

 mandarin

 v0.5.0

 Table of contents

 	Mandarin

 	Backoffice Demo

 	Modules

 	Mandarin

 	Mandarin.Designer

 	Mandarin.Router

 	Mix Tasks

 	mix mandarin

 	mix mandarin.gen.context

 	mix mandarin.gen.html

 	mix mandarin.gen.schema

 	mix mandarin.install

Mandarin
Generators to help you write an admin interface for your Phoenix application.
Installation
If available in Hex, the package can be installed
by adding mandarin to your list of dependencies in mix.exs:
def deps do
 [
 {:mandarin, "~> 0.1.0"}
]
end
Documentation and Examples
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/mandarin.
You can find a guide to an example admin interface at
Backofice Demo.
File Layout
Instead of splitting the web-related files into different directories (one for controllers, one for views and one for templates), like Phoenix does by default, Mandarin groups your files into feature folders, as discussed here and here.
Essentially, instead of this:
🗀 hello_web
 🗀 controllers
 foo_controller.ex
 bar_controller.ex
 ...
 🗀 templates
 🗀 foo
 index.html.eex
 ...
 🗀 bar
 index.html.eex
 ...
 🗀 views
 foo_view.eex
 bar_view.eex
 ...
You have this:
🗀 hello_web
 🗀 foo
 foo_controller.ex
 foo_view.ex
 🗀 templates
 index.html.eex
 ...
 🗀 bar
 bar_controller.ex
 bar_view.ex
 🗀 templates
 index.html.eex
 ...
The main advantage of the new layout is that it puts everything close together and it makes it easier to customize the controller and the template at the same time.
It also makes it easier to delete all files related to a resource if for some reason things are not exactly right.
It keeps everything related to your admin interface in one place and draws a cleaner boundary between the admin interface and the rest of your application.
Mandarin Generators
Mandarin is based on generators.
The generators work the same as the default phoenix phx.gen.html generator.
First, you must "install" mandarin into your application:
mix mandarin.install NewContext

The mandarin.install generator creates a new context in your application and adds the mandarin.ex file to your application. This file is similar to the YourApp.ex file generated by the phx.new generator. It contains a __using__/1 macro that allows you to use YourApp.Mandarin, :controller and use YourApp.Mandarin, :view.
After creating the new context, you can add new resources to it, using the mandarin.gen.html generator, which takes the same arguments as the Phoenix phx.gen.html generator.
This will create an ecto schema inside your context, a database migration and a new controller with CRUD functionality.
Remember that Ecto allows two or more schemas to share the same database table.
This means you can (and should!) have a one Ecto schema for the Admin interface
Because the Admin interface is just a context, you can have multiple admin interfaces in your application if you want. For example, you could have an admin interface for "normal" admins, with some limits on what they can do and some safeguards in place, and another interface for "superadmins", which can do literally everything to the database.
To do that, just generate different contexts:
mandarin.install LowLevelAdmin
mandarin.install SuperAdmin

The mandarin.gen.html works just like the normal Phoenix generators:
mix mandarin.gen.html Admin Employee employees \
 full_name:string address:string fiscal_number:string \
 department:references:departments function:references:functions \
 begin_date:date end_date:date --binary-id

For a hands-on guide on how to use the generators, see here.
Forage
The pages generated by Mandarin sit on top of functionality provided by the Forage package.
Forage is a helper package containing HTML widgets and functions to dynamically create Ecto queries from query parameters.
This allows mandarin to support pagingation and filtering of resources.
Forage isn't wey well documented and tested yet, but it works pretty well together with Mandarin.
Contributing
Interested people can contribute to Mandarin through one of the following:
	Reporting bugs - the GitHub issue tracker is currently the best place for that
	Fixing new bugs
	Suggesting improvements - again, by using the GitHub issue tracker

The following should be considered out of scope for Mandarin for the foreseeable future:
	Replacing the code generators with macros, schema reflection or other kinds of metaprogramming (you already have Kaffy for that)

