

 mdns_lite

 v0.8.8

 Table of contents

 	MdnsLite

 	Changelog

 	Modules

 	MdnsLite

 	MdnsLite.Cache

 	MdnsLite.CoreMonitor

 	MdnsLite.DNS

 	MdnsLite.DNSBridge

 	MdnsLite.InetMonitor

 	MdnsLite.Info

 	MdnsLite.Options

 	MdnsLite.VintageNetMonitor

MdnsLite

[image: Hex version]
[image: CircleCI]
MdnsLite is a simple, limited, no frills implementation of an
mDNS (Multicast Domain Name
System) client and server. It operates like DNS, but uses multicast instead of
unicast so that any computer on a LAN can help resolve names. In particular, it
resolves hostnames that end in .local and provides a way to advertise and
discovery service.
MdnsLite is intended for environments like on Nerves devices that do not already
have an mDNS service. If you're running on desktop Linux or on MacOS, you
already have mDNS support and do not need MdnsLite.
Features of MdnsLite:
	Advertise <hostname>.local and aliases for ease of finding devices
	Static (application config) and dynamic service registration
	Support for multi-homed devices. For example, mDNS responses sent on a network
interface have the expected IP addresses for that interface.
	DNS bridging so that Erlang's built-in DNS resolver can look up .local names
via mDNS.
	Caching of results and advertisements seen on the network
	Integration with
VintageNet and Erlang's
:inet application for network interface monitoring
	Easy inspection of mDNS record tables to help debug service discovery issues

MdnsLite is included in NervesPack so you
might already have it!
Configuration
A typical configuration in the config.exs file looks like:
config :mdns_lite,
 # Advertise `hostname.local` on the LAN
 hosts: [:hostname],
 # If instance_name is not defined it defaults to the first hostname
 instance_name: "Awesome Device",
 services: [
 # Advertise an HTTP server running on port 80
 %{
 id: :web_service,
 protocol: "http",
 transport: "tcp",
 port: 80,
 },
 # Advertise an SSH daemon on port 22
 %{
 id: :ssh_daemon,
 protocol: "ssh",
 transport: "tcp",
 port: 22,
 }
]
The services section lists the services that the host offers, such as
providing an HTTP server. Specifying a protocol, transport and port is
usually the easiest way. The protocol and transport get combined to form the
service type that's actually advertised on the network. For example, a "tcp"
transport and "ssh" protocol will end up as "_ssh._tcp" in the advertisement.
If you need something custom, specify :type directly. Optional fields include
:id, :weight, :priority, :instance_name and :txt_payload. An :id is
needed to remove the service advertisement at runtime. If not specified,
:instance_name is inherited from the top-level config. A :txt_payload is a
list of "<key>=<value>" string that will be advertised in a TXT DNS record
corresponding to the service.
See MdnsLite.Options for
information about all application environment options.
It's possible to change the advertised hostnames, instance names and services at
runtime. For example, to change the list of advertised hostnames, run:
iex> MdnsLite.set_hosts([:hostname, "nerves"])
:ok
To change the advertised instance name:
iex> MdnsLite.set_instance_name("My Other Awesome Device")
:ok
Here's how to add and remove a service at runtime:
iex> MdnsLite.add_mdns_service(%{
 id: :my_web_server,
 protocol: "http",
 transport: "tcp",
 port: 80,
 })
:ok
iex> MdnsLite.remove_mdns_service(:my_web_server)
:ok
Client
MdnsLite.gethostbyname/1 uses mDNS to resolve hostnames. Here's an example:
iex> MdnsLite.gethostbyname("my-laptop.local")
{:ok, {172, 31, 112, 98}}
If you just want mDNS to "just work" with Erlang, you'll need to enable
MdnsLite's DNS Bridge feature and configure Erlang's DNS resolver to use it. See
the DNS Bridge section for details.
Service discovery docs TBD...
DNS Bridge configuration
MdnsLite can start a DNS server to respond to .local queries. This enables
code that has no knowledge of mDNS to resolve mDNS queries. For example,
Erlang/OTP's built-in DNS resolver doesn't know about mDNS. It's used to resolve
hosts for Erlang distribution and pretty much any code using :gen_tcp and
:gen_udp. MdnsLite's DNS bridge feature makes .local hostname lookups work
for all of this. No code modifications required.
Note that this feature is useful on Nerves devices. Erlang/OTP can use the
system name resolver on desktop Linux and MacOS. The system name resolver should
already be hooked up to an mDNS resolver there.
To set this up, you'll need to enable the DNS bridge on MdnsLite and then set
up the DNS resolver to use it first. Here are the options for the application
environment:
config :mdns_lite,
 dns_bridge_enabled: true,
 dns_bridge_ip: {127, 0, 0, 53},
 dns_bridge_port: 53,
 dns_bridge_recursive: true

