :: t()

 Link to this function

 take_and_demand(input_buf, count, demand_pid, demand_pad)

 View Source

 Specs

 take_and_demand(t(), non_neg_integer(), pid(), Membrane.Pad.ref_t()) ::
 {output_t(), t()}

 Membrane.Element - Membrane Core v0.7.0

Membrane.Element

Module containing types and functions for operating on elements.
For behaviours for elements chceck Membrane.Source, Membrane.Filter and
Membrane.Sink.

 Anchor for this section

 Summary

 Types

 name_t()

 Type that defines an element name by which it is identified.

 options_t()

 Defines options that can be received in Membrane.Element.Base.handle_init/1
callback.

 state_t()

 Type of user-managed state of element.

 type_t()

 Defines possible element types

 Functions

 element?(module)

 Checks whether module is an element.

 Anchor for this section

Types

 Link to this type

 name_t()

 View Source

 Specs

 name_t() :: any()

Type that defines an element name by which it is identified.

 Link to this type

 options_t()

 View Source

 Specs

 options_t() :: struct() | nil

Defines options that can be received in Membrane.Element.Base.handle_init/1
callback.

 Link to this type

 state_t()

 View Source

 Specs

 state_t() :: map() | struct()

Type of user-managed state of element.

 Link to this type

 type_t()

 View Source

 Specs

 type_t() :: :source | :filter | :sink

Defines possible element types:
	source, producing buffers
	filter, processing buffers
	sink, consuming buffers

 Anchor for this section

Functions

 Link to this function

 element?(module)

 View Source

 Specs

 element?(module()) :: boolean()

Checks whether module is an element.

 Membrane.Filter - Membrane Core v0.7.0

Membrane.Filter behaviour

Module defining behaviour for filters - elements processing data.
Behaviours for filters are specified, besides this place, in modules
Membrane.Element.Base,
Membrane.Element.WithOutputPads,
and Membrane.Element.WithInputPads.
Filters can have both input and output pads. Job of a usual filter is to
receive some data on a input pad, process the data and send it through the
output pad. If these pads work in pull mode, which is the most common case,
then filter is also responsible for receiving demands on the output pad and
requesting them on the input pad (for more details, see
Membrane.Element.WithOutputPads.handle_demand/5 callback).
Filters, like all elements, can of course have multiple pads if needed to
provide more complex solutions.

 Anchor for this section

 Summary

 Functions

 __using__(options)

 Brings all the stuff necessary to implement a filter element.

 Callbacks

 handle_process(pad, buffer, context, state)

 Callback that is to process buffers. In contrast to handle_process_list/4, it is
passed only a single buffer.

 handle_process_list(pad, buffers, context, state)

 Callback that is to process buffers.

 Anchor for this section

Functions

 Link to this macro

 __using__(options)

 View Source

 (macro)

Brings all the stuff necessary to implement a filter element.
Options:
	:bring_pad? - if true (default) requires and aliases Membrane.Pad

 Anchor for this section

Callbacks

 Link to this callback

 handle_process(pad, buffer, context, state)

 View Source

 Specs

 handle_process(
 pad :: Membrane.Pad.ref_t(),
 buffer :: Membrane.Buffer.t(),
 context :: Membrane.Element.CallbackContext.Process.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback that is to process buffers. In contrast to handle_process_list/4, it is
passed only a single buffer.
Called by default implementation of handle_process_list/4.

 Link to this callback

 handle_process_list(pad, buffers, context, state)

 View Source

 Specs

 handle_process_list(
 pad :: Membrane.Pad.ref_t(),
 buffers :: [Membrane.Buffer.t()],
 context :: Membrane.Element.CallbackContext.Process.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback that is to process buffers.
By default calls handle_process/4 for each buffer.
For pads in pull mode it is called when buffers have been demanded (by returning
:demand action from any callback).
For pads in push mode it is invoked when buffers arrive.

 Membrane.Sink - Membrane Core v0.7.0

Membrane.Sink behaviour

Module defining behaviour for sinks - elements consuming data.
Behaviours for sinks are specified, besides this place, in modules
Membrane.Element.Base,
and Membrane.Element.WithInputPads.
Sink elements can define only input pads. Job of a usual sink is to receive some
data on such pad and consume it (write to a soundcard, send through TCP etc.).
If the pad works in pull mode, which is the most common case, then element is
also responsible for requesting demands when it is able and willing to consume
data (for more details, see Membrane.Element.Action.demand_t/0).
Sinks, like all elements, can of course have multiple pads if needed to
provide more complex solutions.

 Anchor for this section

 Summary

 Functions

 __using__(options)

 Brings all the stuff necessary to implement a sink element.

 Callbacks

 handle_write(pad, buffer, context, state)

 Callback that is called when buffer should be written by the sink. In contrast
to handle_write_list/4, it is passed only a single buffer.

 handle_write_list(pad, buffers, context, state)

 Callback that is called when buffer should be written by the sink.

 Anchor for this section

Functions

 Link to this macro

 __using__(options)

 View Source

 (macro)

Brings all the stuff necessary to implement a sink element.
Options:
	:bring_pad? - if true (default) requires and aliases Membrane.Pad

 Anchor for this section

Callbacks

 Link to this callback

 handle_write(pad, buffer, context, state)

 View Source

 Specs

 handle_write(
 pad :: Membrane.Pad.ref_t(),
 buffer :: Membrane.Buffer.t(),
 context :: Membrane.Element.CallbackContext.Write.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback that is called when buffer should be written by the sink. In contrast
to handle_write_list/4, it is passed only a single buffer.
Called by default implementation of handle_write_list/4.

 Link to this callback

 handle_write_list(pad, buffers, context, state)

 View Source

 Specs

 handle_write_list(
 pad :: Membrane.Pad.ref_t(),
 buffers :: [Membrane.Buffer.t()],
 context :: Membrane.Element.CallbackContext.Write.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback that is called when buffer should be written by the sink.
By default calls handle_write/4 for each buffer.
For pads in pull mode it is called when buffers have been demanded (by returning
:demand action from any callback).
For pads in push mode it is invoked when buffers arrive.

 Membrane.Source - Membrane Core v0.7.0

Membrane.Source

Module that should be used in sources - elements producing data. Declares
appropriate behaviours implementation and provides default callbacks implementation.
Behaviours for sources are specified in modules
Membrane.Element.Base and
Membrane.Element.WithOutputPads.
Source elements can define only output pads. Job of a usual source is to produce
some data (read from soundcard, download through HTTP, etc.) and send it through
such pad. If the pad works in pull mode, then element is also responsible for
receiving demands and send buffers only if they have previously been demanded
(for more details, see Membrane.Element.WithOutputPads.handle_demand/5
callback).
Sources, like all elements, can of course have multiple pads if needed to
provide more complex solutions.

 Anchor for this section

 Summary

 Functions

 __using__(options)

 Brings all the stuff necessary to implement a source element.

 Anchor for this section

Functions

 Link to this macro

 __using__(options)

 View Source

 (macro)

Brings all the stuff necessary to implement a source element.
Options:
	:bring_pad? - if true (default) requires and aliases Membrane.Pad

 Membrane.Element.Action - Membrane Core v0.7.0

Membrane.Element.Action

This module contains type specifications of actions that can be returned
from element callbacks.
Returning actions is a way of element interaction with
other elements and parts of framework. Each action may be returned by any
callback (except for Membrane.Element.Base.handle_init/1
and Membrane.Element.Base.handle_shutdown/2, as they
do not support returning any actions) unless explicitly stated otherwise.

 Anchor for this section

 Summary

 Types

 buffer_t()

 Sends buffers through a pad.

 caps_t()

 Sends caps through a pad.

 demand_size_t()

 demand_t()

 Makes a demand on a pad.

 end_of_stream_t()

 Marks that processing via a pad (output) has been finished and the pad instance
won't be used anymore.

 event_t()

 Sends an event through a pad (input or output).

 forward_t()

 Sends buffers/caps/event to all output pads of element (or to input pads when
event occurs on the output pad).

 latency_t()

 This action sets the latency for the element.

 notify_t()

 Sends a message to the watcher.

 playback_change_t()

 Suspends/resumes change of playback state.

 redemand_t()

 Executes Membrane.Element.WithOutputPads.handle_demand/5 callback
for the given pad if its demand is greater than 0.

 split_t()

 Allows to split callback execution into multiple applications of another callback
(called from now sub-callback).

 start_timer_t()

 Starts a timer that will invoke Membrane.Element.Base.handle_tick/3 callback
every interval according to the given clock.

 stop_timer_t()

 Stops a timer started with start_timer_t/0 action.

 t()

 Type that defines a single action that may be returned from element callbacks.

 timer_interval_t()

 Changes interval of a timer started with start_timer_t/0.

 Anchor for this section

Types

 Link to this type

 buffer_t()

 View Source

 Specs

 buffer_t() ::
 {:buffer, {Membrane.Pad.ref_t(), Membrane.Buffer.t() | [Membrane.Buffer.t()]}}

Sends buffers through a pad.
The pad must have output direction.
Allowed only when playback state is playing.

 Link to this type

 caps_t()

 View Source

 Specs

 caps_t() :: {:caps, {Membrane.Pad.ref_t(), Membrane.Caps.t()}}

Sends caps through a pad.
The pad must have output direction. Sent caps must fit constraints on the pad.
Forbidden when playback state is stopped.

 Link to this type

 demand_size_t()

 View Source

 Specs

 demand_size_t() :: pos_integer() | (pos_integer() -> non_neg_integer())

 Link to this type

 demand_t()

 View Source

 Specs

 demand_t() :: {:demand, {Membrane.Pad.ref_t(), demand_size_t()}}

Makes a demand on a pad.
The pad must have input direction and work in pull mode. This action does NOT
entail sending demand through the pad, but just requesting some amount
of data from Membrane.Core.InputBuffer, which sends demands automatically when it
runs out of data.
If there is any data available at the pad, the data is passed to
Membrane.Filter.handle_process_list/4
or Membrane.Sink.handle_write_list/4 callback. Invoked callback is
guaranteed not to receive more data than demanded.
Demand size can be either a non-negative integer, that overrides existing demand,
or a function that is passed current demand, and is to return the new demand.
Allowed only when playback state is playing.

 Link to this type

 end_of_stream_t()

 View Source

 Specs

 end_of_stream_t() :: {:end_of_stream, Membrane.Pad.ref_t()}

Marks that processing via a pad (output) has been finished and the pad instance
won't be used anymore.
Triggers end_of_stream/3 callback at the receiver element.
Allowed only when playback is in playing state.

 Link to this type

 event_t()

 View Source

 Specs

 event_t() :: {:event, {Membrane.Pad.ref_t(), Membrane.Event.t()}}

Sends an event through a pad (input or output).
Forbidden when playback state is stopped.

 Link to this type

 forward_t()

 View Source

 Specs

 forward_t() ::
 {:forward,
 Membrane.Buffer.t()
 | [Membrane.Buffer.t()]
 | Membrane.Caps.t()
 | Membrane.Event.t()
 | :end_of_stream}

Sends buffers/caps/event to all output pads of element (or to input pads when
event occurs on the output pad).
Used by default implementations of
Membrane.Element.WithInputPads.handle_caps/4 and
Membrane.Element.Base.handle_event/4 callbacks in filter.
Allowed only when all below conditions are met:
	element is filter,
	callback is Membrane.Filter.handle_process_list/4,
Membrane.Element.WithInputPads.handle_caps/4
or Membrane.Element.Base.handle_event/4,
	playback state is valid for sending buffer, caps or event action
respectively.

Keep in mind that Membrane.Filter.handle_process_list/4 can only
forward buffers, Membrane.Element.WithInputPads.handle_caps/4 - caps
and Membrane.Element.Base.handle_event/4 - events.

 Link to this type

 latency_t()

 View Source

 Specs

 latency_t() :: {:latency, latency :: non_neg_integer()}

This action sets the latency for the element.
This action is not premitted in callback Membrane.Element.Base.handle_init/1.

 Link to this type

 notify_t()

 View Source

 Specs

 notify_t() :: {:notify, Membrane.Notification.t()}

Sends a message to the watcher.

 Link to this type

 playback_change_t()

 View Source

 Specs

 playback_change_t() :: {:playback_change, :suspend | :resume}

Suspends/resumes change of playback state.
	playback_change: :suspend may be returned only from
Membrane.Element.Base.handle_stopped_to_prepared/2,
Membrane.Element.Base.handle_playing_to_prepared/2,
Membrane.Element.Base.handle_prepared_to_playing/2 and
Membrane.Element.Base.handle_prepared_to_stopped/2 callbacks,
and defers playback state change until playback_change: :resume is returned.
	playback_change: :resume may be returned from any callback, only when
playback state change is suspended, and causes it to finish.

There is no straight limit how long playback change can take, but keep in mind
that it may affect application quality if not done quick enough.

 Link to this type

 redemand_t()

 View Source

 Specs

 redemand_t() :: {:redemand, Membrane.Pad.ref_t()}

Executes Membrane.Element.WithOutputPads.handle_demand/5 callback
for the given pad if its demand is greater than 0.
The pad must have output direction and work in pull mode.

 Redemand in Sources

In case of Sources, :redemand is just a helper that simplifies element's code.
The element doesn't need to generate the whole demand synchronously at handle_demand
or store current demand size in its state, but it can just generate one buffer
and return :redemand action.
If there is still one or more buffers to produce, returning :redemand triggers
the next invocation of handle_demand. In such case, the element is to produce
next buffer and call :redemand again.
If there are no more buffers demanded, handle_demand is not invoked and
the loop ends.
One more advantage of the approach with :redemand action is that produced buffers
are sent one after another in separate messages and this can possibly improve
the latency.

 Redemand in Filters

Redemand in Filters is useful in a situation where not the entire demand of
output pad has been satisfied and there is a need to send a demand for additional
buffers through the input pad.
A typical example of this situation is a parser that has not demanded enough
bytes to parse the whole frame.

 Usage limitations

Allowed only when playback state is playing.

 Link to this type

 split_t()

 View Source

 Specs

 split_t() :: {:split, {callback_name :: atom(), args_list :: [[any()]]}}

Allows to split callback execution into multiple applications of another callback
(called from now sub-callback).
Executions are synchronous in the element process, and each of them passes
subsequent arguments from the args_list, along with the element state (passed
as the last argument each time).
Return value of each execution of sub-callback can be any valid return value
of the original callback (this also means sub-callback can return any action
valid for the original callback, unless expliciltly stated). Returned actions
are executed immediately (they are NOT accumulated and executed after all
sub-callback executions are finished).
Useful when a long action is to be undertaken, and partial results need to
be returned before entire process finishes (e.g. default implementation of
Membrane.Filter.handle_process_list/4 uses split action to invoke
Membrane.Filter.handle_process/4 with each buffer)

 Link to this type

 start_timer_t()

 View Source

 Specs

 start_timer_t() ::
 {:start_timer,
 {timer_id :: any(), interval :: Ratio.t() | non_neg_integer() | :no_interval}
 | {timer_id :: any(),
 interval :: Ratio.t() | non_neg_integer() | :no_interval,
 clock :: Membrane.Clock.t()}}

Starts a timer that will invoke Membrane.Element.Base.handle_tick/3 callback
every interval according to the given clock.
The timer's id is passed to the Membrane.Element.Base.handle_tick/3
callback and can be used for changing its interval via timer_interval_t/0
or stopping it via stop_timer_t/0.
If interval is set to :no_interval, the timer won't issue any ticks until
the interval is set with timer_interval_t/0 action.
If no clock is passed, parent's clock is chosen.
Timers use Process.send_after/3 under the hood.

 Link to this type

 stop_timer_t()

 View Source

 Specs

 stop_timer_t() :: {:stop_timer, timer_id :: any()}

Stops a timer started with start_timer_t/0 action.
This action is atomic: stopping timer guarantees that no ticks will arrive from it.

 Link to this type

 t()

 View Source

 Specs

 t() ::
 event_t()
 | notify_t()
 | split_t()
 | caps_t()
 | buffer_t()
 | demand_t()
 | redemand_t()
 | forward_t()
 | playback_change_t()
 | start_timer_t()
 | stop_timer_t()
 | latency_t()
 | end_of_stream_t()

Type that defines a single action that may be returned from element callbacks.
Depending on element type, callback, current playback state and other
circumstances there may be different actions available.