Backoffice Demo
A simple demo of how to use Mandarin to implement a simple backoffice area
for your Phoenix web application.
Introduction
Mandarin is a set of generators inspired by the Phoenix CRUD generators
which can help in writing admin interface for you web application.
The generators are inspired by the default phoenix.gen.* generators,
and follow almost exactly the same structures.
These generators generate normal phoenix conrollers, views and templates,
which you can customize to your liking.
The generated code may be quite verbose, but because it's normal elixir code,
it's also trivial to customize to your liking (it would be pretty impossible
to customize if it were based on metaprogramming).
This approach is different from the one found in admin frameworks from other languages, which use class reflection or metaprogramming, such as some Python frameworks
(Django,
Flask-Admin,
Flask-AppBuilder)
and Ruby frameworks
(ActiveAdmin).
This application we'll develop in this guide is inspired by the small example
in the Flask-Appbuider docs. The main difference is that we'll write ir using the Mandarin generators, while
the AppBuilder version will uses class reflection.
Application Layout
We'll generate an admin interface that manages 3 different kinds of resources:
	Employees
	Departments, where each employee belongs to a single department
	Functions, where each employee has a single function

This structure will show how Mandarin generators handle one-to-many relations
(a future version will show how they handle many-to-many relations).
Add the Dependencies
mix.exs

 defp deps do
 [
 # ...
 # Mandarin
 {:mandarin, path: "../mandarin"},
 {:forage, path: "../forage", override: true},
 # Utilities to generate fake data
 {:faker, "~> 0.16", only: :dev}
]
 end
"Install" Mandarin Into Your Application
You can have as many admin interfaces in your application as you want.
An admin interface is just a new context with schemas, views, controllers and templates
generated by Mandarin.
You "install" mandarin into your application by giving it a new context name.
Mandarin will then generate everything under that context.
mix mandarin.install Backoffice

Add the Resources to the Mandarin Context
Mandarin provides generators, which are similar to the default Phoenix generators.
The goal is to build your CRUD interface with the generators, and maybe customize
the interface later if you feel the need to.
Mandarin will generate and application structure which is quite similar to the default
phoenix structure.
The main difference is the use of "vertical slicing" or "feature folders".
You can now generate the pages for our resources with the generators.
Department
Type the following (and answer Yes to the prompts as needed):
mix mandarin.gen.html Backoffice Department departments \
 name:string description:text --binary-id

Function
mix mandarin.gen.html Backoffice Function functions name:string --binary-id

Employee
mix mandarin.gen.html Backoffice Employee employees \
 full_name:string address:string fiscal_number:string \
 department:references:departments function:references:functions \
 begin_date:date end_date:date --binary-id

Testing
Mandarin has generated some tests for your context and controllers.
The tests are pretty basic, but they at least test that the relevant
pages load without errors and invoke the appropriate actions in your Repo.
You can run the automatically generated tests with:
mix test

Generate Some Fake Data
Alias the context module, which we will use to create our resources:
alias MandarinDemo.Backoffice
Create some WH40k-inspired departments for our company:
department_names = [
 "Inquisition",
 "Oficia Censorum",
 "Ordo Xenos",
 "Ordo Malleus",
 "Sororitas",
 "Adeptus Astartes"
]

Gather the departments after inserting them into the database
because we'll be using them later.
departments =
 for name <- department_names do
 {:ok, department} =
 Backoffice.create_department(%{
 name: name,
 # Generate a random description using Faker
 description: Faker.Lorem.paragraph(1..2)
 })

 department
 end
A above, create some functions for our employees:
function_names = [
 "Janitor",
 "Office Clerk",
 "Lector",
 "Servitor",
 "Adeptus",
 "Maestrus",
 "Techpriest",
 "Cook",
 "Custodes"
]

Gather the functions after inserting them into the database
because we'll be using them later.
functions =
 for name <- function_names do
 {:ok, function} = Backoffice.create_function(%{name: name})
 function
 end
Add some employees belonging to random functions and departments:
_employees =
 for i <- 1..500 do
 {:ok, employee} =

 Backoffice.create_employee(%{
 address: Faker.Address.En.street_address(),
 begin_date: Faker.Date.backward(_days = 365 * 100),
 end_date: Faker.Date.forward(_days = 365 * 100),
 fiscal_number: "SSN-#{Enum.random(0..1000_000_000)}",
 full_name: Faker.Person.En.name(),
 function_id: Enum.random(functions).id,
 department_id: Enum.random(departments).id
 })
 end

Playing with The Application
...