config :vintage_net,
 additional_name_servers: [{127, 0, 0, 53}]
The choice of running the DNS bridge on 127.0.0.53:53 is mostly arbitrary. This
is the default.
There is an issue on Nerves and Linux that you may hit if the :mdns_lite
application is not running. The Erlang DNS resolver calls connect to the IP
address of the DNS server and then calls connect again to the next one. The
second connect call fails when the first one is a 127.0.0.x address. See
Issue 5092. Setting
dns_bridge_recursive: true works around this issue.
Update: Issue 5092 has been fixed in Erlang/OTP 24.1 and you can safely use
dns_bridge_recursive: false in that version or later.
Debugging
MdnsLite maintains a table of records that it advertises and a cache per
network interface. The table of records that it advertises is based solely off
its configuration. Review it by running:
iex> MdnsLite.Info.dump_records
<interface_ipv4>.in-addr.arpa: type PTR, class IN, ttl 120, nerves-2e6d.local
<interface_ipv6>.ip6.arpa: type PTR, class IN, ttl 120, nerves-2e6d.local
_epmd._tcp.local: type PTR, class IN, ttl 120, nerves-2e6d._epmd._tcp.local
_services._dns-sd._udp.local: type PTR, class IN, ttl 120, _epmd._tcp.local
_services._dns-sd._udp.local: type PTR, class IN, ttl 120, _sftp-ssh._tcp.local
_services._dns-sd._udp.local: type PTR, class IN, ttl 120, _ssh._tcp.local
_sftp-ssh._tcp.local: type PTR, class IN, ttl 120, nerves-2e6d._sftp-ssh._tcp.local
_ssh._tcp.local: type PTR, class IN, ttl 120, nerves-2e6d._ssh._tcp.local
nerves-2e6d._epmd._tcp.local: type SRV, class IN, ttl 120, priority 0, weight 0, port 4369, nerves-2e6d.local.
nerves-2e6d._epmd._tcp.local: type TXT, class IN, ttl 120,
nerves-2e6d._sftp-ssh._tcp.local: type SRV, class IN, ttl 120, priority 0, weight 0, port 22, nerves-2e6d.local.
nerves-2e6d._sftp-ssh._tcp.local: type TXT, class IN, ttl 120,
nerves-2e6d._ssh._tcp.local: type SRV, class IN, ttl 120, priority 0, weight 0, port 22, nerves-2e6d.local.
nerves-2e6d._ssh._tcp.local: type TXT, class IN, ttl 120,
nerves-2e6d.local: type A, class IN, ttl 120, addr <interface_ipv4>
nerves-2e6d.local: type AAAA, class IN, ttl 120, addr <interface_ipv6>
Note that some addresses have not been filled in. They depend on which network
interface receives the query. The idea is that if a computer is looking for you
on the Ethernet interface, you should give records with that Ethernet's
interface rather than, say, the IP address of the WiFi interface.
MdnsLite's cache is filled with records that it sees advertised. It's
basically the same, but can be quite large depending on the mDNS activity on a
link. It looks like this:
iex> MdnsLite.Info.dump_caches
Responder: 172.31.112.97
 ...
Responder: 192.168.1.58
 ...
In memory
Peter Marks wrote and maintained the original
version of mdns_lite.
License
Copyright (C) 2019-21 SmartRent
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