 Link to this type

 timer_interval_t()

 View Source

 Specs

 timer_interval_t() ::
 {:timer_interval,
 {timer_id :: any(), interval :: Ratio.t() | non_neg_integer() | :no_interval}}

Changes interval of a timer started with start_timer_t/0.
Permitted only from Membrane.Element.Base.handle_tick/3, unless the interval
was previously set to :no_interval.
If the interval is :no_interval, the timer won't issue any ticks until
another timer_interval_t/0 action. Otherwise, the timer will issue ticks every
new interval. The next tick after interval change is scheduled at
new_interval + previous_time, where previous_time is the time of the latest
tick or the time of returning start_timer_t/0 action if no tick has been
sent yet. Note that if current_time - previous_time > new_interval, a burst
of div(current_time - previous_time, new_interval) ticks is issued immediately.

 Membrane.Element.Base - Membrane Core v0.7.0

Membrane.Element.Base behaviour

Module defining behaviour common to all elements.
When used declares behaviour implementation, provides default callback definitions
and imports macros.
Elements
Elements are units that produce, process or consume data. They can be linked
with Membrane.Pipeline, and thus form a pipeline able to perform complex data
processing. Each element defines a set of pads, through which it can be linked
with other elements. During playback, pads can either send (output pads) or
receive (input pads) data. For more information on pads, see
Membrane.Pad.
To implement an element, one of base modules (Membrane.Source,
Membrane.Filter, Membrane.Sink)
has to be used, depending on the element type:
	source, producing buffers (contain only output pads),
	filter, processing buffers (contain both input and output pads),
	sink, consuming buffers (contain only input pads).
For more information on each element type, check documentation for appropriate
base module.

Behaviours
Element-specific behaviours are specified in modules:
	Membrane.Element.Base - this module, behaviour common to all
elements,
	Membrane.Element.WithOutputPads - behaviour common to sources
and filters,
	Membrane.Element.WithInputPads - behaviour common to sinks and
filters,
	Base modules (Membrane.Source, Membrane.Filter,
Membrane.Sink) - behaviours specific to each element type.

Callbacks
Modules listed above provide specifications of callbacks that define elements
lifecycle. All of these callbacks have names with the handle_ prefix.
They are used to define reaction to certain events that happen during runtime,
and indicate what actions framework should undertake as a result, besides
executing element-specific code.
For actions that can be returned by each callback, see Membrane.Element.Action
module.

 Anchor for this section

 Summary

 Types

 callback_return_t()

 Type that defines all valid return values from most callbacks.

 Functions

 __using__(options)

 Brings common stuff needed to implement an element. Used by
Membrane.Source.__using__/1, Membrane.Filter.__using__/1
and Membrane.Sink.__using__/1.

 def_clock(doc \\ "")

 Defines that element exports a clock to pipeline.

 def_options(options)

 Macro defining options that parametrize element.

 Callbacks

 handle_event(pad, event, context, state)

 Callback that is called when event arrives.

 handle_init(options)

 Callback invoked on initialization of element process. It should parse options
and initialize element internal state. Internally it is invoked inside
GenServer.init/1 callback.

 handle_other(message, context, state)

 Callback invoked when element receives a message that is not recognized
as an internal membrane message.

 handle_pad_added(pad, context, state)

 Callback that is called when new pad has beed added to element. Executed
ONLY for dynamic pads.

 handle_pad_removed(pad, context, state)

 Callback that is called when some pad of the element has beed removed. Executed
ONLY for dynamic pads.

 handle_playing_to_prepared(context, state)

 Callback invoked when element goes to :prepared state from state :playing and should get
ready to enter :stopped state.

 handle_prepared_to_playing(context, state)

 Callback invoked when element is supposed to start playing (goes from state :prepared to :playing).

 handle_prepared_to_stopped(context, state)

 Callback invoked when element is supposed to stop (goes from state :prepared to :stopped).

 handle_shutdown(reason, state)

 Callback invoked when element is shutting down just before process is exiting.
Internally called in GenServer.terminate/2 callback.

 handle_stopped_to_prepared(context, state)

 Callback invoked when element goes to :prepared state from state :stopped and should get
ready to enter :playing state.

 handle_stopped_to_terminating(context, state)

 handle_tick(timer_id, context, state)

 Callback invoked upon each timer tick. A timer can be started with Membrane.Element.Action.start_timer_t
action.

 membrane_clock?()

 Automatically implemented callback used to determine whether element exports clock.

 membrane_element?()

 Automatically implemented callback used to determine if module is a membrane element.

 membrane_element_type()

 Automatically implemented callback determining whether element is a source,
a filter or a sink.

 membrane_pads()

 Automatically implemented callback returning specification of pads exported
by the element.

 Anchor for this section

Types

 Link to this type

 callback_return_t()

 View Source

 Specs

 callback_return_t() ::
 {:ok | {:ok, [Membrane.Element.Action.t()]} | {:error, any()},
 Membrane.Element.state_t()}
 | {:error, any()}

Type that defines all valid return values from most callbacks.
In case of error, a callback is supposed to return {:error, any} if it is not
passed state, and {{:error, any}, state} otherwise.

 Anchor for this section

Functions

 Link to this macro

 __using__(options)

 View Source

 (macro)

Brings common stuff needed to implement an element. Used by
Membrane.Source.__using__/1, Membrane.Filter.__using__/1
and Membrane.Sink.__using__/1.
Options:
	:bring_pad? - if true (default) requires and aliases Membrane.Pad

 Link to this macro

 def_clock(doc \\ "")

 View Source

 (macro)

Defines that element exports a clock to pipeline.
Exporting clock allows pipeline to choose it as the pipeline clock, enabling other
elements to synchronize with it. Element's clock is accessible via clock field,
while pipeline's one - via parent_clock field in callback contexts. Both of
them can be used for starting timers.

 Link to this macro

 def_options(options)

 View Source

 (macro)

Macro defining options that parametrize element.
It automatically generates appropriate struct and documentation.
Options are defined by a keyword list, where each key is an option name and
is described by another keyword list with following fields:
	type: atom, used for parsing
	spec: typespec for value in struct. If ommitted, for types:
[:atom, :boolean, :caps, :keyword, :string, :struct, :time] the default typespec is provided,
for others typespec is set to any/0
	default: default value for option. If not present, value for this option
will have to be provided each time options struct is created
	inspector: function converting fields' value to a string. Used when
creating documentation instead of inspect/1
	description: string describing an option. It will be used for generating the docs

 Anchor for this section

Callbacks

 Link to this callback

 handle_event(pad, event, context, state)

 View Source

 (optional)

 Specs

 handle_event(
 pad :: Membrane.Pad.ref_t(),
 event :: Membrane.Event.t(),
 context :: Membrane.Element.CallbackContext.Event.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback that is called when event arrives.
Events may arrive from both sinks and sources. In filters by default event is
forwarded to all sources or sinks, respectively.

 Link to this callback

 handle_init(options)

 View Source

 (optional)

 Specs

 handle_init(options :: Membrane.Element.options_t()) ::
 {:ok, Membrane.Element.state_t()} | {:error, any()}

Callback invoked on initialization of element process. It should parse options
and initialize element internal state. Internally it is invoked inside
GenServer.init/1 callback.

 Link to this callback

 handle_other(message, context, state)

 View Source

 (optional)

 Specs

 handle_other(
 message :: any(),
 context :: Membrane.Element.CallbackContext.Other.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback invoked when element receives a message that is not recognized
as an internal membrane message.
Useful for receiving ticks from timer, data sent from NIFs or other stuff.

 Link to this callback

 handle_pad_added(pad, context, state)

 View Source

 (optional)

 Specs

 handle_pad_added(
 pad :: Membrane.Pad.ref_t(),
 context :: Membrane.Element.CallbackContext.PadAdded.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback that is called when new pad has beed added to element. Executed
ONLY for dynamic pads.

 Link to this callback

 handle_pad_removed(pad, context, state)

 View Source

 (optional)

 Specs

 handle_pad_removed(
 pad :: Membrane.Pad.ref_t(),
 context :: Membrane.Element.CallbackContext.PadRemoved.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback that is called when some pad of the element has beed removed. Executed
ONLY for dynamic pads.

 Link to this callback

 handle_playing_to_prepared(context, state)

 View Source

 (optional)

 Specs

 handle_playing_to_prepared(
 context :: Membrane.Element.CallbackContext.PlaybackChange.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback invoked when element goes to :prepared state from state :playing and should get
ready to enter :stopped state.
All resources allocated in handle_prepared_to_playing/2 callback should be released here, and no more buffers or
demands should be sent.

 Link to this callback

 handle_prepared_to_playing(context, state)

 View Source

 (optional)

 Specs

 handle_prepared_to_playing(
 context :: Membrane.Element.CallbackContext.PlaybackChange.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback invoked when element is supposed to start playing (goes from state :prepared to :playing).
This is moment when initial demands are sent and first buffers are generated
if there are any pads in the push mode.

 Link to this callback

 handle_prepared_to_stopped(context, state)

 View Source

 (optional)

 Specs

 handle_prepared_to_stopped(
 context :: Membrane.Element.CallbackContext.PlaybackChange.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback invoked when element is supposed to stop (goes from state :prepared to :stopped).
Usually this is the place for releasing all remaining resources
used by the element. For example, if element opens a file in handle_stopped_to_prepared/2,
this is the place to close it.

 Link to this callback

 handle_shutdown(reason, state)

 View Source

 (optional)

 Specs

 handle_shutdown(reason, state :: Membrane.Element.state_t()) :: :ok
when reason: :normal | :shutdown | {:shutdown, any()} | term()

Callback invoked when element is shutting down just before process is exiting.
Internally called in GenServer.terminate/2 callback.

 Link to this callback

 handle_stopped_to_prepared(context, state)

 View Source

 (optional)

 Specs

 handle_stopped_to_prepared(
 context :: Membrane.Element.CallbackContext.PlaybackChange.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback invoked when element goes to :prepared state from state :stopped and should get
ready to enter :playing state.
Usually most resources used by the element are allocated here.
For example, if element opens a file, this is the place to try to actually open it
and return error if that has failed. Such resources should be released in handle_prepared_to_stopped/2.

 Link to this callback

 handle_stopped_to_terminating(context, state)

 View Source

 Specs

 handle_stopped_to_terminating(
 context :: Membrane.Element.CallbackContext.PlaybackChange.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

 Link to this callback

 handle_tick(timer_id, context, state)

 View Source

 (optional)

 Specs

 handle_tick(
 timer_id :: any(),
 context :: Membrane.Element.CallbackContext.Tick.t(),
 state :: Membrane.Element.state_t()
) :: callback_return_t()

Callback invoked upon each timer tick. A timer can be started with Membrane.Element.Action.start_timer_t
action.

 Link to this callback

 membrane_clock?()

 View Source

 (optional)

 Specs

 membrane_clock?() :: true

Automatically implemented callback used to determine whether element exports clock.

 Link to this callback

 membrane_element?()

 View Source

 Specs

 membrane_element?() :: true

Automatically implemented callback used to determine if module is a membrane element.

 Link to this callback

 membrane_element_type()

 View Source

 Specs

 membrane_element_type() :: Membrane.Element.type_t()

Automatically implemented callback determining whether element is a source,
a filter or a sink.

 Link to this callback

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Automatically implemented callback returning specification of pads exported
by the element.
Generated by Membrane.Element.WithInputPads.def_input_pad/2
and Membrane..WithOutputPads.def_output_pad/2 macros.

 Membrane.Element.Base.Filter - Membrane Core v0.7.0

Membrane.Element.Base.Filter

This module has been deprecated in favour of Membrane.Filter.

 Membrane.Element.Base.Sink - Membrane Core v0.7.0

Membrane.Element.Base.Sink

This module has been deprecated in favour of Membrane.Sink.

 Membrane.Element.Base.Source - Membrane Core v0.7.0

Membrane.Element.Base.Source

This module has been deprecated in favour of Membrane.Source.

 Membrane.Element.WithInputPads - Membrane Core v0.7.0

Membrane.Element.WithInputPads behaviour

Module defining behaviour for sink and filter elements.
When used declares behaviour implementation, provides default callback definitions
and imports macros.
For more information on implementing elements, see Membrane.Element.Base.

 Anchor for this section

 Summary

 Functions

 def_input_pad(name, spec)

 Macro that defines input pad for the element.

 def_input_pads(pads)

 deprecated

 Macro that defines multiple input pads for the element.

 Callbacks

 handle_caps(pad, caps, context, state)

 Callback invoked when Element is receiving information about new caps for
given pad.

 handle_end_of_stream(pad, context, state)

 Callback invoked when the previous element has finished processing via the pad,
and it cannot be used anymore.

 handle_start_of_stream(pad, context, state)

 Callback invoked when element receives Membrane.Event.StartOfStream event.

 Anchor for this section

Functions

 Link to this macro

 def_input_pad(name, spec)

 View Source

 (macro)

Macro that defines input pad for the element.
Allows to use one_of/1 and range/2 functions from Membrane.Caps.Matcher
without module prefix.
It automatically generates documentation from the given definition
and adds compile-time caps specs validation.
The type Membrane.Pad.input_spec_t/0 describes how the definition of pads should look.

 Link to this macro

 def_input_pads(pads)

 View Source

 (macro)

 This macro is deprecated. Use def_input_pad/2 for each pad instead.

Macro that defines multiple input pads for the element.
Deprecated in favor of def_input_pad/2

 Anchor for this section

Callbacks

 Link to this callback

 handle_caps(pad, caps, context, state)

 View Source

 (optional)

 Specs

 handle_caps(
 pad :: Membrane.Pad.ref_t(),
 caps :: Membrane.Caps.t(),
 context :: Membrane.Element.CallbackContext.Caps.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback invoked when Element is receiving information about new caps for
given pad.
In filters those caps are forwarded through all output pads by default.

 Link to this callback

 handle_end_of_stream(pad, context, state)

 View Source

 Specs

 handle_end_of_stream(
 pad :: Membrane.Pad.ref_t(),
 context :: Membrane.Element.CallbackContext.StreamManagement.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback invoked when the previous element has finished processing via the pad,
and it cannot be used anymore.

 Link to this callback

 handle_start_of_stream(pad, context, state)

 View Source

 Specs

 handle_start_of_stream(
 pad :: Membrane.Pad.ref_t(),
 context :: Membrane.Element.CallbackContext.StreamManagement.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback invoked when element receives Membrane.Event.StartOfStream event.

 Membrane.Element.WithOutputPads - Membrane Core v0.7.0

Membrane.Element.WithOutputPads behaviour

Module defining behaviour for source and filter elements.
When used declares behaviour implementation, provides default callback definitions
and imports macros.
For more information on implementing elements, see Membrane.Element.Base.

 Anchor for this section

 Summary

 Functions

 def_output_pad(name, spec)

 Macro that defines output pad for the element.

 def_output_pads(pads)

 deprecated

 Macro that defines multiple output pads for the element.

 Callbacks

 handle_demand(pad, size, unit, context, state)

 Callback called when buffers should be emitted by a source or filter.

 Anchor for this section

Functions

 Link to this macro

 def_output_pad(name, spec)

 View Source

 (macro)

Macro that defines output pad for the element.
Allows to use one_of/1 and range/2 functions from Membrane.Caps.Matcher
without module prefix.
It automatically generates documentation from the given definition
and adds compile-time caps specs validation.
The type Membrane.Pad.output_spec_t/0 describes how the definition of pads should look.

 Link to this macro

 def_output_pads(pads)

 View Source

 (macro)

 This macro is deprecated. Use `def_output_pad/2 for each pad instead.

Macro that defines multiple output pads for the element.
Deprecated in favor of def_output_pad/2

 Anchor for this section

Callbacks

 Link to this callback

 handle_demand(pad, size, unit, context, state)

 View Source

 (optional)

 Specs

 handle_demand(
 pad :: Membrane.Pad.ref_t(),
 size :: non_neg_integer(),
 unit :: Membrane.Buffer.Metric.unit_t(),
 context :: Membrane.Element.CallbackContext.Demand.t(),
 state :: Membrane.Element.state_t()
) :: Membrane.Element.Base.callback_return_t()

Callback called when buffers should be emitted by a source or filter.
It is called only for output pads in the pull mode, as in their case demand
is triggered by the input pad of the subsequent element.
In sources, appropriate amount of data should be sent here.
In filters, this callback should usually return :demand action with
size sufficient for supplying incoming demand. This will result in calling
Membrane.Filter.handle_process_list/4, which is to supply
the demand.
If a source is unable to produce enough buffers, or a filter underestimated
returned demand, the :redemand action should be used (see
Membrane.Element.Action.redemand_t/0).