Mandarin

A package containing generators to generate an admin backend for your Phoenix app.
The package relies a lot on generators, and Mandarin itself provides a minimal API at runtime.
This is be design, as the code produced with generators is easier to customize than overridable
API calls, or other alternatives that depend a lot on macros.
The basic idea is tha Mandarin generates normal Phoenix contexts, views, templates and controllers,
much like the ones you'd write yourself.
The generated files follow roughly the same conventinos as the ones you'd write yourself.
Mandarin relies heavily on the forage package
for filtering, sorting and paginating the results in the CRUD views.

Mandarin.Designer

Convenience functions to design an application (paramsbase, schemas, contexts and HTML)
in a programmatic way.
This is equivalent to using the Phoenix and Mandarin generators, but with a nicer API
which allows you to use the full power of the Elixir language to run the generators
instead of relying on custom bash scripts or manually running the generators.

 Anchor for this section

 Summary

 Functions

 drop_migrations_if_already_exist(migration_path \\ "priv/repo/migrations", tag)

 generate_mandarin_context(migrations_path \\ "priv/repo/migrations", params)

 Generate a mandarin context (without generating a web interface)

 generate_mandarin_html(migrations_path \\ "priv/repo/migrations", params)

 Generate a mandarin context (without generating a web interface).

 generate_mandarin_html_for_all(migrations_path \\ "priv/repo/migrations", tag, list_of_params)

 Generate mandarin web interfaces (schemas, context and the web part) for a list of params.

 generate_mandarin_schema(migrations_path \\ "priv/repo/migrations", params)

 Generate a mandarin schema (without generating a context or any web interface).

 install_mandarin(context)

 Install Mandarin into the given context.

 references(foreign_table)

 Create a foreign key reference

 unique(type)

 Tag a field as unique.

 update_options(list_of_params, options)

 Update the options for a list

 with_ecto_design_markers(migrations_path \\ "priv/repo/migrations", tag, fun)

 Run a function (fun) which may create migration files and add marker files
to migrations path to delimit which migrations were generated.
This makes it easier to see which migrations were generated as a group.

 Anchor for this section

Functions

 Link to this function

 drop_migrations_if_already_exist(migration_path \\ "priv/repo/migrations", tag)

 Link to this function

 generate_mandarin_context(migrations_path \\ "priv/repo/migrations", params)

 Specs

 generate_mandarin_context(String.t(), Mandarin.Designer.Params.t()) :: :ok

Generate a mandarin context (without generating a web interface)

 Link to this function

 generate_mandarin_html(migrations_path \\ "priv/repo/migrations", params)

 Specs

 generate_mandarin_html(String.t(), Mandarin.Designer.Params.t()) :: :ok

Generate a mandarin context (without generating a web interface).
If the params belong to a join_through table, this is the same
as running generate_mandarin_schema(params).

 Link to this function

 generate_mandarin_html_for_all(migrations_path \\ "priv/repo/migrations", tag, list_of_params)

Generate mandarin web interfaces (schemas, context and the web part) for a list of params.
If the any params belong to a join_through table, this will run
generate_mandarin_schema(params) for those params.

 Link to this function

 generate_mandarin_schema(migrations_path \\ "priv/repo/migrations", params)

 Specs

 generate_mandarin_schema(String.t(), Mandarin.Designer.Params.t()) :: :ok

Generate a mandarin schema (without generating a context or any web interface).
This might be useful for schemas that are meant to act only as join_through tables
for many-to-many relations. These schemas don't require a context or a web interface.
In fact, the user is not meant to interact with them directly.
Ecto will be capable of using them when required if the schemas are configured correctly.

 Link to this function

 install_mandarin(context)

 Specs

 install_mandarin(String.t()) :: :ok

Install Mandarin into the given context.
The context should be an upper case plural string
(this function doesn't take a)

 Example

install_mandarin("Admin")

 Link to this function

 references(foreign_table)

Create a foreign key reference

 Link to this function

 unique(type)

Tag a field as unique.