This project follows Semantic Versioning.
v0.8.8 - 2023-05-26
	New feature	IPv6 queries are now supported. Responding to IPv6 isn't supported yet. To
use this, be sure to set ipv4_only: false since this isn't the default.
Thanks to @bjyoungblood for this feature.

v0.8.7 - 2023-02-12
	Fixed	Fix Elixir 1.15 deprecation warnings

v0.8.6 - 2022-06-14
	Fixed	Fixed an issue that caused the DNS bridge to stop working with OTP 25.

v0.8.5 - 2022-04-28
	Fixed	If a network interface changes IP addresses, there would be a flurry of
crashes when it was no longer possible to bind to the interface. This stops
behavior and shuts down the responder for the interface.

v0.8.4 - 2021-11-13
	New feature
	VintageNet is an optional dependency now. This makes it possible to use
MdnsLite outside of Nerves much more easily.

	Fixed
	Use the new DNS encoder/decoder from OTP 24.1.5. This fixes a regression
with OTP 24.1.2 where the DNS encoder and decoder was updated to be more
correct in how it handled the DNS class. mDNS repurposes the high bit of the
DNS class. Previously we had gotten lucky. OTP 24.1.5 adds support for the
bit. To make sure that MdnsLite can work on other OTP versions, the new
OTP code has been vendored and included with MdnsLite.

v0.8.3 - 2021-10-07
	Fixed	Added configuration and runtime support for setting the instance name. This
was incorrectly removed in v0.8.0. By default, MdnsLite will advertise
itself using the hostname. This works, but looks unfriendly in the service
discovery results. Setting the instance name lets you advertise with a nice
human readable name. Thanks to Mat Trudel for both catching this regression
and fixing it.

v0.8.2 - 2021-09-23
	Fixed	Fix calls to :socket.setopt/3 to support OTP 22 and OTP 23. Thanks to
Peter Madsen for finding this and providing a fix.

v0.8.1 - 2021-09-19
	Fixed	Fix interface monitor crash when a network interface gets removed.

v0.8.0
This release is a major update to MdnsLite to support making queries in
addition to responding to queries. The runtime API is not backwards compatible.
If you're only using the application environment to configure MdnsLite, you
should be ok.
	New features
	Make mDNS requests
	Add a DNS bridge for Erlang's DNS resolver. This enables Erlang
distribution and :gen_tcp users to be passed .local hostnames. See docs
for how to configure
	mDNS record caching
	mDNS record inspection - both for ones MdnsLite advertises and for ones in
the caches
	AAAA record support - Proper IPv6 support is still not available

	Bug fixes
	MdnsLite now uses :socket to send and receive mDNS messages. This fixes
several issues where multicast packets were being mixed up between network
interfaces.

v0.7.0
	Breaking change
	Change optional dependency on VintageNet to a mandatory one. Probably all
:mdns_lite users were already using VintageNet and since Mix releases
doesn't support optional dependencies yet, some users got errors when the
release misordered them. This avoids the problem.

	Improvements
	Removed the :dns package dependency. There as an Erlang crypto API call in
a dependency of :dns that was removed in OTP 24. This change makes it
possible to use :mdns_lite on OTP 24 without worrying about a missing
crypto API call.

v0.6.7
	Improvements	Exclude "wwan0" by default. These interfaces are cellular links like ppp
and it's not appropriate to respond to mDNS on them either.

v0.6.6
	Bug fixes	Advertise services based on service names & not hostname. Thanks to Matt
Trudel for this fix.

v0.6.5
	Bug fixes	Reuse addresses and ports when binding to the multicast socket to coexist
with other mDNS software. Thanks to Eduardo Cunha and Matt Myers for the
updates.

v0.6.4
	New features	Support custom TXT record contents. See the :txt_payload. Thanks to
Eduardo Cunha for adding this.