 Membrane.Element.CallbackContext.Caps - Membrane Core v0.7.0

Membrane.Element.CallbackContext.Caps

Structure representing a context that is passed to the element when receiving
information about new caps for given pad.
The old_caps field contains caps previously present on the pad, and is equal
to pads[pad].caps field.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.Caps{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 old_caps: Membrane.Caps.t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.Demand - Membrane Core v0.7.0

Membrane.Element.CallbackContext.Demand

Structure representing a context that is passed to the element
when processing incoming demand.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.Demand{
 clock: Membrane.Clock.t() | nil,
 incoming_demand: non_neg_integer(),
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.Event - Membrane Core v0.7.0

Membrane.Element.CallbackContext.Event

Structure representing a context that is passed to the element
when handling event.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.Event{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.Other - Membrane Core v0.7.0

Membrane.Element.CallbackContext.Other

Structure representing a context that is passed to the callback when
element receives unrecognized message.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.Other{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.PadAdded - Membrane Core v0.7.0

Membrane.Element.CallbackContext.PadAdded

Structure representing a context that is passed to the element
when a new dynamic pad instance is created

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.PadAdded{
 clock: Membrane.Clock.t() | nil,
 direction: :input | :output,
 name: Membrane.Element.name_t(),
 options: Keyword.t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.PadRemoved - Membrane Core v0.7.0

Membrane.Element.CallbackContext.PadRemoved

Structure representing a context that is passed to the element
when a dynamic pad is removed

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.PadRemoved{
 clock: Membrane.Clock.t() | nil,
 direction: :input | :output,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.PlaybackChange - Membrane Core v0.7.0

Membrane.Element.CallbackContext.PlaybackChange

Structure representing a context that is passed to the callback of the element
when it changes playback state

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.PlaybackChange{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.Process - Membrane Core v0.7.0

Membrane.Element.CallbackContext.Process

Structure representing a context that is passed to the element when new buffer arrives.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.Process{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.StreamManagement - Membrane Core v0.7.0

Membrane.Element.CallbackContext.StreamManagement

Structure representing a context that is passed to the element
when handling start and end of stream events.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.StreamManagement{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.Tick - Membrane Core v0.7.0

Membrane.Element.CallbackContext.Tick

Structure representing a context that is passed to the callback when
element handles timer tick.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.Tick{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.Element.CallbackContext.Write - Membrane Core v0.7.0

Membrane.Element.CallbackContext.Write

Structure representing a context that is passed to the element
when new buffer arrives to the sink.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Element.CallbackContext.Write{
 clock: Membrane.Clock.t() | nil,
 name: Membrane.Element.name_t(),
 pads: %{required(Membrane.Pad.ref_t()) => Membrane.Pad.Data.t()},
 parent_clock: Membrane.Clock.t() | nil,
 playback_state: Membrane.PlaybackState.t()
}

 Membrane.ParentSpec - Membrane Core v0.7.0

Membrane.ParentSpec

Structure representing the topology of a pipeline/bin.
It can be incorporated into a pipeline or a bin by returning
Membrane.Pipeline.Action.spec_t/0 or Membrane.Bin.Action.spec_t/0
action, respectively. This commonly happens within Membrane.Pipeline.handle_init/1
and Membrane.Bin.handle_init/1, but can be done in any other callback also.
Children
Children that should be spawned when the pipeline/bin starts can be defined
with the :children field.
You have to set it to a map, where keys are valid children names (Membrane.Child.name_t/0)
that are unique within this pipeline/bin and values are either child's module or
struct of that module.
Sample definitions:
%{
 first_element: %Element.With.Options.Struct{option_a: 42},
 some_element: Element.Without.Options,
 some_bin: Bin.Using.Default.Options
}
Links
Links that should be made when the children are spawned can be defined with the
:links field. Links can be defined with the use of link/1 and to/2 functions
that allow specifying elements linked, and via_in/2 and via_out/2 that allow
specifying pads' names and parameters. If pads are not specified, name :input
is assumed for inputs and :output for outputs.
Sample definition:
[
 link(:source_a)
 |> to(:converter)
 |> via_in(:input_a, buffer: [preferred_size: 20_000])
 |> to(:mixer),
 link(:source_b)
 |> via_out(:custom_output)
 |> via_in(:input_b, pad: [mute: true])
 |> to(:mixer)
 |> via_in(:input, [warn_size: 264_000, fail_size: 300_000])
 |> to(:sink)
]
Links can also contain children definitions, for example:
[
 link(:first_element, %Element.With.Options.Struct{option_a: 42})
 |> to(:some_element, Element.Without.Options)
 |> to(:element_specified_in_children)
]
Which is particularly convenient for creating links conditionally:
maybe_link = &to(&1, :some_element, Some.Element)
[
 link(:first_element)
 |> then(if condition?, do: maybe_link, else: & &1)
 |> to(:another_element)
]
Bins
For bins boundaries, there are special links allowed. The user should define links
between the bin's input and the first child's input (input-input type) and last
child's output and bin output (output-output type). In this case, link_bin_input/2
and to_bin_output/3 should be used.
Sample definition:
[
 link_bin_input() |> to(:filter1) |> to(:filter2) |> to_bin_output(:custom_output)
]
Dynamic pads
In most cases, dynamic pads can be linked the same way as static ones, although
in the following situations, exact pad reference must be passed instead of a name:
	When that reference is needed later, for example, to handle a notification related
to that particular pad instance
pad = Pad.ref(:output, make_ref())
[
 link(:tee) |> via_out(pad) |> to(:sink)
]

	When linking dynamic pads of a bin with its children, for example in
Membrane.Bin.handle_pad_added/3
@impl true
def handle_pad_added(Pad.ref(:input, _) = pad, _ctx, state) do
 links = [link_bin_input(pad) |> to(:mixer)]
 {{:ok, spec: %ParentSpec{links: links}}, state}
end

Stream sync
:stream_sync field can be used for specifying elements that should start playing
at the same moment. An example can be audio and video player sinks. This option
accepts either :sinks atom or a list of groups (lists) of elements. Passing :sinks
results in synchronizing all sinks in the pipeline, while passing a list of groups
of elements synchronizes all elements in each group. It is worth mentioning
that to keep the stream synchronized all involved elements need to rely on
the same clock.
By default, no elements are synchronized.
Sample definitions:
 %ParentSpec{stream_sync: [[:element1, :element2], [:element3, :element4]]}
 %ParentSpec{stream_sync: :sinks}
Clock provider
A clock provider is an element that exports a clock that should be used as the pipeline
clock. The pipeline clock is the default clock used by elements' timers.
For more information see Membrane.Element.Base.def_clock/1.
Crash groups
A crash group is a logical entity that prevents the whole pipeline from crashing when one of
its children crash.
Adding children to a crash group
children = %{
 :some_element_1 => %SomeElement{
 # ...
 },
 :some_element_2 => %SomeElement{
 # ...
 }
}

spec = %ParentSpec{children: children, crash_group: {group_id, :temporary}}
The crash group is defined by a two-element tuple, first element is an ID which is of type
Membrane.CrashGroup.name_t(), and the second is a mode. Currently, we support only
:temporary mode which means that Membrane will not make any attempts to restart crashed child.
In the above snippet, we create new children - :some_element_1 and :some_element_2, we add it
to the crash group with id group_id. Crash of :some_element_1 or :some_element_2 propagates
only to the rest of the members of the crash group and the pipeline stays alive.
Currently, crash group covers all children within one or more ParentSpecs.
Handling crash of a crash group
When any of the members of the crash group goes down, the callback:
handle_crash_group_down/3
is called.
@impl true
def handle_crash_group_down(crash_group_id, ctx, state) do
 # do some stuff in reaction to crash of group with id crash_group_id
end
Limitations
At this moment crash groups are only useful for elements with dynamic pads.
Crash groups work only in pipelines and are not supported in bins.

 Anchor for this section

 Summary

 Types

 child_spec_t()

 children_spec_t()

 crash_group_spec_t()

 link_builder_t()

 links_spec_t()

 pad_props_t()

 Options passed to the child when linking its pad with a different one.

 t()

 Struct used when starting and linking children within a pipeline or a bin.

 Functions

 link(child_name)

 Begins a link.

 link(child_name, child_spec)

 Defines a child and begins a link with it.

 link_bin_input(pad \\ :input, props \\ [])

 Begins a link with a bin's pad.

 to(builder, child_name)

 Continues or ends a link.

 to(builder, child_name, child_spec)

 Defines a child and continues or ends a link with it.

 to_bin_output(builder, pad \\ :output, props \\ [])

 Ends a link with a bin's output.

 via_in(builder, pad, opts \\ [])

 Specifies input pad name and properties of the subsequent child.

 via_out(builder, pad, props \\ [])

 Specifies output pad name and properties of the preceding child.

 Anchor for this section

Types

 Link to this type

 child_spec_t()

 View Source

 Specs

 child_spec_t() :: module() | struct()

 Link to this type

 children_spec_t()

 View Source

 Specs

 children_spec_t() ::
 [{Membrane.Child.name_t(), child_spec_t()}]
 | %{required(Membrane.Child.name_t()) => child_spec_t()}

 Link to this type

 crash_group_spec_t()

 View Source

 Specs

 crash_group_spec_t() :: {any(), :temporary} | nil

 Link to this opaque

 link_builder_t()

 View Source

 (opaque)

 Specs

 link_builder_t()

 Link to this type

 links_spec_t()

 View Source

 Specs

 links_spec_t() :: [link_builder_t() | links_spec_t()]

 Link to this type

 pad_props_t()

 View Source

 Specs

 pad_props_t() :: [
 buffer: Membrane.Core.InputBuffer.props_t(),
 options: Keyword.t()
]

Options passed to the child when linking its pad with a different one.
The allowed options are:
	:buffer - keyword allowing to configure Membrane.Core.InputBuffer between elements. Valid only for input pads.
See Membrane.Core.InputBuffer.props_t/0 for configurable properties.
	:options - any child-specific options that will be available in Membrane.Pad.Data struct.

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.ParentSpec{
 children: children_spec_t(),
 clock_provider: Membrane.Child.name_t(),
 crash_group: crash_group_spec_t(),
 links: links_spec_t(),
 stream_sync: :sinks | [[Membrane.Child.name_t()]]
}

Struct used when starting and linking children within a pipeline or a bin.

 Anchor for this section

Functions

 Link to this function

 link(child_name)

 View Source

 Specs

 link(Membrane.Child.name_t()) :: link_builder_t()

Begins a link.
See the links section of the moduledoc for more information.

 Link to this function

 link(child_name, child_spec)

 View Source

 Specs

 link(Membrane.Child.name_t(), child_spec_t()) :: link_builder_t()

Defines a child and begins a link with it.
See the links section of the moduledoc for more information.

 Link to this function

 link_bin_input(pad \\ :input, props \\ [])

 View Source

 Specs

 link_bin_input(Membrane.Pad.name_t() | Membrane.Pad.ref_t(), pad_props_t()) ::
 link_builder_t() | no_return()

Begins a link with a bin's pad.
See the links section of the moduledoc for more information.

 Link to this function

 to(builder, child_name)

 View Source

 Specs

 to(link_builder_t(), Membrane.Child.name_t()) :: link_builder_t() | no_return()

Continues or ends a link.
See the links section of the moduledoc for more information.

 Link to this function

 to(builder, child_name, child_spec)

 View Source

 Specs

 to(link_builder_t(), Membrane.Child.name_t(), child_spec_t()) ::
 link_builder_t() | no_return()

Defines a child and continues or ends a link with it.
See the links section of the moduledoc for more information.

 Link to this function

 to_bin_output(builder, pad \\ :output, props \\ [])

 View Source

 Specs

 to_bin_output(
 link_builder_t(),
 Membrane.Pad.name_t() | Membrane.Pad.ref_t(),
 pad_props_t()
) :: link_builder_t() | no_return()

Ends a link with a bin's output.
See the links section of the moduledoc for more information.

 Link to this function

 via_in(builder, pad, opts \\ [])

 View Source

 Specs

 via_in(
 link_builder_t(),
 Membrane.Pad.name_t() | Membrane.Pad.ref_t(),
 pad_props_t()
) :: link_builder_t() | no_return()

Specifies input pad name and properties of the subsequent child.
See the links section of the moduledoc for more information.

 Link to this function

 via_out(builder, pad, props \\ [])

 View Source

 Specs

 via_out(
 link_builder_t(),
 Membrane.Pad.name_t() | Membrane.Pad.ref_t(),
 pad_props_t()
) :: link_builder_t() | no_return()

Specifies output pad name and properties of the preceding child.
See the links section of the moduledoc for more information.

 Membrane.Child - Membrane Core v0.7.0

Membrane.Child

Module that keeps track of types used by both elements and bins

 Anchor for this section

 Summary

 Types

 name_t()

 options_t()

 Anchor for this section

Types

 Link to this type

 name_t()

 View Source

 Specs

 name_t() :: Membrane.Element.name_t() | Membrane.Bin.name_t()

 Link to this type

 options_t()

 View Source

 Specs

 options_t() :: Membrane.Element.options_t() | Membrane.Bin.options_t()

 Membrane.ChildEntry - Membrane Core v0.7.0

Membrane.ChildEntry

Struct describing child entry of a parent.
The public fields are:
	name - child name
	module - child module
	options - options passed to the child
	component_type - either :element or :bin

Other fields in the struct ARE NOT PART OF THE PUBLIC API and should not be
accessed or relied on.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.ChildEntry{
 clock: Membrane.Clock.t(),
 component_type: :element | :bin,
 module: module(),
 name: Membrane.Child.name_t(),
 options: struct() | nil,
 pid: pid(),
 playback_synced?: boolean(),
 sync: Membrane.Sync.t(),
 terminating?: boolean()
}

 Membrane.Buffer - Membrane Core v0.7.0

Membrane.Buffer

Structure representing a single chunk of data that flows between elements.
For now, it is just a wrapper around bitstring with optionally some metadata
attached to it, but in future releases we plan to support different payload
types.

 Anchor for this section

 Summary

 Types

 metadata_t()

 t()

 Anchor for this section

Types

 Link to this type

 metadata_t()

 View Source

 Specs

 metadata_t() :: map()

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Buffer{metadata: metadata_t(), payload: Membrane.Payload.t()}

 Membrane.Caps - Membrane Core v0.7.0

Membrane.Caps

Describes capabilities of some pad.
Every pad has some capabilities, which define a type of data that pad is
expecting. This format can be, for example, raw audio with specific sample
rate or encoded audio in given format.
To link two pads together, their capabilities have to be compatible.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: struct()

 Membrane.Event - Membrane Core v0.7.0

Membrane.Event

Event is an entity that can be sent between elements.
Events can flow either downstream or upstream - they can be sent with
Membrane.Element.Action.event_t/0, and can be handled in
Membrane.Element.Base.handle_event/4. Each event is
to implement Membrane.EventProtocol, which allows to configure its behaviour.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 async?(event)

 See Membrane.EventProtocol.async?/1.

 event?(event)

 sticky?(event)

 See Membrane.EventProtocol.sticky?/1.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: Membrane.EventProtocol.t()

 Anchor for this section

Functions

 Link to this function

 async?(event)

 View Source

See Membrane.EventProtocol.async?/1.

 Link to this function

 event?(event)

 View Source

 Specs

 event?(t()) :: boolean()

 Link to this function

 sticky?(event)

 View Source

See Membrane.EventProtocol.sticky?/1.

 Membrane.EventProtocol - Membrane Core v0.7.0

Membrane.EventProtocol protocol

Protocol that allows to configure behaviour of Membrane.Events.
Each event has to implement or derive this protocol.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 async?(term)

 Determines whether event is synchronized with buffers (sync) or not (async).
Defaults to false (sync).

 sticky?(term)

 Specifies whether event is sent right away (not sticky), or it is 'pushed' by
the next sent buffer (sticky). Defaults to false (not sticky).

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: struct()

 Anchor for this section

Functions

 Link to this function

 async?(term)

 View Source

 Specs

 async?(t()) :: boolean()

Determines whether event is synchronized with buffers (sync) or not (async).
Defaults to false (sync).
Buffers and sync events are always received in the same order they are
sent. Async events are handled before any enqueued buffers that are waiting to
be processed (e.g. in Membrane.InputBuffer).