 Link to this function

 update_options(list_of_params, options)

 Specs

 update_options([Mandarin.Designer.Params.t()], Keyword.t()) :: [
 Mandarin.Designer.Params.t()
]

Update the options for a list

 Link to this function

 with_ecto_design_markers(migrations_path \\ "priv/repo/migrations", tag, fun)

Run a function (fun) which may create migration files and add marker files
to migrations path to delimit which migrations were generated.
This makes it easier to see which migrations were generated as a group.
The migration files will contain the tag in the file name, so you may want
to make it descriptive.

Mandarin.Router

Macros to simplify the definition of routes.

mix mandarin

Prints Mandarin tasks and their information.
mix mandarin

mix mandarin.gen.context

Generates a context with functions around an Ecto schema.
mix mandarin.gen.context Admin User users name:string age:integer
The first argument is the context module followed by the schema module
and its plural name (used as the schema table name).
The context is an Elixir module that serves as an API boundary for
the given resource. A context often holds many related resources.
Therefore, if the context already exists, it will be augmented with
functions for the given resource.
Note: A resource may also be split
over distinct contexts (such as Accounts.User and Payments.User).

The schema is responsible for mapping the database fields into an
Elixir struct.
Overall, this generator will add the following files to lib/your_app:
	a context module in accounts/admin.ex, serving as the API boundary
	a schema in admin/user.ex, with a users table

A migration file for the repository and test files for the context
will also be generated.
Generating without a schema
In some cases, you may wish to bootstrap the context module and
tests, but leave internal implementation of the context and schema
to yourself. Use the --no-schema flags to accomplish this.
table
By default, the table name for the migration and schema will be
the plural name provided for the resource. To customize this value,
a --table option may be provided. For example:
mix mandarin.gen.context Admin User users --table cms_users
binary_id
Generated migration can use binary_id for schema's primary key
and its references with option --binary-id.
Default options
This generator uses default options provided in the :generators
configuration of your application. These are the defaults:
config :your_app, :generators,
 migration: true,
 binary_id: false,
 sample_binary_id: "11111111-1111-1111-1111-111111111111"
You can override those options per invocation by providing corresponding
switches, e.g. --no-binary-id to use normal ids despite the default
configuration or --migration to force generation of the migration.
Read the documentation for mandarin.gen.schema for more information on
attributes.

 Anchor for this section

 Summary

 Functions

 prompt_for_code_injection(context)

 Anchor for this section

Functions

 Link to this function

 prompt_for_code_injection(context)

mix mandarin.gen.html

Generates controller, views, and context for an HTML resource.
mix mandarin.gen.html Admin User users name:string age:integer
The first argument is the context module followed by the schema module
and its plural name (used as the schema table name).
The context is an Elixir module that serves as an API boundary for
the given resource. A context often holds many related resources.
Therefore, if the context already exists, it will be augmented with
functions for the given resource.
Note: A resource may also be split
over distinct contexts (such as admin.User and Payments.User).

The schema is responsible for mapping the database fields into an
Elixir struct.
Overall, this generator will add the following files to lib/:
	a context module in lib/app/admin/admin.ex for the admin API
	a schema in lib/app/admin/user.ex, with an users table
	a view in lib/app_web/views/user_view.ex
	a controller in lib/app_web/controllers/user_controller.ex
	default CRUD templates in lib/app_web/templates/user