v0.6.3
	Bug fixes	Update default so that ppp interfaces are ignored. This prevents surprises
of having a responder run on a cellular link.

v0.6.2
	Bug fixes	Fix crash when handling undecodable mDNS messages

v0.6.1
	Handle nil from VintageNet reports

v0.6.0
	Allow mdns host to be change at runtime
	New network monitor: VintageNetMonitor

v0.5.0
	Allow services to be added and removed at runtime.

v0.4.3
	Correct typos and white space
	Comment out logger messages

v0.4.2
	Remove un-helpful Logger.debug statements - Issue #49
	Put this file into the proper order.

v0.4.1
	Correct bad tag in README.md and correct grammar.
	Correct documentation of the MdnsLite module

v0.4.0
	The value of host in the configuration file can have two values. The second can serve as an alias for the first.
	Updated documentation and comments.
	Created a new test.

v0.3.0
	Remove a superfluous map from the config.

v0.2.1
	Update README to reflect changes in previous version.

v0.2.0
	Much better alignment with RFC 6763 - DNS Service-based discovery.
	Affects handling of SRV and PTR queries.

v0.1.0
	Initial release

MdnsLite

MdnsLite is a simple, limited, no frills mDNS implementation
Advertising hostnames and services is generally done using the application
config. See MdnsLite.Options for documentation.
To change the advertised hostnames or services at runtime, see set_host/1,
add_mdns_service/1 and remove_mdns_service/1.
MdnsLite's mDNS record tables and caches can be inspected using
MdnsLite.Info if you're having trouble.
Finally, check out the MdnsLite README.md for more information.

 Anchor for this section

 Summary

 Types

 instance_name()

 A user-visible name for a service advertisement

 service()

 mDNS service description

 service_id()

 A user-specified ID for referring to a service

 Functions

 add_mdns_service(service)

 Start advertising a service

 gethostbyname(hostname, timeout \\ 500)

 Lookup a hostname using mDNS

 remove_mdns_service(id)

 Stop advertising a service

 set_hosts(hosts)

 Set the list of host names

 set_instance_name(instance_name)

 Updates the advertised instance name for service records

 Anchor for this section

Types

 Link to this type

 instance_name()

 View Source

 @type instance_name() :: String.t() | :unspecified

A user-visible name for a service advertisement

 Link to this type

 service()

 View Source

 @type service() :: %{
 :id => service_id(),
 :instance_name => instance_name(),
 :port => 1..65535,
 optional(:txt_payload) => [String.t()],
 optional(:priority) => 0..255,
 optional(:protocol) => String.t(),
 optional(:transport) => String.t(),
 optional(:type) => String.t(),
 optional(:weight) => 0..255
}

mDNS service description
Keys include:
	:id - an atom for referring to this service (only required if you want to
reference the service at runtime)
	:port - the TCP/UDP port number for the service (required)
	:transport - the transport protocol. E.g., "tcp" (specify this and
:protocol, or :type) * :protocol - the application protocol. E.g.,
"ssh" (specify this and :transport, or :type)
	:type - the transport/protocol to advertize. E.g., "_ssh._tcp" (only
needed if :protocol and :transport aren't specified)
	:weight - the service weight. Defaults to 0. (optional)
	:priority - the service priority. Defaults to 0. (optional)
	:txt_payload - a list of strings to advertise

Example:
%{id: :my_ssh, port: 22, protocol: "ssh", transport: "tcp"}

 Link to this type

 service_id()

 View Source

 @type service_id() :: atom() | binary()

A user-specified ID for referring to a service
Atoms are recommended, but binaries are still supported since they were used
in the past.