 Link to this function

 sticky?(term)

 View Source

 Specs

 sticky?(t()) :: boolean()

Specifies whether event is sent right away (not sticky), or it is 'pushed' by
the next sent buffer (sticky). Defaults to false (not sticky).
Returning a sticky event from a callback stores it in a queue. When the next
buffer is to be sent, all events from the queue are sent before it. An example
can be the Membrane.Event.StartOfStream event.

 Membrane.KeyframeRequestEvent - Membrane Core v0.7.0

Membrane.KeyframeRequestEvent

Generic event for requesting a key frame.
The key frame is meant as a part of stream such that
the stream can be decoded from the beginning of each key
frame without knowledge of the stream content before that
point.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.KeyframeRequestEvent{}

 Membrane.Notification - Membrane Core v0.7.0

Membrane.Notification

A notification is a message sent from Membrane.Element to a parent
via action Membrane.Element.Action.notify_t/0 returned from any callback.
A notification can be handled in parent with
c:Membrane.Parent.handle_notification/4 callback.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: any()

 Membrane.Pad - Membrane Core v0.7.0

Membrane.Pad

Pads are units defined by elements and bins, allowing them to be linked with their
siblings. This module consists of pads typespecs and utils.
Each pad is described by its name, direction, availability, mode and possible caps.
For pads to be linkable, these properties have to be compatible. For more
information on each of them, check appropriate type in this module.
Each link can only consist of exactly two pads.

 Anchor for this section

 Summary

 Types

 availability_mode_t()

 Type describing availability mode of a created pad

 availability_t()

 Values used when defining pad availability

 bin_spec_t()

 For bins there are exactly the same options for both directions.
Demand unit is derived from the first element inside the bin linked to the
given input.

 common_spec_options_t()

 Pad options used in spec_t/0

 description_t()

 Type describing a pad. Contains data parsed from spec_t/0

 direction_t()

 Defines possible pad directions

 dynamic_id_t()

 Possible id of dynamic pad

 input_spec_t()

 Describes how an input pad should be declared inside an element.

 mode_t()

 Describes how an element sends and receives data.
Modes are strictly related to pad directions

 name_t()

 Defines the name of pad or group of dynamic pads

 output_spec_t()

 Describes how an output pad should be declared inside an element.

 ref_t()

 Defines the term by which the pad instance is identified.

 spec_t()

 Describes how a pad should be declared in element or bin.

 Functions

 assert_public_name!(name)

 availability_mode(atom)

 Returns pad availability mode for given availability.

 create_private_name(name)

 get_corresponding_bin_pad(name)

 is_availability(term)

 is_availability_dynamic(availability)

 is_availability_static(availability)

 is_pad_name(term)

 is_pad_ref(term)

 is_public_name(term)

 name_by_ref(name)

 Returns the name for the given pad reference

 opposite_direction(atom)

 ref(name)

 Creates a static pad reference.

 ref(name, id)

 Creates a dynamic pad reference.

 Anchor for this section

Types

 Link to this type

 availability_mode_t()

 View Source

 Specs

 availability_mode_t() :: :static | :dynamic

Type describing availability mode of a created pad:
	:static - there always exist exactly one instance of such pad.
	:dynamic - multiple instances of such pad may be created and removed (which
entails executing handle_pad_added and handle_pad_removed callbacks,
respectively).

 Link to this type

 availability_t()

 View Source

 Specs

 availability_t() :: :on_request | :always

Values used when defining pad availability:
	:always - a static pad, which can remain unlinked in stopped state only.
	:on_request - a dynamic pad, instance of which is created every time it is
linked to another pad. Thus linking the pad with k other pads, creates k
instances of the pad, and links each with another pad.

 Link to this type

 bin_spec_t()

 View Source

 Specs

 bin_spec_t() :: input_spec_t()

For bins there are exactly the same options for both directions.
Demand unit is derived from the first element inside the bin linked to the
given input.

 Link to this type

 common_spec_options_t()

 View Source

 Specs

 common_spec_options_t() ::
 {:availability, availability_t()}
 | {:mode, mode_t()}
 | {:caps, Membrane.Caps.Matcher.caps_specs_t()}
 | {:options, Keyword.t()}

Pad options used in spec_t/0

 Link to this type

 description_t()

 View Source

 Specs

 description_t() :: %{
 :availability => availability_t(),
 :mode => mode_t(),
 :name => name_t(),
 :caps => Membrane.Caps.Matcher.caps_specs_t(),
 optional(:demand_unit) => Membrane.Buffer.Metric.unit_t(),
 :direction => direction_t(),
 :options => nil | Keyword.t()
}

Type describing a pad. Contains data parsed from spec_t/0

 Link to this type

 direction_t()

 View Source

 Specs

 direction_t() :: :output | :input

Defines possible pad directions:
	:output - data can only be sent through such pad,
	:input - data can only be received through such pad.

One cannot link two pads with the same direction.

 Link to this type

 dynamic_id_t()

 View Source

 Specs

 dynamic_id_t() :: any()

Possible id of dynamic pad

 Link to this type

 input_spec_t()

 View Source

 Specs

 input_spec_t() ::
 {name_t(),
 [common_spec_options_t() | {:demand_unit, Membrane.Buffer.Metric.unit_t()}]}

Describes how an input pad should be declared inside an element.

 Link to this type

 mode_t()

 View Source

 Specs

 mode_t() :: :push | :pull

Describes how an element sends and receives data.
Modes are strictly related to pad directions:
	:push output pad - element can send data through such pad whenever it wants.
	:push input pad - element has to deal with data whenever it comes through
such pad, and do it fast enough not to let data accumulate on such pad, what
may lead to overflow of element process erlang queue, which is highly unwanted.
	:pull output pad - element can send data through such pad only if it have
already received demand on the pad. Sending small, limited amount of
undemanded data is supported and handled by Membrane.Core.InputBuffer.
	:pull input pad - element receives through such pad only data that it has
previously demanded, so that no undemanded data can arrive.

Linking pads with different modes is possible, but only in case of output pad
working in push mode, and input in pull mode. Moreover, toilet mode of
Membrane.Core.InputBuffer has to be enabled then.
For more information on transfering data and demands, see Membrane.Source,
Membrane.Filter, Membrane.Sink.

 Link to this type

 name_t()

 View Source

 Specs

 name_t() :: atom() | {:private, atom()}

Defines the name of pad or group of dynamic pads

 Link to this type

 output_spec_t()

 View Source

 Specs

 output_spec_t() :: {name_t(), [common_spec_options_t()]}

Describes how an output pad should be declared inside an element.

 Link to this type

 ref_t()

 View Source

 Specs

 ref_t() :: name_t() | {Membrane.Pad, name_t(), dynamic_id_t()}

Defines the term by which the pad instance is identified.

 Link to this type

 spec_t()

 View Source

 Specs

 spec_t() :: output_spec_t() | input_spec_t() | bin_spec_t()

Describes how a pad should be declared in element or bin.

 Anchor for this section

Functions

 Link to this function

 assert_public_name!(name)

 View Source

 Specs

 assert_public_name!(name_t()) :: :ok

 Link to this function

 availability_mode(atom)

 View Source

 Specs

 availability_mode(availability_t()) :: availability_mode_t()

Returns pad availability mode for given availability.

 Link to this function

 create_private_name(name)

 View Source

 Specs

 create_private_name(atom()) :: name_t()

 Link to this function

 get_corresponding_bin_pad(name)

 View Source

 Specs

 get_corresponding_bin_pad(ref_t()) :: ref_t()

 Link to this macro

 is_availability(term)

 View Source

 (macro)

 Link to this macro

 is_availability_dynamic(availability)

 View Source

 (macro)

 Link to this macro

 is_availability_static(availability)

 View Source

 (macro)

 Link to this macro

 is_pad_name(term)

 View Source

 (macro)

 Link to this macro

 is_pad_ref(term)

 View Source

 (macro)

 Link to this macro

 is_public_name(term)

 View Source

 (macro)

 Link to this function

 name_by_ref(name)

 View Source

 Specs

 name_by_ref(ref_t()) :: name_t()

Returns the name for the given pad reference

 Link to this function

 opposite_direction(atom)

 View Source

 Specs

 opposite_direction(direction_t()) :: direction_t()

 Link to this macro

 ref(name)

 View Source

 (macro)

Creates a static pad reference.

 Link to this macro

 ref(name, id)

 View Source

 (macro)

Creates a dynamic pad reference.

 Membrane.Pad.Data - Membrane Core v0.7.0

Membrane.Pad.Data

Struct describing current pad state.
The public fields are:
	:accepted_caps - specification of possible caps that are accepted on the pad.
See Membrane.Caps.Matcher for more information. This field only applies to elements' pads.
	:availability - see Membrane.Pad.availability_t
	:caps - the most recent Membrane.Caps that have been sent (output) or received (input)
on the pad. May be nil if not yet set. This field only applies to elements' pads.
	:demand - current demand requested on the pad working in pull mode. This field only applies to elements' pads.
	:direction - see Membrane.Pad.direction_t
	:end_of_stream? - flag determining whether the stream processing via the pad has been finished
	:mode - see Membrane.Pad.mode_t. This field only applies to elements' pads.
	:name - see Membrane.Pad.name_t. Do not mistake with :ref
	:options - options passed in Membrane.ParentSpec when linking pad
	:ref - see Membrane.Pad.ref_t
	:start_of_stream? - flag determining whether the stream processing via the pad has been started

Other fields in the struct ARE NOT PART OF THE PUBLIC API and should not be
accessed or relied on.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Pad.Data{
 accepted_caps: Membrane.Caps.Matcher.caps_specs_t(),
 availability: Membrane.Pad.availability_t(),
 caps: Membrane.Caps.t() | nil,
 demand: integer() | nil,
 demand_unit: Membrane.Buffer.Metric.unit_t() | nil,
 direction: Membrane.Pad.direction_t(),
 end_of_stream?: boolean(),
 input_buf: Membrane.Core.InputBuffer.t() | nil,
 mode: Membrane.Pad.mode_t(),
 name: Membrane.Pad.name_t(),
 options: %{optional(atom()) => any()},
 other_demand_unit: Membrane.Buffer.Metric.unit_t() | nil,
 other_ref: Membrane.Pad.ref_t(),
 pid: pid(),
 ref: Membrane.Pad.ref_t(),
 start_of_stream?: boolean(),
 sticky_messages: [Membrane.Event.t()]
}

 Membrane.Payload - Membrane Core v0.7.0

Membrane.Payload protocol

This protocol describes actions common to all payload types.
The most basic payload type is simply a binary for which Elixir.Membrane.Payload
is implemented by the Membrane Core.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 concat(left, right)

 Concatenates the contents of two payloads.

 drop(payload, n)

 Drops first n bytes of payload.

 module(payload)

 Returns a module responsible for this type of payload
and implementing Membrane.Payload.Behaviour

 size(payload)

 Returns total size of payload in bytes

 split_at(payload, at_pos)

 Splits the payload at given position (1st part has the size equal to at_pos argument)

 to_binary(payload)

 Converts payload into binary

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: any()

 Anchor for this section

Functions

 Link to this function

 concat(left, right)

 View Source

 Specs

 concat(left :: t(), right :: t()) :: t()

Concatenates the contents of two payloads.

 Link to this function

 drop(payload, n)

 View Source

 Specs

 drop(payload :: t(), n :: non_neg_integer()) :: t()

Drops first n bytes of payload.

 Link to this function

 module(payload)

 View Source

 Specs

 module(t()) :: module()

Returns a module responsible for this type of payload
and implementing Membrane.Payload.Behaviour

 Link to this function

 size(payload)

 View Source

 Specs

 size(payload :: t()) :: non_neg_integer()

Returns total size of payload in bytes

 Link to this function

 split_at(payload, at_pos)

 View Source

 Specs

 split_at(payload :: t(), at_pos :: pos_integer()) :: {t(), t()}

Splits the payload at given position (1st part has the size equal to at_pos argument)
at_pos has to be greater than 0 and smaller than the size of payload, otherwise
an error is raised. This guarantees returned payloads are never empty.

 Link to this function

 to_binary(payload)

 View Source

 Specs

 to_binary(t()) :: binary()

Converts payload into binary

 Membrane.RemoteStream - Membrane Core v0.7.0

Membrane.RemoteStream

Format describing an unparsed data stream. It should be used whenever outputting
or accepting an unknown stream (not to be confused with any stream, which
can have well-specified format either), or a stream whose format can't/shouldn't
be created at that stage.
Parameters:
	content_format - format that is supposed to be carried in the stream,
nil if unknown (default)
	type - either bytestream (continuous stream) or packetized (each buffer
contains exactly one specified unit of data)

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.RemoteStream{
 content_format: module() | nil,
 type: :bytestream | :packetized
}

 Membrane.Buffer.Metric - Membrane Core v0.7.0

Membrane.Buffer.Metric behaviour

Specifies API for metrics that analyze data in terms of a given unit

 Anchor for this section

 Summary

 Types

 unit_t()

 Functions

 from_unit(atom)

 Callbacks

 buffers_size(arg1)

 input_buf_preferred_size()

 split_buffers(arg1, non_neg_integer)

 Anchor for this section

Types

 Link to this type

 unit_t()

 View Source

 Specs

 unit_t() :: :buffers | :bytes

 Anchor for this section

Functions

 Link to this function

 from_unit(atom)

 View Source

 Specs

 from_unit(unit_t()) :: module()

 Anchor for this section

Callbacks

 Link to this callback

 buffers_size(arg1)

 View Source

 Specs

 buffers_size([%Membrane.Buffer{metadata: term(), payload: term()}] | []) ::
 non_neg_integer()

 Link to this callback

 input_buf_preferred_size()

 View Source

 Specs

 input_buf_preferred_size() :: pos_integer()

 Link to this callback

 split_buffers(arg1, non_neg_integer)

 View Source

 Specs

 split_buffers(
 [%Membrane.Buffer{metadata: term(), payload: term()}] | [],
 non_neg_integer()
) ::
 {[%Membrane.Buffer{metadata: term(), payload: term()}] | [],
 [%Membrane.Buffer{metadata: term(), payload: term()}] | []}

 Membrane.Buffer.Metric.ByteSize - Membrane Core v0.7.0

Membrane.Buffer.Metric.ByteSize

Implementation of Membrane.Buffer.Metric for the :bytes unit

 Membrane.Buffer.Metric.Count - Membrane Core v0.7.0

Membrane.Buffer.Metric.Count

 Implementation of Membrane.Buffer.Metric for the :buffers unit

 Membrane.Caps.Matcher - Membrane Core v0.7.0

Membrane.Caps.Matcher

Module that allows to specify valid caps and verify that they match specification.
Caps specifications (specs) should be in one of the formats:
	simply module name of the desired caps (e.g. Membrane.Caps.Audio.Raw or Raw with proper alias)
	tuple with module name and keyword list of specs for specific caps fields (e.g. {Raw, format: :s24le})
	list of the formats described above

Field values can be specified in following ways:
	By a raw value for the field (e.g. :s24le)
	Using range/2 for values comparable with Kernel.<=/2 and Kernel.>=/2 (e.g. Matcher.range(0, 255))
	With one_of/1 and a list of valid values (e.g Matcher.one_of([:u8, :s16le, :s32le]))
Checks on the values from list are performed recursively i.e. it can contain another range/2,
for example Matcher.one_of([0, Matcher.range(2, 4), Matcher.range(10, 20)])

If the specs are defined inside of Membrane.Element.WithInputPads.def_input_pad/2 and
Membrane.Element.WithOutputPads.def_output_pad/2 module name can be omitted from
range/2 and one_of/1 calls.
Example
Below is a pad definition with an example of specs for caps matcher:
alias Membrane.Caps.Video.Raw

def_input_pad :input,
 demand_unit: :buffers,
 caps: {Raw, format: one_of([:I420, :I422]), aligned: true}

 Anchor for this section

 Summary

 Types

 caps_spec_t()

 caps_specs_t()

 one_of_t()

 range_t()

 Functions

 match?(specs, caps)

 Function determining whether the caps match provided specs.

 one_of(values)

 Returns opaque specification of list of valid values for caps field.

 range(min, max)

 Returns opaque specification of range of valid values for caps field.

 validate_specs(specs_list)

 Function used to make sure caps specs are valid.