A migration file for the repository and test files for the context and
controller features will also be generated.
The location of the web files (controllers, views, templates, etc) in an
umbrella application will vary based on the :context_app config located
in your applications :generators configuration. When set, the Mandarin
generators will generate web files directly in your lib and test folders
since the application is assumed to be isolated to web specific functionality.
If :context_app is not set, the generators will place web related lib
and test files in a web/ directory since the application is assumed
to be handling both web and domain specific functionality.
Example configuration:
config :my_app_web, :generators, context_app: :my_app
Alternatively, the --context-app option may be supplied to the generator:
mix mandarin.gen.html Sales User users --context-app warehouse
Web namespace
By default, the controller and view will be namespaced by the schema name.
You can customize the web module namespace by passing the --web flag with a
module name, for example:
mix mandarin.gen.html Sales User users --web Sales
Which would generate a lib/app_web/controllers/sales/user_controller.ex and
lib/app_web/views/sales/user_view.ex.
Generating without a schema or context file
In some cases, you may wish to bootstrap HTML templates, controllers, and
controller tests, but leave internal implementation of the context or schema
to yourself. You can use the --no-context and --no-schema flags for
file generation control.
table
By default, the table name for the migration and schema will be
the plural name provided for the resource. To customize this value,
a --table option may be provided. For example:
mix mandarin.gen.html admin User users --table cms_users
binary_id
Generated migration can use binary_id for schema's primary key
and its references with option --binary-id.
Default options
This generator uses default options provided in the :generators
configuration of your application. These are the defaults:
config :your_app, :generators,
 migration: true,
 binary_id: false,
 sample_binary_id: "11111111-1111-1111-1111-111111111111"
You can override those options per invocation by providing corresponding
switches, e.g. --no-binary-id to use normal ids despite the default
configuration or --migration to force generation of the migration.
Read the documentation for mandarin.gen.schema for more information on
attributes.

 Anchor for this section

 Summary

 Functions

 inputs(context)

 routes_for_context(context)

 Anchor for this section

Functions

 Link to this function

 inputs(context)

 Link to this function

 routes_for_context(context)

mix mandarin.gen.schema

Generates an Ecto schema and migration.
mix mandarin.gen.schema Blog.Post blog_posts title:string views:integer
The first argument is the schema module followed by its plural
name (used as the table name).
The generated schema above will contain:
	a schema file in lib/my_app/blog/post.ex, with a blog_posts table
	a migration file for the repository

The generated migration can be skipped with --no-migration.
Contexts
Your schemas can be generated and added to a separate OTP app.
Make sure your configuration is properly setup or manually
specify the context app with the --context-app option with
the CLI.
Via config
config :marketing_web, :generators, context_app: :marketing

Via CLI
mix mandarin.gen.schema Blog.Post blog_posts title:string views:integer --context-app marketing
Attributes
The resource fields are given using name:type syntax
where type are the types supported by Ecto. Omitting
the type makes it default to :string:
mix mandarin.gen.schema Blog.Post blog_posts title views:integer
The following types are supported:
	:integer

	:float

	:decimal

	:boolean

	:map

	:string

	:array

	:references

	:text

	:date

	:time

	:naive_datetime

	:utc_datetime

	:uuid

	:binary

	:datetime - An alias for :naive_datetime

The generator also supports references, which we will properly
associate the given column to the primary key column of the
referenced table:
mix mandarin.gen.schema Blog.Post blog_posts title user_id:references:users
This will result in a migration with an :integer column
of :user_id and create an index.
TODO: Support many-to-many relations.
Furthermore an array type can also be given if it is
supported by your database, although it requires the
type of the underlying array element to be given too:
mix mandarin.gen.schema Blog.Post blog_posts tags:array:string
Unique columns can be automatically generated by using:
mix mandarin.gen.schema Blog.Post blog_posts title:unique unique_int:integer:unique
If no data type is given, it defaults to a string.
table
By default, the table name for the migration and schema will be
the plural name provided for the resource. To customize this value,
a --table option may be provided. For example:
mix mandarin.gen.schema Blog.Post posts --table cms_posts
binary_id
Generated migration can use binary_id for schema's primary key
and its references with option --binary-id.
Default options
This generator uses default options provided in the :generators
configuration of your application. These are the defaults:
config :your_app, :generators,
 migration: true,
 binary_id: false,
 sample_binary_id: "11111111-1111-1111-1111-111111111111"
You can override those options per invocation by providing corresponding
switches, e.g. --no-binary-id to use normal ids despite the default
configuration or --migration to force generation of the migration.

mix mandarin.install

Installs the files into your application

 Anchor for this section

 Summary

 Functions

 build(args, app, web_path)

 files_to_be_generated(install)

 sidebar_path(context_app, context_underscore)

 write_p!(path, content)

 Anchor for this section

Functions

 Link to this function

 build(args, app, web_path)

 Link to this function

 files_to_be_generated(install)

 Link to this function

 sidebar_path(context_app, context_underscore)

 Link to this function

 write_p!(path, content)

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