 Anchor for this section

Functions

 Link to this function

 add_mdns_service(service)

 View Source

 @spec add_mdns_service(service()) :: :ok

Start advertising a service
Services can be added at compile-time via the :services key in the mdns_lite
application environment or they can be added at runtime using this function.
See the service type for information on what's needed.
Example:
iex> service = %{
 id: :my_web_server,
 protocol: "http",
 transport: "tcp",
 port: 80
 }
iex> MdnsLite.add_mdns_service(service)
:ok

 Link to this function

 gethostbyname(hostname, timeout \\ 500)

 View Source

 @spec gethostbyname(String.t(), non_neg_integer()) ::
 {:ok, :inet.ip_address()} | {:error, any()}

Lookup a hostname using mDNS
The hostname should be a .local name since the query only goes out via mDNS.
On success, an IP address is returned.

 Link to this function

 remove_mdns_service(id)

 View Source

 @spec remove_mdns_service(service_id()) :: :ok

Stop advertising a service
Example:
iex> MdnsLite.remove_mdns_service(:my_ssh)
:ok

 Link to this function

 set_hosts(hosts)

 View Source

 @spec set_hosts([:hostname | String.t()]) :: :ok

Set the list of host names
This replaces the list of hostnames that MdnsLite will respond to. The first
hostname in the list is special. Service advertisements will use it. The
remainder are aliases.
Hostnames should not have the ".local" extension. MdnsLite will add it.
To specify the hostname returned by :inet.gethostname/0, use :hostname.
To make MdnsLite respond to queries for "<hostname>.local" and
"nerves.local", run this:
iex> MdnsLite.set_hosts([:hostname, "nerves"])
:ok

 Link to this function

 set_instance_name(instance_name)

 View Source

 @spec set_instance_name(instance_name()) :: :ok

Updates the advertised instance name for service records
To specify the first hostname specified in hosts, use :unspecified

MdnsLite.Cache

Cache for records received over mDNS

 Anchor for this section

 Summary

 Types

 t()

 timestamp()

 Timestamp in seconds (assumed monotonic)

 Functions

 gc(cache, time)

 Remove any expired entries

 insert(cache, time, record)

 Insert a record into the cache

 insert_many(cache, time, records)

 Insert several record into the cache

 new()

 Start an empty cache

 query(cache, query)

 Run a query against the cache

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %MdnsLite.Cache{last_gc: timestamp(), records: [MdnsLite.DNS.dns_rr()]}

 Link to this type

 timestamp()

 View Source

 @type timestamp() :: integer()

Timestamp in seconds (assumed monotonic)

 Anchor for this section

Functions

 Link to this function

 gc(cache, time)

 View Source

 @spec gc(t(), timestamp()) :: t()

Remove any expired entries

 Link to this function

 insert(cache, time, record)

 View Source

 @spec insert(t(), timestamp(), MdnsLite.DNS.dns_rr()) :: t()

Insert a record into the cache

 Link to this function

 insert_many(cache, time, records)

 View Source

 @spec insert_many(t(), timestamp(), [MdnsLite.DNS.dns_rr()]) :: t()

Insert several record into the cache

 Link to this function

 new()

 View Source

 @spec new() :: %MdnsLite.Cache{last_gc: -2_147_483_648, records: []}

Start an empty cache

 Link to this function

 query(cache, query)

 View Source

 @spec query(t(), MdnsLite.DNS.dns_query()) :: %{
 answer: [MdnsLite.DNS.dns_rr()],
 additional: [MdnsLite.DNS.dns_rr()]
}

Run a query against the cache
IMPORTANT: The cache is not garbage collected, so it can return stale entries.
Call gc/2 first to expire old entries.

MdnsLite.CoreMonitor

Core logic for network monitors
This module contains most of the logic needed for writing a network monitor.
It's only intended to be called from MdnsLite.InetMonitor and
MdnsLite.VintageNetMonitor.