 Anchor for this section

Types

 Link to this type

 caps_spec_t()

 View Source

 Specs

 caps_spec_t() :: module() | {module(), keyword()}

 Link to this type

 caps_specs_t()

 View Source

 Specs

 caps_specs_t() :: :any | caps_spec_t() | [caps_spec_t()]

 Link to this opaque

 one_of_t()

 View Source

 (opaque)

 Specs

 one_of_t()

 Link to this opaque

 range_t()

 View Source

 (opaque)

 Specs

 range_t()

 Anchor for this section

Functions

 Link to this function

 match?(specs, caps)

 View Source

 Specs

 match?(caps_specs_t(), struct() | any()) :: boolean()

Function determining whether the caps match provided specs.
When :any is used as specs, caps can by anything (i.e. they can be invalid)

 Link to this function

 one_of(values)

 View Source

 Specs

 one_of(list()) :: one_of_t()

Returns opaque specification of list of valid values for caps field.

 Link to this function

 range(min, max)

 View Source

 Specs

 range(any(), any()) :: range_t()

Returns opaque specification of range of valid values for caps field.

 Link to this function

 validate_specs(specs_list)

 View Source

 Specs

 validate_specs(caps_specs_t() | any()) :: :ok | {:error, reason :: tuple()}

Function used to make sure caps specs are valid.
In particular, valid caps:
	Have shape described by caps_specs_t/0 type
	If they contain keyword list, the keys are present in requested caps type

It returns :ok when caps are valid and {:error, reason} otherwise

 Membrane.Event.Discontinuity - Membrane Core v0.7.0

Membrane.Event.Discontinuity

Generic discontinuity event.
This event means that flow of buffers in the stream was interrupted, but stream
itself is not done.
Frequent reasons for this are soundcards' drops while capturing sound, network
data loss etc.
If duration of the discontinuity is known, it can be passed as an argument.

 Anchor for this section

 Summary

 Types

 duration_t()

 t()

 Anchor for this section

Types

 Link to this type

 duration_t()

 View Source

 Specs

 duration_t() :: Membrane.Time.t() | nil

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Event.Discontinuity{duration: duration_t()}

 Membrane.Event.Underrun - Membrane Core v0.7.0

Membrane.Event.Underrun

Generic underrun event.
This event means that certain element is willing to consume more buffers,
but there are none available.
It makes sense to use this event as an upstream event to notify previous
elements in the pipeline that they should generate more buffers.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Event.Underrun{}

 Membrane.EventProtocol.DefaultImpl - Membrane Core v0.7.0

Membrane.EventProtocol.DefaultImpl

Default implementation of Membrane.EventProtocol.
If used in defimpl, not implemented callbacks fallback to default ones.

 Membrane.Payload.Behaviour - Membrane Core v0.7.0

Membrane.Payload.Behaviour behaviour

Behaviour that should be implemented by every module that has
Membrane.Payload protocol implementation.

 Anchor for this section

 Summary

 Callbacks

 empty()

 Creates an empty payload

 new(binary)

 Creates a new payload initialized with the given binary

 Anchor for this section

Callbacks

 Link to this callback

 empty()

 View Source

 Specs

 empty() :: Membrane.Payload.t()

Creates an empty payload

 Link to this callback

 new(binary)

 View Source

 Specs

 new(binary()) :: Membrane.Payload.t()

Creates a new payload initialized with the given binary

 Membrane.Payload.Binary - Membrane Core v0.7.0

Membrane.Payload.Binary

Membrane.Payload.Behaviour implementation for binary payload.
Complements Membrane.Payload protocol implementation.

 Membrane.Logger - Membrane Core v0.7.0

Membrane.Logger

Wrapper around the Elixir logger. Adds Membrane prefixes and handles verbose logging.
Prefixes
By default, this wrapper prepends each log with a prefix containing the context
of the log, such as element name. This can be turned off via configuration:
use Mix.Config
config :membrane_core, :logger, prefix: false
Regardless of the config, the prefix is passed to Logger metadata under :mb_prefix key.
Prefixes are passed via process dictionary, so they have process-wide scope,
but it can be extended with get_prefix/0 and set_prefix/1.
Verbose logging
For verbose debug logs that should be silenced by default, use debug_verbose/2
macro. Verbose logs are purged in the compile time, unless turned on via configuration:
use Mix.Config
config :membrane_core, :logger, verbose: true
Verbose debugs should be used for logs that are USUALLY USEFUL for debugging,
but printed so often that they make the output illegible. For example, it may
be a good idea to debug_verbose from within Membrane.Filter.handle_process/4
or Membrane.Element.WithOutputPads.handle_demand/5 callbacks.

 Anchor for this section

 Summary

 Functions

 bare_log(level, message, metadata \\ [])

 Wrapper around Logger.bare_log/3 that adds Membrane prefix.

 debug(message, metadata \\ [])

 Wrapper around Logger.debug/2 that adds Membrane prefix.

 debug_verbose(message, metadata \\ [])

 Macro for verbose debug logs, that are silenced by default.

 error(message, metadata \\ [])

 Wrapper around Logger.error/2 that adds Membrane prefix.

 get_config()

 Returns the Membrane logger config.

 get_config(key, default \\ nil)

 Returns value at given key in the Membrane logger config.

 get_prefix()

 Returns the logger prefix.

 info(message, metadata \\ [])

 Wrapper around Logger.info/2 that adds Membrane prefix.

 log(level, message, metadata \\ [])

 Wrapper around Logger.log/3 that adds Membrane prefix.

 set_prefix(prefix)

 Sets the logger prefix. Avoid using in Membrane-managed processes.

 warn(message, metadata \\ [])

 Wrapper around Logger.warn/2 that adds Membrane prefix.

 Anchor for this section

Functions

 Link to this function

 bare_log(level, message, metadata \\ [])

 View Source

 Specs

 bare_log(Logger.level(), Logger.message(), Logger.metadata()) :: :ok

Wrapper around Logger.bare_log/3 that adds Membrane prefix.
For details, see the 'prefixes' section of the moduledoc.

 Link to this macro

 debug(message, metadata \\ [])

 View Source

 (macro)

Wrapper around Logger.debug/2 that adds Membrane prefix.
For details, see the 'prefixes' section of the moduledoc.

 Link to this macro

 debug_verbose(message, metadata \\ [])

 View Source

 (macro)

Macro for verbose debug logs, that are silenced by default.
For details, see the 'verbose logging' section of the moduledoc.

 Link to this macro

 error(message, metadata \\ [])

 View Source

 (macro)

Wrapper around Logger.error/2 that adds Membrane prefix.
For details, see the 'prefixes' section of the moduledoc.

 Link to this function

 get_config()

 View Source

 Specs

 get_config() :: Keyword.t()

Returns the Membrane logger config.

 Link to this function

 get_config(key, default \\ nil)

 View Source

 Specs

 get_config(key, value) :: value when key: atom(), value: any()

Returns value at given key in the Membrane logger config.

 Link to this function

 get_prefix()

 View Source

 Specs

 get_prefix() :: String.t()

Returns the logger prefix.
Returns an empty string if no prefix is set.

 Link to this macro

 info(message, metadata \\ [])

 View Source

 (macro)

Wrapper around Logger.info/2 that adds Membrane prefix.
For details, see the 'prefixes' section of the moduledoc.

 Link to this macro

 log(level, message, metadata \\ [])

 View Source

 (macro)

Wrapper around Logger.log/3 that adds Membrane prefix.
For details, see the 'prefixes' section of the moduledoc.

 Link to this function

 set_prefix(prefix)

 View Source

 Specs

 set_prefix(prefix :: String.t()) :: :ok

Sets the logger prefix. Avoid using in Membrane-managed processes.
This function is intended to enable setting prefix obtained in a Membrane-managed
process via get_prefix/1. If some custom data needs to be prepended to logs,
please use Logger.metadata/1.
Prefixes in Membrane-managed processes are set automatically and using this
function there would overwrite them, which is usually unintended.

 Link to this macro

 warn(message, metadata \\ [])

 View Source

 (macro)

Wrapper around Logger.warn/2 that adds Membrane prefix.
For details, see the 'prefixes' section of the moduledoc.

 Membrane.Testing.Assertions - Membrane Core v0.7.0

Membrane.Testing.Assertions

This module contains a set of assertion functions and macros.
These assertions will work ONLY in conjunction with
Membrane.Testing.Pipeline and ONLY when pid of tested pipeline is provided
as an argument to these assertions.

 Anchor for this section

 Summary

 Functions

 assert_end_of_stream(pipeline, element_name, pad \\ :input, timeout \\ 2000)

 Asserts that Membrane.Testing.Pipeline received or is going to receive end_of_stream
notification about from the element with a name element_name within the timeout period
specified in milliseconds.

 assert_pipeline_notified(pipeline, element_name, notification_pattern, timeout \\ 2000)

 Asserts that pipeline received or will receive a notification from the element
with name element_name within the timeout period specified in milliseconds.

 assert_pipeline_playback_changed(pipeline, previous_state, current_state, timeout \\ 2000)

 Asserts that pipeline's playback state (see Membrane.PlaybackState)
changed or will change from previous_state to current_state within
the timeout period specified in milliseconds.

 assert_pipeline_receive(pipeline, message_pattern, timeout \\ 2000)

 Asserts that pipeline received or will receive a message matching
message_pattern from another process within the timeout period specified
in milliseconds.

 assert_sink_buffer(pipeline, sink_name, pattern, timeout \\ 2000)

 Asserts that Membrane.Testing.Sink with name sink_name received or will
receive a buffer matching pattern within the timeout period specified in
milliseconds.

 assert_sink_caps(pipeline, element_name, caps_pattern, timeout \\ 2000)

 Asserts that Membrane.Testing.Sink with name sink_name received or will
receive caps matching pattern within the timeout period specified in
milliseconds.

 assert_sink_event(pipeline, sink_name, event, timeout \\ 2000)

 Asserts that Membrane.Testing.Sink with name sink_name received or will
receive an event within the timeout period specified in milliseconds.

 assert_start_of_stream(pipeline, element_name, pad \\ :input, timeout \\ 2000)

 Asserts that Membrane.Testing.Pipeline received or is going to receive start_of_stream
notification from the element with a name element_name within the timeout period
specified in milliseconds.

 refute_pipeline_notified(pipeline, element_name, notification_pattern, timeout \\ 2000)

 Refutes that pipeline received or will receive a notification from the element
with name element_name within the timeout period specified in milliseconds.

 refute_pipeline_receive(pipeline, message_pattern, timeout \\ 2000)

 Asserts that pipeline has not received and will not receive a message from
another process matching message_pattern within the timeout period
specified in milliseconds.

 refute_sink_buffer(pipeline, sink_name, pattern, timeout \\ 2000)

 Asserts that Membrane.Testing.Sink with name sink_name has not received
and will not receive a buffer matching buffer_pattern within the timeout
period specified in milliseconds.

 refute_sink_caps(pipeline, element_name, caps_pattern, timeout \\ 2000)

 Asserts that Membrane.Testing.Sink with name sink_name has not received
and will not receive caps matching caps_pattern within the timeout
period specified in milliseconds.

 refute_sink_event(pipeline, sink_name, event, timeout \\ 2000)

 Asserts that Membrane.Testing.Sink has not received and will not receive
event matching provided pattern within the timeout period specified in
milliseconds.

 Anchor for this section

Functions

 Link to this macro

 assert_end_of_stream(pipeline, element_name, pad \\ :input, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Pipeline received or is going to receive end_of_stream
notification about from the element with a name element_name within the timeout period
specified in milliseconds.
assert_end_of_stream(pipeline, :an_element)

 Link to this macro

 assert_pipeline_notified(pipeline, element_name, notification_pattern, timeout \\ 2000)

 View Source

 (macro)

Asserts that pipeline received or will receive a notification from the element
with name element_name within the timeout period specified in milliseconds.
The notification_pattern must be a match pattern.
assert_pipeline_notified(pipeline, :element_name, :hi)

 Link to this macro

 assert_pipeline_playback_changed(pipeline, previous_state, current_state, timeout \\ 2000)

 View Source

 (macro)

Asserts that pipeline's playback state (see Membrane.PlaybackState)
changed or will change from previous_state to current_state within
the timeout period specified in milliseconds.
The prev_state and current_state must be match patterns.
Assertion can be either made by providing state before and after the change as
atoms:
 assert_pipeline_playback_changed(pipeline, :prepared, :playing)
Or by using an _ to assert on change from any state to other:
 assert_pipeline_playback_changed(pipeline, _, :playing)

 Link to this macro

 assert_pipeline_receive(pipeline, message_pattern, timeout \\ 2000)

 View Source

 (macro)

Asserts that pipeline received or will receive a message matching
message_pattern from another process within the timeout period specified
in milliseconds.
The message_pattern must be a match pattern.
assert_pipeline_receive(pid, :tick)
Such call would flunk if the message :tick has not been handled by
c:Membrane.Parent.handle_other/3 within the timeout.

 Link to this macro

 assert_sink_buffer(pipeline, sink_name, pattern, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Sink with name sink_name received or will
receive a buffer matching pattern within the timeout period specified in
milliseconds.
When the Membrane.Testing.Sink is a part of Membrane.Testing.Pipeline you
can assert whether it received a buffer matching provided pattern.
{:ok, pid} = Membrane.Testing.Pipeline.start_link(%Membrane.Testing.Pipeline.Options{
 elements: [
 ,
 the_sink: %Membrane.Testing.Sink{}
]
})
You can match for exact value:
assert_sink_buffer(pid, :the_sink ,%Membrane.Buffer{payload: ^specific_payload})
You can also use pattern to extract data from the buffer:
assert_sink_buffer(pid, :sink, %Buffer{payload: <<data::16>> <> <<255>>})
do_something(data)

 Link to this macro

 assert_sink_caps(pipeline, element_name, caps_pattern, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Sink with name sink_name received or will
receive caps matching pattern within the timeout period specified in
milliseconds.
When the Membrane.Testing.Sink is a part of Membrane.Testing.Pipeline you
can assert whether it received caps matching provided pattern.
{:ok, pid} = Membrane.Testing.Pipeline.start_link(%Membrane.Testing.Pipeline.Options{
 elements: [
 ,
 the_sink: %Membrane.Testing.Sink{}
]
})
You can match for exact value:
assert_sink_caps(pid, :the_sink , %Caps{prop: ^value})
You can also use pattern to extract data from the caps:
assert_sink_caps(pid, :the_sink , %Caps{prop: value})
do_something(value)

 Link to this macro

 assert_sink_event(pipeline, sink_name, event, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Sink with name sink_name received or will
receive an event within the timeout period specified in milliseconds.
When a Membrane.Testing.Sink is part of Membrane.Testing.Pipeline you can
assert whether it received an event matching a provided pattern.
assert_sink_event(pid, :the_sink, %Discontinuity{})

 Link to this macro

 assert_start_of_stream(pipeline, element_name, pad \\ :input, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Pipeline received or is going to receive start_of_stream
notification from the element with a name element_name within the timeout period
specified in milliseconds.
assert_start_of_stream(pipeline, :an_element)

 Link to this macro

 refute_pipeline_notified(pipeline, element_name, notification_pattern, timeout \\ 2000)

 View Source

 (macro)

Refutes that pipeline received or will receive a notification from the element
with name element_name within the timeout period specified in milliseconds.
The notification_pattern must be a match pattern.
refute_pipeline_notified(pipeline, :element_name, :hi)

 Link to this macro

 refute_pipeline_receive(pipeline, message_pattern, timeout \\ 2000)

 View Source

 (macro)

Asserts that pipeline has not received and will not receive a message from
another process matching message_pattern within the timeout period
specified in milliseconds.
The message_pattern must be a match pattern.
refute_pipeline_receive(pid, :tick)
Such call would flunk if the message :tick has been handled by
c:Membrane.Parent.handle_other/3.

 Link to this macro

 refute_sink_buffer(pipeline, sink_name, pattern, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Sink with name sink_name has not received
and will not receive a buffer matching buffer_pattern within the timeout
period specified in milliseconds.
Similarly as in the assert_sink_buffer/4 the_sink needs to be part of a
Membrane.Testing.Pipeline.
refute_sink_buffer(pipeline, :the_sink, %Buffer{payload: <<0xA1, 0xB2>>})
Such expression will flunk if the_sink received or will receive a buffer
with payload <<0xA1, 0xB2>>.