 Anchor for this section

 Summary

 Types

 option()

 Monitor options

 Functions

 flush_todo_list(state)

 init(opts)

 set_ip_list(state, ifname, ip_list)

 Anchor for this section

Types

 Link to this type

 option()

 View Source

 @type option() :: {:excluded_ifnames, [String.t()]} | {:ipv4_only, boolean()}

Monitor options
	:excluded_ifnames - a list of network interface names to ignore
	:ipv4_only - set to true to ignore all IPv6 addresses

 Anchor for this section

Functions

 Link to this function

 flush_todo_list(state)

 View Source

 @spec flush_todo_list(state()) :: state()

 Link to this function

 init(opts)

 View Source

 @spec init([option()]) :: state()

 Link to this function

 set_ip_list(state, ifname, ip_list)

 View Source

 @spec set_ip_list(state(), String.t(), [:inet.ip_address()]) :: state()

MdnsLite.DNS

Bring Erlang's DNS record definitions into Elixir

 Anchor for this section

 Summary

 Types

 dns_query()

 dns_rec()

 dns_rr()

 Functions

 decode(packet)

 Decode a packet that contains a DNS message

 dns_header(args \\ [])

 dns_header(record, args)

 dns_query(args \\ [])

 dns_query(record, args)

 dns_rec(args \\ [])

 dns_rec(record, args)

 dns_rr(args \\ [])

 dns_rr(record, args)

 encode(rec)

 Encode a DNS record

 pretty(arg)

 Format a DNS record as a nice string for the user

 Anchor for this section

Types

 Link to this type

 dns_query()

 View Source

 @type dns_query() ::
 {:dns_query, domain :: term(), type :: term(), class :: term(),
 unicast_response :: term()}

 Link to this type

 dns_rec()

 View Source

 @type dns_rec() ::
 {:dns_rec, header :: term(), qdlist :: term(), anlist :: term(),
 nslist :: term(), arlist :: term()}

 Link to this type

 dns_rr()

 View Source

 @type dns_rr() ::
 {:dns_rr, domain :: term(), type :: term(), class :: term(), cnt :: term(),
 ttl :: term(), data :: term(), tm :: term(), bm :: term(), func :: term()}

 Anchor for this section

Functions

 Link to this function

 decode(packet)

 View Source

 @spec decode(binary()) :: {:ok, dns_rec()} | {:error, any()}

Decode a packet that contains a DNS message

 Link to this macro

 dns_header(args \\ [])

 View Source

 (macro)

 Link to this macro

 dns_header(record, args)

 View Source

 (macro)

 Link to this macro

 dns_query(args \\ [])

 View Source

 (macro)

 Link to this macro

 dns_query(record, args)

 View Source

 (macro)

 Link to this macro

 dns_rec(args \\ [])

 View Source

 (macro)

 Link to this macro

 dns_rec(record, args)

 View Source

 (macro)

 Link to this macro

 dns_rr(args \\ [])

 View Source

 (macro)

 Link to this macro

 dns_rr(record, args)

 View Source

 (macro)

 Link to this function

 encode(rec)

 View Source

 @spec encode(dns_rec()) :: binary()

Encode a DNS record

 Link to this function

 pretty(arg)

 View Source

 @spec pretty(dns_rr()) :: String.t()

Format a DNS record as a nice string for the user

MdnsLite.DNSBridge

DNS server that responds to mDNS queries
This is a simple DNS server that can be used to resolve mDNS queries
so that the rest of Erlang and Elixir can seamlessly use mDNS. To use
this, you must enable the :dns_bridge_enabled option and then make the
first DNS server be this server's IP address and port.
This DNS server can either return an error or recursively look up a non-mDNS record
depending on how it's configured. Erlang's DNS resolver currently has an issue
with the error strategy so it can't be used.
Configure this using the following application environment options:
	:dns_bridge_enabled - set to true to enable the bridge
	:dns_bridge_ip - IP address in tuple form for server (defaults to {127, 0, 0, 53})
	:dns_bridge_port - UDP port for server (defaults to 53)
	:dns_bridge_recursive - set to true to recursively look up non-mDNS queries

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

MdnsLite.InetMonitor

Network monitor that uses Erlang's :inet functions
Use this network monitor to detect new network interfaces and their
IP addresses when not using Nerves. It regularly polls the system
for changes so it's not as fast at starting mDNS responders as
the MdnsLite.VintageNetMonitor is. However, it works everywhere.
See MdnsLite.Options for how to set your config.exs to use it.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

MdnsLite.Info

Inspect internal MdnsLite state
Functions in this module are intended for debugging mDNS issues.