 Link to this macro

 refute_sink_caps(pipeline, element_name, caps_pattern, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Sink with name sink_name has not received
and will not receive caps matching caps_pattern within the timeout
period specified in milliseconds.
Similarly as in the assert_sink_caps/4 the_sink needs to be part of a
Membrane.Testing.Pipeline.
refute_sink_caps(pipeline, :the_sink, %Caps{prop: ^val})
Such expression will flunk if the_sink received or will receive caps with
property equal to value of val variable.

 Link to this macro

 refute_sink_event(pipeline, sink_name, event, timeout \\ 2000)

 View Source

 (macro)

Asserts that Membrane.Testing.Sink has not received and will not receive
event matching provided pattern within the timeout period specified in
milliseconds.
refute_sink_event(pid, :the_sink, %Discontinuity{})

 Membrane.Testing.Event - Membrane Core v0.7.0

Membrane.Testing.Event

Empty event that can be used in tests

 Membrane.Testing.Pipeline - Membrane Core v0.7.0

Membrane.Testing.Pipeline

This Pipeline was created to reduce testing boilerplate and ease communication
with its elements. It also provides a utility for informing testing process about
playback state changes and received notifications.
When you want a build Pipeline to test your elements you need three things:
	Pipeline Module
	List of elements
	Links between those elements

When creating pipelines for tests the only essential part is the list of
 elements. In most cases during the tests, elements are linked in a way that
:output pad is linked to :input pad of subsequent element. So we only need
 to pass a list of elements and links can be generated automatically.
To start a testing pipeline you need to build
Membrane.Testing.Pipeline.Options struct and pass to
Membrane.Testing.Pipeline.start_link/2. Links are generated by
populate_links/1.
options = %Membrane.Testing.Pipeline.Options {
 elements: [
 el1: MembraneElement1,
 el2: MembraneElement2,
 ...
]
}
{:ok, pipeline} = Membrane.Testing.Pipeline.start_link(options)
If you need to pass custom links, you can always do it using :links field of
Membrane.Testing.Pipeline.Options struct.
options = %Membrane.Testing.Pipeline.Options {
 elements: [
 el1: MembraneElement1,
 el2: MembraneElement2,
],
 links: [
 link(:el1) |> to(:el2)
]
 }
You can also pass a custom pipeline module, by using :module field of
Membrane.Testing.Pipeline.Options struct. Every callback of the module
will be executed before the callbacks of Testing.Pipeline.
Passed module has to return a proper spec. There should be no elements
nor links specified in options passed to test pipeline as that would
result in a failure.
options = %Membrane.Testing.Pipeline.Options {
 module: Your.Module
 }
See Membrane.Testing.Pipeline.Options for available options.
Assertions
This pipeline is designed to work with Membrane.Testing.Assertions. Check
them out or see example below for more details.
Messaging children
You can send messages to children using their names specified in the elements
list. Please check message_child/3 for more details.
Example usage
Firstly, we can start the pipeline providing its options:
options = %Membrane.Testing.Pipeline.Options {
 elements: [
 source: %Membrane.Testing.Source{},
 tested_element: TestedElement,
 sink: %Membrane.Testing.Sink{}
]
}
{:ok, pipeline} = Membrane.Testing.Pipeline.start_link(options)
We can now wait till the end of the stream reaches the sink element (don't forget
to import Membrane.Testing.Assertions):
assert_end_of_stream(pipeline, :sink)
We can also assert that the Membrane.Testing.Sink processed a specific
buffer:
assert_sink_buffer(pipeline, :sink, %Membrane.Buffer{payload: 1})

 Anchor for this section

 Summary

 Functions

 message_child(pipeline, child, message)

 Sends message to a child by Element name.

 play(pipeline)

 Changes playback state of pipeline to :playing.

 populate_links(elements)

 Links subsequent elements using default pads (linking :input to :output of
previous element).

 prepare(pipeline)

 Changes playback state to :prepared.

 start(pipeline_options, process_options \\ [])

 start_link(pipeline_options, process_options \\ [])

 stop(pid)

 Changes playback state to :stopped.

 stop_and_terminate(pipeline, opts \\ [])

 Changes pipeline's playback state to :stopped and terminates its process.

 Anchor for this section

Functions

 Link to this function

 message_child(pipeline, child, message)

 View Source

 Specs

 message_child(pid(), Membrane.Element.name_t(), any()) :: :ok

Sends message to a child by Element name.

 Example

Knowing that pipeline has child named sink, message can be sent as follows:
message_child(pipeline, :sink, {:message, "to handle"})

 Link to this function

 play(pipeline)

 View Source

 Specs

 play(pid()) :: :ok

Changes playback state of pipeline to :playing.

 Link to this function

 populate_links(elements)

 View Source

 Specs

 populate_links(elements :: Membrane.ParentSpec.children_spec_t()) ::
 Membrane.ParentSpec.links_spec_t()

Links subsequent elements using default pads (linking :input to :output of
previous element).

 Example

Pipeline.populate_links([el1: MembraneElement1, el2: MembraneElement2])

 Link to this function

 prepare(pipeline)

 View Source

 Specs

 prepare(pid()) :: :ok

Changes playback state to :prepared.

 Link to this function

 start(pipeline_options, process_options \\ [])

 View Source

 Specs

 start(Membrane.Testing.Pipeline.Options.t(), GenServer.options()) ::
 GenServer.on_start()

 Link to this function

 start_link(pipeline_options, process_options \\ [])

 View Source

 Specs

 start_link(Membrane.Testing.Pipeline.Options.t(), GenServer.options()) ::
 GenServer.on_start()

 Link to this function

 stop(pid)

 View Source

 Specs

 stop(pid()) :: :ok

Changes playback state to :stopped.

 Link to this function

 stop_and_terminate(pipeline, opts \\ [])

 View Source

 Specs

 stop_and_terminate(pid(), Keyword.t()) :: :ok

Changes pipeline's playback state to :stopped and terminates its process.

 Membrane.Testing.Pipeline.Options - Membrane Core v0.7.0

Membrane.Testing.Pipeline.Options

Structure representing options passed to testing pipeline.
Test Process
pid of process that shall receive messages when Pipeline invokes playback
state change callback and receives notification.
Elements
List of element specs.
Links
List describing the links between elements.
Module
Pipeline Module with custom callbacks.
Custom Args
Arguments for Module's handle_init callback.
If links are not present or set to nil they will be populated automatically
based on elements order using default pad names.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Testing.Pipeline.Options{
 custom_args: Membrane.Pipeline.pipeline_options_t() | nil,
 elements: Membrane.ParentSpec.children_spec_t() | nil,
 links: Membrane.ParentSpec.links_spec_t() | nil,
 module: module() | nil,
 test_process: pid() | nil
}

 Membrane.Testing.Pipeline.State - Membrane Core v0.7.0

Membrane.Testing.Pipeline.State

Structure representing state.
Test Process
pid of process that shall receive messages when Pipeline invokes playback
state change callback and receives notification.
Module
Pipeline Module with custom callbacks.
Custom Pipeline State
State of the pipeline defined by Module.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Testing.Pipeline.State{
 custom_pipeline_state: any(),
 module: module() | nil,
 test_process: pid() | nil
}

 Membrane.Testing.Sink - Membrane Core v0.7.0

Membrane.Testing.Sink

Sink Element that notifies the pipeline about buffers and events it receives.
By default Sink will demand buffers automatically, but you can override that
behaviour by using autodemand option. If set to false no automatic demands
shall be made. Demands can be then triggered by sending {:make_demand, size}
message.
This element can be used in conjunction with Membrane.Testing.Pipeline to
enable asserting on buffers and events it receives.
alias Membrane.Testing
{:ok, pid} = Testing.Pipeline.start_link(Testing.Pipeline.Options{
 elements: [
 ...,
 sink: %Testing.Sink{}
]
})
Asserting that Membrane.Testing.Sink element processed a buffer that matches
a specific pattern can be achieved using
Membrane.Testing.Assertions.assert_sink_buffer/3.
assert_sink_buffer(pid, :sink ,%Membrane.Buffer{payload: 255})
Element options
Passed via struct Membrane.Testing.Sink.t/0
	autodemand
boolean
Default value: true
If true element will automatically make demands.
If it is set to false demand has to be triggered manually by sending :make_demand message.

Pads
:input
	Availability	:always
	Caps	:any
	Demand unit	:buffers
	Direction	:input
	Mode	:pull
	Name	:input

 Anchor for this section

 Summary

 Types

 t()

 Struct containing options for Membrane.Testing.Sink

 Functions

 membrane_pads()

 Returns pads descriptions for Membrane.Testing.Sink

 options()

 Returns description of options available for this module

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Testing.Sink{autodemand: boolean()}

Struct containing options for Membrane.Testing.Sink

 Anchor for this section

Functions

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.Testing.Sink

 Link to this function

 options()

 View Source

 Specs

 options() :: keyword()

Returns description of options available for this module

 Membrane.Testing.Source - Membrane Core v0.7.0

Membrane.Testing.Source

Testing Element for supplying data based on generator function or payloads passed
through options.
Example usage
As mentioned earlier you can use this element in one of two ways, providing
either a generator function or an Enumerable.t.
If you provide an Enumerable.t with payloads, then each of those payloads will
be wrapped in a Membrane.Buffer and sent through :output pad.
%Source{output: [0xA1, 0xB2, 0xC3, 0xD4]}
In order to specify Membrane.Testing.Source with generator function you need
to provide initial state and function that matches generator/0 type. This
function should take state and demand size as its arguments and return
a tuple consisting of actions that element will return during the
Membrane.Element.WithOutputPads.handle_demand/5
callback and new state.
generator_function = fn state, size ->
 #generate some buffers
 {actions, state + 1}
end
%Source{output: {1, generator_function}}
Element options
Passed via struct Membrane.Testing.Source.t/0
	output
{initial_state :: any(), generator} | Enum.t()
Default value: {0, &Membrane.Testing.Source.default_buf_gen/2}
If output is an enumerable with Membrane.Payload.t() then
buffer containing those payloads will be sent through the
:output pad and followed by Membrane.Element.Action.end_of_stream_t/0.
If output is a {initial_state, function} tuple then the
the function will be invoked each time handle_demand is called.
It is an action generator that takes two arguments.
The first argument is the state that is initially set to
initial_state. The second one defines the size of the demand.
Such function should return {actions, next_state} where
actions is a list of actions that will be returned from
handle_demand/4 and next_state is the value that will be
used for the next call.

	caps
struct()
Default value: %Membrane.RemoteStream{content_format: nil, type: :bytestream}
Caps to be sent before the output.

Pads
:output
	Availability	:always
	Caps	:any
	Direction	:output
	Mode	:pull
	Name	:output

 Anchor for this section

 Summary

 Types

 generator()

 t()

 Struct containing options for Membrane.Testing.Source

 Functions

 default_buf_gen(generator_state, size)

 membrane_pads()

 Returns pads descriptions for Membrane.Testing.Source

 options()

 Returns description of options available for this module

 output_from_buffers(data)

 Creates output with generator function from list of buffers.

 Anchor for this section

Types

 Link to this type

 generator()

 View Source

 Specs

 generator() ::
 (state :: any(), buffers_cnt :: pos_integer() ->
 {[Membrane.Element.Action.t()], state :: any()})

 Link to this type

 t()

 View Source

 Specs

 t() :: %Membrane.Testing.Source{
 caps: struct(),
 output: {initial_state :: any(), generator()} | Enum.t()
}

Struct containing options for Membrane.Testing.Source

 Anchor for this section

Functions

 Link to this function

 default_buf_gen(generator_state, size)

 View Source

 Specs

 default_buf_gen(integer(), integer()) ::
 {[Membrane.Element.Action.t()], integer()}

 Link to this function

 membrane_pads()

 View Source

 Specs

 membrane_pads() :: [{Membrane.Pad.name_t(), Membrane.Pad.description_t()}]

Returns pads descriptions for Membrane.Testing.Source

 Link to this function

 options()

 View Source

 Specs

 options() :: keyword()

Returns description of options available for this module

 Link to this function

 output_from_buffers(data)

 View Source

 Specs

 output_from_buffers([Membrane.Buffer.t()]) ::
 {[Membrane.Buffer.t()], generator()}

Creates output with generator function from list of buffers.

 Membrane.Clock - Membrane Core v0.7.0

Membrane.Clock

Clock is a Membrane utility that allows elements to measure time according to
a particular clock, which can be e.g. a soundcard hardware clock.
Internally, Clock is a GenServer process that can receive updates (see update_message_t/0),
which are messages containing amount of time until the next update.
For example, a sink playing audio to the sound card can send an update before
each write to the sound card buffer (for practical reasons that can be done every
100 or 1000 writes). Although it might be more intuitive to send updates with
the time passed, in practice the described approach turns out to be more convenient,
as it simplifies the first update.
Basing on updates, Clock calculates the ratio_t/0 of its time to the reference
time. The reference time can be configured with :time_provider option. The ratio
is broadcasted (see ratio_message_t/0) to subscribers (see subscribe/2)
	processes willing to synchronize to the custom clock. Subscribers can adjust
their timers according to received ratio - timers started with
Membrane.Element.Action.start_timer_t/0 action in elements do it automatically.
Initial ratio is equal to 1, which means that if no updates are received,
Clock is synchronized to the reference time.

Proxy mode
Clock can work in proxy mode, which means it cannot receive updates, but
it receives ratio from another clock instead, and forwards it to subscribers.
Proxy mode is enabled with proxy_for: pid or proxy: true (no initial proxy)
option, and the proxy is set/changed using proxy_for/2.

 Anchor for this section

 Summary

 Types

 option_t()

 Options accepted by start_link/2 and start/2 functions.

 ratio_message_t()

 Ratio message sent by the Clock to all its subscribers. It contains the ratio
of the custom clock time to the reference time.

 ratio_t()

 Ratio of the Clock time to the reference time.

 t()

 update_message_t()

 Update message received by the Clock. It should contain the time till the next
update.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 proxy_for(clock, clock_to_proxy_for)

 Sets a new proxy clock to clock_to_proxy_for.

 start(options \\ [], gen_server_options \\ [])

 start_link(options \\ [], gen_server_options \\ [])

 subscribe(clock, pid \\ self())

 Subscribes pid for receiving ratio_message_t/0 messages from the clock.

 unsubscribe(clock, pid \\ self())

 Unsubscribes pid from receiving ratio_message_t/0 messages from the clock.

 Anchor for this section

Types

 Link to this type

 option_t()

 View Source

 Specs

 option_t() ::
 {:time_provider, (() -> Membrane.Time.t())}
 | {:proxy, boolean()}
 | {:proxy_for, pid() | nil}

Options accepted by start_link/2 and start/2 functions.
They are the following:
	time_provider - function providing the reference time in milliseconds
	proxy - determines whether the Clock should work in proxy mode
	proxy_for - enables the proxy mode and sets proxied Clock to pid

Check the moduledoc for more details.

 Link to this type

 ratio_message_t()

 View Source

 Specs

 ratio_message_t() :: {:membrane_clock_ratio, clock :: pid(), ratio_t()}

Ratio message sent by the Clock to all its subscribers. It contains the ratio
of the custom clock time to the reference time.

 Link to this type

 ratio_t()

 View Source

 Specs

 ratio_t() :: Ratio.t() | non_neg_integer()

Ratio of the Clock time to the reference time.

 Link to this type

 t()

 View Source

 Specs

 t() :: pid()

 Link to this type

 update_message_t()

 View Source

 Specs

 update_message_t() ::
 {:membrane_clock_update,
 milliseconds ::
 non_neg_integer()
 | Ratio.t()
 | {numerator :: non_neg_integer(), denominator :: pos_integer()}}

Update message received by the Clock. It should contain the time till the next
update.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 proxy_for(clock, clock_to_proxy_for)

 View Source

 Specs

 proxy_for(t(), clock_to_proxy_for :: pid() | nil) :: :ok

Sets a new proxy clock to clock_to_proxy_for.

 Link to this function

 start(options \\ [], gen_server_options \\ [])

 View Source

 Specs

 start([option_t()], GenServer.options()) :: GenServer.on_start()

 Link to this function

 start_link(options \\ [], gen_server_options \\ [])

 View Source

 Specs

 start_link([option_t()], GenServer.options()) :: GenServer.on_start()

 Link to this function

 subscribe(clock, pid \\ self())

 View Source

 Specs

 subscribe(t(), subscriber :: pid()) :: :ok

Subscribes pid for receiving ratio_message_t/0 messages from the clock.
This function can be called multiple times from the same process. To unsubscribe,
unsubscribe/2 should be called the same amount of times. The subscribed pid
always receives one message, regardless of how many times it called subscribe/2.

 Link to this function

 unsubscribe(clock, pid \\ self())

 View Source

 Specs

 unsubscribe(t(), subscriber :: pid()) :: :ok

Unsubscribes pid from receiving ratio_message_t/0 messages from the clock.
For unsubscription to take effect, unsubscribe/2 should be called the same
amount of times as subscribe/2.

 Membrane.ComponentPath - Membrane Core v0.7.0

Membrane.ComponentPath

Traces element's path inside a pipeline.
Path is a list consisted of following pipeline/bin/element names down the assembled pipeline.
Information is being stored in a process dictionary and can be set/appended to.

 Anchor for this section

 Summary

 Types

 path_t()

 Functions

 append(name)

 Appends given name to the current path.

 format(path, separator \\ "/")

 Returns formatted string of given path's names joined with separator.

 get()

 Returns currently stored path.

 get_formatted(separator \\ "/")

 Works the same as format/2 but uses currently stored path

 set(path)

 Sets current path.

 set_and_append(path, name)

 Convenient combination of set/1 and append/1.

 Anchor for this section

Types

 Link to this type

 path_t()

 View Source

 Specs

 path_t() :: [String.t()]

 Anchor for this section

Functions

 Link to this function

 append(name)

 View Source

 Specs

 append(String.t()) :: :ok

Appends given name to the current path.
If path has not been previously set then creates new one with given name.

 Link to this function

 format(path, separator \\ "/")

 View Source

 Specs

 format(path_t(), String.t()) :: String.t()

Returns formatted string of given path's names joined with separator.

 Link to this function

 get()

 View Source

 Specs

 get() :: [String.t()]

Returns currently stored path.
If path has not been set, empty list is returned.

 Link to this function

 get_formatted(separator \\ "/")

 View Source

 Specs

 get_formatted(String.t()) :: String.t()

Works the same as format/2 but uses currently stored path

 Link to this function

 set(path)

 View Source

 Specs

 set(path_t()) :: :ok

Sets current path.
If path had already existed then replaces it.

 Link to this function

 set_and_append(path, name)

 View Source

 Specs

 set_and_append(path_t(), String.t()) :: :ok

Convenient combination of set/1 and append/1.

 Membrane.PlaybackState - Membrane Core v0.7.0

Membrane.PlaybackState

Playback states describe the state of an element or a pipeline. There are following
playback states:
	:stopped - Idle. No resources should be initialized nor allocated.
	:prepared - Ready for processing data. All necessary resources should be allocated and initialized.
	:playing - Data is being processed.

Every playback state change is done step-by-step meaning that when going from :stopped to :playing
there are 2 state changes (:stopped -> :prepared and :prepared -> :playing) resulting in
invocation of proper callbacks (such as Membrane.Element.Base.handle_stopped_to_prepared/2
or c:Membrane.Parent.handle_prepared_to_playing/2)

 Anchor for this section

 Summary

 Types

 t()

 Functions

 is_playback_state(atom)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: :stopped | :prepared | :playing | :terminating

 Anchor for this section

Functions

 Link to this macro

 is_playback_state(atom)

 View Source

 (macro)

 Membrane.Sync - Membrane Core v0.7.0

Membrane.Sync

Sync allows to synchronize multiple processes, so that they could perform their
jobs at the same time.
The main purpose for Sync is to synchronize multiple streams within a pipeline.
The flow of usage goes as follows:
	A Sync process is started.
	Processes register themselves (or are registered) in the Sync, using
register/2. Registered processes are not being synchronized till the Sync
becomes active (see the next step). Each registered process is monitored and
automatically unregistered upon exit. Sync can be setup to exit when all the
registered processes exit by passing the empty_exit? option to start_link/2.
	When all processes that need to be registered are registered, the Sync can
be activated with activate/1 function. This disables registration and enables
synchronization.
	Once a process needs to sync, it invokes sync/2, which results in blocking
until all the registered processes invoke sync/2. This works only when the Sync
is active - otherwise calling sync/2 returns immediately.
	Once all the ready processes invoke sync/2, the calls return, and they become
registered again.
	When synchronization needs to be turned off, the Sync should be deactivated
with deactivate/2. This disables synchronization and enables registration again.
All the calls to sync/2 return immediately.

If a process designed to work with Sync should not be synced, no_sync/0 should
be used. Then all calls to sync/2 return immediately.

 Anchor for this section

 Summary

 Types

 status_t()

 t()

 Functions

 activate(sync)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 deactivate(sync)

 no_sync()

 Returns a Sync that always returns immediately when calling sync/2 on it.

 register(sync, pid \\ self())

 start_link(options \\ [], gen_server_options \\ [])

 Starts a Sync process linked to the current process.

 sync(sync, options \\ [])

 Anchor for this section

Types

 Link to this type

 status_t()

 View Source

 Specs

 status_t() :: :registered | :sync

 Link to this type

 t()

 View Source

 Specs

 t() :: pid() | :membrane_no_sync

 Anchor for this section

Functions

 Link to this function

 activate(sync)

 View Source

 Specs

 activate(t()) :: :ok | {:error, :bad_activity_request}

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 deactivate(sync)

 View Source

 Specs

 deactivate(t()) :: :ok | {:error, :bad_activity_request}

 Link to this function

 no_sync()

 View Source

 Specs

 no_sync() :: :membrane_no_sync

Returns a Sync that always returns immediately when calling sync/2 on it.

 Link to this function

 register(sync, pid \\ self())

 View Source

 Specs

 register(t(), pid()) :: :ok | {:error, :bad_activity_request}

 Link to this function

 start_link(options \\ [], gen_server_options \\ [])

 View Source

 Specs

 start_link([{:empty_exit?, boolean()}], GenServer.options()) ::
 GenServer.on_start()

Starts a Sync process linked to the current process.

 Options

	:empty_exit? - if true, Sync automatically exits when all the registered
processes exit; defaults to false

 Link to this function

 sync(sync, options \\ [])

 View Source

 Specs

 sync(t(), options :: Keyword.t()) :: :ok | {:error, :not_found}

 Membrane.Telemetry - Membrane Core v0.7.0

Membrane.Telemetry

Defines basic telemetry event types used by Membrane's Core.
Membrane uses Telemetry Package for instrumentation and does not store or save any measurements by itself.
It is user's responsibility to use some sort of metrics reporter
that will be attached to :telemetry package to consume and process generated measurements.
Instrumentation
Membrane.Telemetry publishes functions that return described below event names.
The following events are published by Membrane's Core with following measurement types and metadata:
	[:membrane, :metric, :value] - used to report metrics, such as input buffer's size inside functions, incoming events and received caps.
	Measurement: metric_event_value_t/0
	Metadata: %{}

	[:membrane, :link, :new] - to report new link connection being initialized in pipeline.
	Measurement: new_link_event_value_t/0
	Metadata: %{}

The measurements are reported only when application using Membrane Core specifies following in compile-time config file:
config :membrane_core,
 enable_telemetry: true

 Anchor for this section

 Summary

 Types

 event_name_t()

 metric_event_value_t()

 	component_path - element's or bin's path
	metric - metric's name
	value - metric's value

 new_link_event_value_t()

 	parent_path - process path of link's parent
	from - from element name
	to - to element name
	pad_from - from's pad name
	pad_to - to's pad name

 Functions

 metric_event_name()

 new_link_event_name()

 Anchor for this section

Types

 Link to this type

 event_name_t()

 View Source

 Specs

 event_name_t() :: [atom(), ...]

 Link to this type

 metric_event_value_t()

 View Source

 Specs

 metric_event_value_t() :: %{
 component_path: String.t(),
 metric: String.t(),
 value: integer()
}

	component_path - element's or bin's path
	metric - metric's name
	value - metric's value

 Link to this type

 new_link_event_value_t()

 View Source

 Specs

 new_link_event_value_t() :: %{
 parent_path: String.t(),
 from: String.t(),
 to: String.t(),
 pad_from: String.t(),
 pad_to: String.t()
}

	parent_path - process path of link's parent
	from - from element name
	to - to element name
	pad_from - from's pad name
	pad_to - to's pad name

 Anchor for this section

Functions

 Link to this function

 metric_event_name()

 View Source

 Specs

 metric_event_name() :: event_name_t()

 Link to this function

 new_link_event_name()

 View Source

 Specs

 new_link_event_name() :: event_name_t()

 Membrane.Time - Membrane Core v0.7.0

Membrane.Time

Module containing functions needed to perform handling of time.
Membrane always internally uses nanosecond as a time unit. This is how all time
units should represented in the code unless there's a good reason to act
differently.
Please note that Erlang VM may internally use different units and that may
differ from platform to platform. Still, unless you need to perform calculations
that do not touch hardware clock, you should use Membrane units for consistency.

 Anchor for this section

 Summary

 Types

 non_neg_t()

 t()

 Functions

 as_days(time)

 Returns time in days, represented as a rational number.

 as_hours(time)

 Returns time in hours, represented as a rational number.

 as_microseconds(time)

 Returns time in microseconds, represented as a rational number.

 as_milliseconds(time)

 Returns time in milliseconds, represented as a rational number.

 as_minutes(time)

 Returns time in minutes, represented as a rational number.

 as_nanoseconds(time)

 Returns time in nanoseconds, represented as a rational number.

 as_seconds(time)

 Returns time in seconds, represented as a rational number.

 day()

 Returns one day in Membrane.Time units.

 day(number)

 deprecated

 days(number)

 Returns given amount of days in Membrane.Time units.

 from_datetime(value)

 Converts DateTime to Membrane.Time units.

 from_iso8601!(value)

 Converts iso8601 string to Membrane.Time units.
If value is invalid, throws match error.

 from_ntp_timestamp(arg)

 Converts NTP timestamp (time since 0h on 1st Jan 1900) into Unix timestamp
(time since 1st Jan 1970) represented in Membrane.Time units.

 hour()

 Returns one hour in Membrane.Time units.

 hour(number)

 deprecated

 hours(number)

 Returns given amount of hours in Membrane.Time units.

 is_t(value)

 deprecated

 is_time(value)

 Checks whether a value is Membrane.Time.t.

 microsecond()

 Returns one microsecond in Membrane.Time units.

 microsecond(number)

 deprecated

 microseconds(number)

 Returns given amount of microseconds in Membrane.Time units.

 millisecond()

 Returns one millisecond in Membrane.Time units.

 millisecond(number)

 deprecated

 milliseconds(number)

 Returns given amount of milliseconds in Membrane.Time units.

 minute()

 Returns one minute in Membrane.Time units.

 minute(number)

 deprecated

 minutes(number)

 Returns given amount of minutes in Membrane.Time units.

 monotonic_time()

 Returns current monotonic time based on System.monotonic_time/0
in Membrane.Time units.

 nanosecond()

 Returns one nanosecond in Membrane.Time units.

 nanosecond(number)

 deprecated

 nanoseconds(number)

 Returns given amount of nanoseconds in Membrane.Time units.

 native_unit()

 Returns one VM native unit in Membrane.Time units.

 native_unit(number)

 deprecated

 native_units(number)

 Returns given amount of VM native units in Membrane.Time units.

 os_time()

 Returns current POSIX time of operating system based on System.os_time/0
in Membrane.Time units.

 pretty_duration(time)

 Returns duration as a string with unit. Chosen unit is the biggest possible
that doesn't involve precission loss.

 pretty_now()

 Returns current time in pretty format (currently iso8601), as string
Uses system_time/0 under the hood.

 second()

 Returns one second in Membrane.Time units.

 second(number)

 deprecated

 seconds(number)

 Returns given amount of seconds in Membrane.Time units.

 system_time()

 deprecated

 Returns current time of Erlang VM based on System.system_time/0
in Membrane.Time units.

 to_code(time)

 Returns quoted code producing given amount time. Chosen unit is the biggest possible
that doesn't involve precission loss.

 to_code_str(time)

 Returns string representation of result of to_code/1.

 to_datetime(value)

 Returns time as a DateTime struct. TimeZone is set to UTC.

 to_days(time)

 Returns time in days. Rounded using Kernel.round/1.

 to_hours(time)

 Returns time in hours. Rounded using Kernel.round/1.

 to_iso8601(value)

 Returns time as a iso8601 string.

 to_microseconds(time)

 Returns time in microseconds. Rounded using Kernel.round/1.

 to_milliseconds(time)

 Returns time in milliseconds. Rounded using Kernel.round/1.

 to_minutes(time)

 Returns time in minutes. Rounded using Kernel.round/1.

 to_nanoseconds(time)

 Returns time in nanoseconds. Rounded using Kernel.round/1.

 to_native_units(value)

 Returns time in VM native units. Rounded using Kernel.round/1.

 to_ntp_timestamp(timestamp)

 Converts the timestamp into NTP timestamp. May introduce small rounding errors.

 to_seconds(time)

 Returns time in seconds. Rounded using Kernel.round/1.

 vm_time()

 Returns current Erlang VM system time based on System.system_time/0
in Membrane.Time units.

 Anchor for this section

Types

 Link to this type

 non_neg_t()

 View Source

 Specs

 non_neg_t() :: non_neg_integer()

 Link to this type

 t()

 View Source

 Specs

 t() :: integer()

 Anchor for this section

Functions

 Link to this function

 as_days(time)

 View Source

 Specs

 as_days(t()) :: integer() | Ratio.t()

Returns time in days, represented as a rational number.

 Link to this function

 as_hours(time)

 View Source

 Specs

 as_hours(t()) :: integer() | Ratio.t()

Returns time in hours, represented as a rational number.

 Link to this function

 as_microseconds(time)

 View Source

 Specs

 as_microseconds(t()) :: integer() | Ratio.t()

Returns time in microseconds, represented as a rational number.

 Link to this function

 as_milliseconds(time)

 View Source

 Specs

 as_milliseconds(t()) :: integer() | Ratio.t()

Returns time in milliseconds, represented as a rational number.

 Link to this function

 as_minutes(time)

 View Source

 Specs

 as_minutes(t()) :: integer() | Ratio.t()

Returns time in minutes, represented as a rational number.

 Link to this function

 as_nanoseconds(time)

 View Source

 Specs

 as_nanoseconds(t()) :: integer() | Ratio.t()

Returns time in nanoseconds, represented as a rational number.

 Link to this function

 as_seconds(time)

 View Source

 Specs

 as_seconds(t()) :: integer() | Ratio.t()

Returns time in seconds, represented as a rational number.

 Link to this function

 day()

 View Source

 Specs

 day() :: t()

Returns one day in Membrane.Time units.

 Link to this function

 day(number)

 View Source

 This function is deprecated. Use `day/0` or `days/1` instead..

 Specs

 day(integer()) :: t()

 Link to this function

 days(number)

 View Source

 Specs

 days(integer()) :: t()

Returns given amount of days in Membrane.Time units.

 Link to this function

 from_datetime(value)

 View Source

 Specs

 from_datetime(DateTime.t()) :: t()

Converts DateTime to Membrane.Time units.

 Link to this function

 from_iso8601!(value)

 View Source

 Specs

 from_iso8601!(String.t()) :: t()

Converts iso8601 string to Membrane.Time units.
If value is invalid, throws match error.

 Link to this function

 from_ntp_timestamp(arg)

 View Source

 Specs

 from_ntp_timestamp(ntp_time :: <<_::64>>) :: t()

Converts NTP timestamp (time since 0h on 1st Jan 1900) into Unix timestamp
(time since 1st Jan 1970) represented in Membrane.Time units.
NTP timestamp uses fixed point representation with the integer part in the first 32 bits
and the fractional part in the last 32 bits.

 Link to this function

 hour()

 View Source

 Specs

 hour() :: t()

Returns one hour in Membrane.Time units.

 Link to this function

 hour(number)

 View Source

 This function is deprecated. Use `hour/0` or `hours/1` instead..

 Specs

 hour(integer()) :: t()

 Link to this function

 hours(number)

 View Source

 Specs

 hours(integer()) :: t()

Returns given amount of hours in Membrane.Time units.

 Link to this macro

 is_t(value)

 View Source

 (macro)

 This macro is deprecated. Use `is_time/1` instead.

 Link to this macro

 is_time(value)

 View Source

 (macro)

Checks whether a value is Membrane.Time.t.