 Anchor for this section

 Summary

 Functions

 dump_caches()

 Dump the contents of the responder mDNS caches

 dump_records()

 Dump the records that mDNSLite advertises

 Anchor for this section

Functions

 Link to this function

 dump_caches()

 View Source

 @spec dump_caches() :: :ok

Dump the contents of the responder mDNS caches

 Link to this function

 dump_records()

 View Source

 @spec dump_records() :: :ok

Dump the records that mDNSLite advertises

MdnsLite.Options

MdnsLite options
MdnsLite is usually configured in a project's application environment
(config.exs) as follows:
config :mdns_lite,
 hosts: [:hostname, "nerves"],
 ttl: 120,

 instance_name: "mDNS Lite Device",

 services: [
 %{
 id: :web_server,
 protocol: "http",
 transport: "tcp",
 port: 80,
 txt_payload: ["key=value"]
 },
 %{
 id: :ssh_daemon,
 instance_name: "More particular mDNS Lite Device"
 protocol: "ssh",
 transport: "tcp",
 port: 22
 }
]
The configurable keys are:
	:hosts - A list of hostnames to respond to. Normally this would be set to
:hostname and mdns_lite will advertise the actual hostname with .local
appended.
	:ttl - The default mDNS record time-to-live. The default of 120
seconds is probably fine for most use. See RFC 6762 - Multicast
DNS for considerations.
	instance_name - A user friendly name that will be used as the name for this
device's advertised service(s). Per RFC6763 Appendix C, this should describe
 the user-facing purpose or description of the device, and should not be
 considered a unique identifier. For example, 'Nerves Device' and 'MatCo
 Laser Printer Model CRM-114' are good choices here. If instance_name is not
 defined it defaults to the first entry in the hosts list
	:excluded_ifnames - A list of network interfaces names to ignore. By
default, mdns_lite will ignore loopback and cellular network interfaces.
	:ipv4_only - Set to true to only respond on IPv4 interfaces. Since IPv6
isn't fully supported yet, this is the default. Note that it's still
possible to get AAAA records when using IPv4.
	:if_monitor - Set to MdnsLite.VintageNetMonitor when using Nerves or
MdnsLite.InetMonitor elsewhere. The default is
MdnsLite.VintageNetMonitor.
	:dns_bridge_enabled - Set to true to start a DNS server running that
will bridge DNS to mDNS.
	:dns_bridge_ip - The IP address for the DNS server. Defaults to
127.0.0.53.
	:dns_bridge_port - The UDP port for the DNS server. Defaults to 53.
	:dns_bridge_recursive - If a regular DNS request comes on the DNS bridge,
forward it to a DNS server rather than returning an error. This is the
default since there's an issue on Linux and Nerves that prevents Erlang's
DNS resolver from checking the next one.
	:services - A list of services to advertise. See MdnsLite.service for
details.

Some options are modifiable at runtime. Functions for modifying these are in
the MdnsLite module.

 Anchor for this section

 Summary

 Functions

 normalize_service(service)

 Normalize a service description

 Anchor for this section

Functions

 Link to this function

 normalize_service(service)

 View Source

 @spec normalize_service(MdnsLite.service()) ::
 {:ok, MdnsLite.service()} | {:error, String.t()}

Normalize a service description
All service descriptions are normalized before use. Call this function if
you're unsure how the service description will be transformed for use.

MdnsLite.VintageNetMonitor

Network monitor that using VintageNet
Use this network monitor to detect new network interfaces and their
IP addresses when using Nerves. It is the default.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts \\ [])

 View Source

 @spec start_link([MdnsLite.CoreMonitor.option()]) :: GenServer.on_start()

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