 Link to this function

 microsecond()

 View Source

 Specs

 microsecond() :: t()

Returns one microsecond in Membrane.Time units.

 Link to this function

 microsecond(number)

 View Source

 This function is deprecated. Use `microsecond/0` or `microseconds/1` instead..

 Specs

 microsecond(integer()) :: t()

 Link to this function

 microseconds(number)

 View Source

 Specs

 microseconds(integer()) :: t()

Returns given amount of microseconds in Membrane.Time units.

 Link to this function

 millisecond()

 View Source

 Specs

 millisecond() :: t()

Returns one millisecond in Membrane.Time units.

 Link to this function

 millisecond(number)

 View Source

 This function is deprecated. Use `millisecond/0` or `milliseconds/1` instead..

 Specs

 millisecond(integer()) :: t()

 Link to this function

 milliseconds(number)

 View Source

 Specs

 milliseconds(integer()) :: t()

Returns given amount of milliseconds in Membrane.Time units.

 Link to this function

 minute()

 View Source

 Specs

 minute() :: t()

Returns one minute in Membrane.Time units.

 Link to this function

 minute(number)

 View Source

 This function is deprecated. Use `minute/0` or `minutes/1` instead..

 Specs

 minute(integer()) :: t()

 Link to this function

 minutes(number)

 View Source

 Specs

 minutes(integer()) :: t()

Returns given amount of minutes in Membrane.Time units.

 Link to this function

 monotonic_time()

 View Source

 Specs

 monotonic_time() :: t()

Returns current monotonic time based on System.monotonic_time/0
in Membrane.Time units.

 Link to this function

 nanosecond()

 View Source

 Specs

 nanosecond() :: t()

Returns one nanosecond in Membrane.Time units.

 Link to this function

 nanosecond(number)

 View Source

 This function is deprecated. Use `nanosecond/0` or `nanoseconds/1` instead..

 Specs

 nanosecond(integer()) :: t()

 Link to this function

 nanoseconds(number)

 View Source

 Specs

 nanoseconds(integer()) :: t()

Returns given amount of nanoseconds in Membrane.Time units.

 Link to this function

 native_unit()

 View Source

 Specs

 native_unit() :: t()

Returns one VM native unit in Membrane.Time units.

 Link to this function

 native_unit(number)

 View Source

 This function is deprecated. Use `native_unit/0` or `native_units/1` instead..

 Specs

 native_unit(integer()) :: t()

 Link to this function

 native_units(number)

 View Source

 Specs

 native_units(integer()) :: t()

Returns given amount of VM native units in Membrane.Time units.

 Link to this function

 os_time()

 View Source

 Specs

 os_time() :: t()

Returns current POSIX time of operating system based on System.os_time/0
in Membrane.Time units.
This time is not monotonic.

 Link to this function

 pretty_duration(time)

 View Source

 Specs

 pretty_duration(t()) :: String.t()

Returns duration as a string with unit. Chosen unit is the biggest possible
that doesn't involve precission loss.

 Examples

iex> import Membrane.Time
iex> 10 |> milliseconds() |> pretty_duration()
"10 ms"
iex> 60_000_000 |> microseconds() |> pretty_duration()
"1 min"
iex> 2 |> nanoseconds() |> pretty_duration()
"2 ns"

 Link to this function

 pretty_now()

 View Source

 Specs

 pretty_now() :: String.t()

Returns current time in pretty format (currently iso8601), as string
Uses system_time/0 under the hood.

 Link to this function

 second()

 View Source

 Specs

 second() :: t()

Returns one second in Membrane.Time units.

 Link to this function

 second(number)

 View Source

 This function is deprecated. Use `second/0` or `seconds/1` instead..

 Specs

 second(integer()) :: t()

 Link to this function

 seconds(number)

 View Source

 Specs

 seconds(integer()) :: t()

Returns given amount of seconds in Membrane.Time units.

 Link to this function

 system_time()

 View Source

 This function is deprecated. Use os_time/0 or vm_time/0 instead.

 Specs

 system_time() :: t()

Returns current time of Erlang VM based on System.system_time/0
in Membrane.Time units.

 Link to this function

 to_code(time)

 View Source

 Specs

 to_code(t()) :: Macro.t()

Returns quoted code producing given amount time. Chosen unit is the biggest possible
that doesn't involve precission loss.

 Examples

iex> import Membrane.Time
iex> 10 |> milliseconds() |> to_code() |> Macro.to_string()
quote do 10 |> Membrane.Time.milliseconds() end |> Macro.to_string()
iex> 60_000_000 |> microseconds() |> to_code() |> Macro.to_string()
quote do Membrane.Time.minute() end |> Macro.to_string()
iex> 2 |> nanoseconds() |> to_code() |> Macro.to_string()
quote do 2 |> Membrane.Time.nanoseconds() end |> Macro.to_string()

 Link to this function

 to_code_str(time)

 View Source

 Specs

 to_code_str(t()) :: Macro.t()

Returns string representation of result of to_code/1.

 Link to this function

 to_datetime(value)

 View Source

 Specs

 to_datetime(t()) :: DateTime.t()

Returns time as a DateTime struct. TimeZone is set to UTC.

 Link to this function

 to_days(time)

 View Source

 Specs

 to_days(t()) :: integer()

Returns time in days. Rounded using Kernel.round/1.

 Link to this function

 to_hours(time)

 View Source

 Specs

 to_hours(t()) :: integer()

Returns time in hours. Rounded using Kernel.round/1.

 Link to this function

 to_iso8601(value)

 View Source

 Specs

 to_iso8601(t()) :: String.t()

Returns time as a iso8601 string.

 Link to this function

 to_microseconds(time)

 View Source

 Specs

 to_microseconds(t()) :: integer()

Returns time in microseconds. Rounded using Kernel.round/1.

 Link to this function

 to_milliseconds(time)

 View Source

 Specs

 to_milliseconds(t()) :: integer()

Returns time in milliseconds. Rounded using Kernel.round/1.

 Link to this function

 to_minutes(time)

 View Source

 Specs

 to_minutes(t()) :: integer()

Returns time in minutes. Rounded using Kernel.round/1.

 Link to this function

 to_nanoseconds(time)

 View Source

 Specs

 to_nanoseconds(t()) :: integer()

Returns time in nanoseconds. Rounded using Kernel.round/1.

 Link to this function

 to_native_units(value)

 View Source

 Specs

 to_native_units(t()) :: integer()

Returns time in VM native units. Rounded using Kernel.round/1.

 Link to this function

 to_ntp_timestamp(timestamp)

 View Source

 Specs

 to_ntp_timestamp(timestamp :: t()) :: <<_::64>>

Converts the timestamp into NTP timestamp. May introduce small rounding errors.

 Link to this function

 to_seconds(time)

 View Source

 Specs

 to_seconds(t()) :: integer()

Returns time in seconds. Rounded using Kernel.round/1.

 Link to this function

 vm_time()

 View Source

 Specs

 vm_time() :: t()

Returns current Erlang VM system time based on System.system_time/0
in Membrane.Time units.
It is the VM view of the os_time/0. They may not match in case of time warps.
It is not monotonic.

 Membrane.ActionError - Membrane Core v0.7.0

Membrane.ActionError exception

 Membrane.CallbackError - Membrane Core v0.7.0

Membrane.CallbackError exception

 Membrane.LinkError - Membrane Core v0.7.0

Membrane.LinkError exception

 Membrane.ParentError - Membrane Core v0.7.0

Membrane.ParentError exception

 Membrane.PipelineError - Membrane Core v0.7.0

Membrane.PipelineError exception

 Membrane.Log - Membrane Core v0.7.0

Membrane.Log

 This module is deprecated. Use Elixir `Logger` or `Membrane.Logger` instead.

Mixin for logging using simple functions such as info/1, debug/1 in other
modules.

 Anchor for this section

 Summary

 Types

 level_t()

 Functions

 debug(message, tags \\ [])

 info(message, tags \\ [])

 log(level, message, tags \\ [])

 or_warn_error(v, message, tags \\ [])

 warn(message, tags \\ [])

 warn_error(message, reason, tags \\ [])

 Anchor for this section

Types

 Link to this type

 level_t()

 View Source

 Specs

 level_t() :: :debug | :info | :warn

 Anchor for this section

Functions

 Link to this macro

 debug(message, tags \\ [])

 View Source

 (macro)

 Link to this macro

 info(message, tags \\ [])

 View Source

 (macro)

 Link to this macro

 log(level, message, tags \\ [])

 View Source

 (macro)

 Link to this macro

 or_warn_error(v, message, tags \\ [])

 View Source

 (macro)

 Link to this macro

 warn(message, tags \\ [])

 View Source

 (macro)

 Link to this macro

 warn_error(message, reason, tags \\ [])

 View Source

 (macro)

 Membrane.Log.Logger - Membrane Core v0.7.0

Membrane.Log.Logger

 This module is deprecated. Use Elixir `Logger` instead.

Module containing functions spawning, shutting down, and handling messages
sent to logger.

 Anchor for this section

 Summary

 Types

 logger_options_t()

 message_t()

 msg_level_t()

 on_start()

 process_options_t()

 tag_t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 shutdown(server, timeout \\ 5000)

 Stops given logger process.

 start(module, logger_options \\ nil, process_options \\ [])

 Starts process for logger of given module, initialized with given options
outside of the supervision tree.

 start_link(module, logger_options \\ nil, process_options \\ [])

 Starts process for logger of given module, initialized with given options and
links it to the current process in the supervision tree.

 Anchor for this section

Types

 Link to this type

 logger_options_t()

 View Source

 Specs

 logger_options_t() :: struct() | nil

 Link to this type

 message_t()

 View Source

 Specs

 message_t() :: [message_t()] | String.t() | {:binary, binary()} | integer()

 Link to this type

 msg_level_t()

 View Source

 Specs

 msg_level_t() :: :warn | :debug | :info

 Link to this type

 on_start()

 View Source

 Specs

 on_start() :: GenServer.on_start()

 Link to this type

 process_options_t()

 View Source

 Specs

 process_options_t() :: GenServer.options()

 Link to this type

 tag_t()

 View Source

 Specs

 tag_t() :: atom()

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 shutdown(server, timeout \\ 5000)

 View Source

 Specs

 shutdown(pid(), timeout()) :: :ok

Stops given logger process.
It will wait for reply for amount of time passed as second argument
(in milliseconds).
Will trigger calling handle_shutdown/2 logger callback.
Returns :ok.

 Link to this function

 start(module, logger_options \\ nil, process_options \\ [])

 View Source

 Specs

 start(module(), logger_options_t(), process_options_t()) :: on_start()

Starts process for logger of given module, initialized with given options
outside of the supervision tree.
Works similarly to GenServer.start/3 and has the same return values.

 Link to this function

 start_link(module, logger_options \\ nil, process_options \\ [])

 View Source

 Specs

 start_link(module(), logger_options_t(), process_options_t()) :: on_start()

Starts process for logger of given module, initialized with given options and
links it to the current process in the supervision tree.
Works similarly to GenServer.start_link/3 and has the same return values.

 Membrane.Log.Logger.Base - Membrane Core v0.7.0

Membrane.Log.Logger.Base behaviour

 This behaviour is deprecated. Use Elixir `Logger` instead.

 This is a base module used by all logger implementations.

 Anchor for this section

 Summary

 Callbacks

 handle_init(arg1)

 Callback invoked when logger is initialized, right after new process is
spawned.

 handle_log(arg1, arg2, arg3, list, any)

 Callback invoked when new log message is received.

 handle_shutdown(any)

 Callback invoked when logger is shutting down just before process is exiting.
It will receive the logger state.

 Anchor for this section

Callbacks

 Link to this callback

 handle_init(arg1)

 View Source

 Specs

 handle_init(Membrane.Log.Logger.logger_options_t()) ::
 {:ok, any()} | {:error, any()}

Callback invoked when logger is initialized, right after new process is
spawned.
On success it should return {:ok, initial_logger_state}.

 Link to this callback

 handle_log(arg1, arg2, arg3, list, any)

 View Source

 Specs

 handle_log(
 Membrane.Log.Logger.msg_level_t(),
 Membrane.Log.Logger.message_t(),
 String.t(),
 [Membrane.Log.Logger.tag_t()],
 any()
) :: {:ok, any()} | {:error, any(), any()}

Callback invoked when new log message is received.
Callback delivers 5 arguments:
	atom containing log level
	message - in IO list format
	time
	tags (list of atoms, e.g. module name)
	internal logger state

On success, it returns {:ok, new_state}. it will just update logger's state
to the new state.
If it returns {:error, reason, new_state} it indicates that something
went wrong, and logger was unable to handle log. State will be updated to
the new state.

 Link to this callback

 handle_shutdown(any)

 View Source

 Specs

 handle_shutdown(any()) :: any()

Callback invoked when logger is shutting down just before process is exiting.
It will receive the logger state.
Return value is ignored.

 Membrane.Log.Router - Membrane Core v0.7.0

Membrane.Log.Router

 This module is deprecated. Use Elixir `Logger` instead.

Defines a router that dispatches logs to instances of Membrane.Log.Logger.Base

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 level_to_val(atom)

 Converts atom with level to its number representation

 send_log(level, message, time, tags \\ [])

 Sends asynchronous call to the router, requesting it to forward log message
to appropriate loggers.

 start_link(arg)

 Starts router as a separate process.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 level_to_val(atom)

 View Source

 Specs

 level_to_val(Membrane.Log.level_t()) :: 0 | 1 | 2

Converts atom with level to its number representation
Valid atoms are:
	:debug
	:info
	:warn

 Link to this function

 send_log(level, message, time, tags \\ [])

 View Source

 Specs

 send_log(atom(), any(), String.t(), [atom()]) :: :ok

Sends asynchronous call to the router, requesting it to forward log message
to appropriate loggers.
This functions assumes that passed log has level equal or greater than global
level.

 Link to this function

 start_link(arg)

 View Source

 Specs

 start_link({any(), GenServer.options()}) :: GenServer.on_start()

Starts router as a separate process.
Options are passed to Supervisor.start_link/3.

 Membrane.Log.Supervisor - Membrane Core v0.7.0

Membrane.Log.Supervisor

 This module is deprecated. Use Elixir `Logger` instead.

Module responsible for supervising router_level loggers. It is also responsible for
receiving and routing log messages to appropriate loggers.
It is spawned upon application boot.

 Anchor for this section

 Summary

 Types

 child_id_t()

 Functions

 add_logger(module, options, child_id)

 Initializes logger and adds it to the supervision tree.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 each_logger(func)

 Iterates through list of children and executes given function on every
child.

 remove_logger(child_id)

 Removes logger from the supervision tree

 start_link(config, options \\ [])

 Starts the Supervisor.

 Anchor for this section

Types

 Link to this type

 child_id_t()

 View Source

 Specs

 child_id_t() :: term()

 Anchor for this section

Functions

 Link to this function

 add_logger(module, options, child_id)

 View Source

 Specs

 add_logger(atom(), any(), child_id_t()) :: :ok | :invalid_module

Initializes logger and adds it to the supervision tree.
As arguments, it expects module name, logger options and process/logger id
If successful returns :ok
On error returns :invalid_module

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 each_logger(func)

 View Source

 Specs

 each_logger(([children_info] -> any())) :: :ok
when children_info:
 {term() | :undefined, Supervisor.child() | :restarting,
 :worker | :supervisor, [module()] | :dynamic}

Iterates through list of children and executes given function on every
child.
Should return :ok.

 Link to this function

 remove_logger(child_id)

 View Source

 Specs

 remove_logger(child_id_t()) :: atom()

Removes logger from the supervision tree
If successful returns :ok
If logger could not be found, returns corresponding error

 Link to this function

 start_link(config, options \\ [])

 View Source

 Specs

 start_link(Keyword.t(), [Supervisor.option()] | []) :: Supervisor.on_start()

Starts the Supervisor.
Options are passed to Supervisor.start_link/3.

 Membrane.ActionError - Membrane Core v0.7.0

Membrane.ActionError exception

 Membrane.CallbackError - Membrane Core v0.7.0

Membrane.CallbackError exception

 Membrane.LinkError - Membrane Core v0.7.0

Membrane.LinkError exception

 Membrane.ParentError - Membrane Core v0.7.0

Membrane.ParentError exception

 Membrane.PipelineError - Membrane Core v0.7.0

Membrane.PipelineError exception

OEBPS/dist/app-db64fcdc429a9b460caa.js
