

 luminous

 v1.2.0

 Table of contents

 	README

 	Applying custom CSS

 	Modules

 	Luminous

 	Luminous.Components

 	Luminous.Dashboard

 	Luminous.Dashboards.DemoDashboardLive

 	Luminous.Dashboards.DemoDashboardLive.Queries

 	Luminous.Dashboards.DemoDashboardLive.Variables

 	Luminous.Live

 	Luminous.Panel

 	Luminous.Panel.Chart

 	Luminous.Panel.Stat

 	Luminous.Panel.Table

 	Luminous.Query

 	Luminous.Query.Attributes

 	Luminous.Query.Result

 	Luminous.TimeRange

 	Luminous.TimeRangeSelector

 	Luminous.Variable

README

[image: test]
[image: Hex.pm]
Luminous
Luminous is a framework for creating dashboards within Phoenix Live
View. It is somewhat inspired by
grafana both conceptually and functionally in that:
	it focuses on time series data (albeit not exclusively)
	it is organized around panels
	it is parameterized by a time range
	it can be parameterized by user-defined variables

Dashboards are defined at compile time using elixir code (see
Luminous.Dashboard.define/4). At runtime, Luminous uses the
following javascript libraries (as live view
hooks)
for supporting client-side visualizations and interactions with the
live view process:
	chartjs for rendering plots
	tabulator for rendering tabular data
	flatpickr for time range selection

Features
	Time range selection and refresh of all dashboard panel queries
	Asynchronous queries and page updates
	User-facing variable dropdowns that are available to panel queries
	Client-side zoom in charts
	Multiple supported chart types (currently :line and :bar)
	Download panel data (CSV, PNG)
	Stat panels (show single or multiple stats)
	Table panels
	Summary statistics in charts

Installation
The package can be installed from hex.pm as follows:
def deps do
 [
 {:luminous, "~> 1.2.0"}
]
end
In order to be able to use the provided components, the library's
javascript and CSS files must be imported to your project:
In assets/js/app.js:
import { ChartJSHook, TableHook, TimeRangeHook } from "luminous"

let Hooks = {
 TimeRangeHook: new TimeRangeHook(),
 ChartJSHook: new ChartJSHook(),
 TableHook: new TableHook()
}

...

let liveSocket = new LiveSocket("/live", Socket, {
 ...
 hooks: Hooks
})
...
Finally, in assets/css/app.css:
@import "../../deps/luminous/dist/luminous.css";
Usage
A demo dashboard has been provided that
showcases some of Luminous' capabilities.
The demo can be inspected live using the project's dev server (run
mix dev in the project and then visit this
page).
Luminous is a framework in the sense that the luminous client is
responsible for specifying queries, variables etc. and Luminous.Live
will call the client's code by setting up all the required plumbing.
In general, a custom dashboard needs to:
	implement the Luminous.Variable behaviour for the
dashboard-specific variables
	implement the Luminous.Query behaviour for loading the necessary
data that will be visualized in the client
	implement the Luminous.TimeRangeSelector behaviour for determining
the default time range for the dashboard
	use the Luminous.Live module for leveraging the live dashboard
functionality and capabilities
	render the dashboard in the view template (only
Luminous.Components.dashboard is necessary but the layout can be
customized by using directly the various components in
Luminous.Components)

Applying custom CSS

luminous provides CSS classes that can be overriden, so that the components match the look and feel of the consumer application. Those classes belong to three luminous components:
	Variables
	Time range selector
	Panel dropdown

Variables
lmn-variable-button
Define the size, shape, background color, on hover behavior, etc. of the variable buttons.
lmn-variable-button-label
Define the font, text size, weight, alignment of the variable button's label.
lmn-variable-button-label-prefix
Define the font, text size, weight, alignment of the variable button's label prefix.
lmn-variable-button-icon
Define the size and alignment of the variable button's chevron icon.
lmn-variable-dropdown
Define the size, background color, rouding, shadows, etc. of the variable dropdown menu.
lmn-variable-dropdown-item-container
Define the text alignment, rounding, on hover behaviour, etc. of each item in the variable dropdown menu.
lmn-variable-dropdown-item-content
Define the size, padding, etc. of the content of each item in the variable dropdown menu.
Time range picker
lmn-time-range-compound
Define the structure of the time range component. This includes the time range picker button, the pressets button and the time zone component.
lmn-time-range-selector
Define the structure, the size and the shape of the time range selector component. This includes the button that opens the custom time range selector and the button that opens the preset menu dropdown.
lmn-custom-time-range-input
Define the size, background color, text size, on hover behavior, etc. of the button that opens the custom date range picker dropdown.
lmn-time-range-presets-button
Define the size, background color, on hover behavior, etc. of the button that opens the time range presets dropdown.
lmn-time-range-presets-button-icon
Define the size and spacing of the icon in the button that opens the time range presets dropdown.
lmn-time-range-presets-dropdown
Define the size, background color, rouding, shadows, etc. of the time range presets dropdown menu.
lmn-time-range-presets-dropdown-item-container
Define the text alignment, rounding, on hover behaviour, etc. of each item in the time range presets dropdown menu.
lmn-time-range-presets-dropdown-item-content
Define the size, padding, etc. of the content of each item in the time range presets dropdown menu.
lmn-time-zone
Define the background color, rounding, text size, etc. of the time zone label
Panel dropdown
lmn-panel-actions-dropdown
Define the size, background color, rouding, shadows, etc. of the panel actions dropdown menu.
lmn-panel-actions-dropdown-item-container
Define the text alignment, rounding, on hover behaviour, etc. of each item in the panel actions dropdown menu.
lmn-panel-actions-dropdown-item-content
Define the size, padding, etc. of the content of each item in the panel actions dropdown menu.
Dropdown transition
lmn-dropdown-transition-enter
Define the animation of all dropdowns when they open up.
lmn-dropdown-transition-start
Define the initial state of the animation of all dropdowns when they open up.
lmn-dropdown-transition-end
Define the final state of the animation of all dropdowns when they open up.
Calendar dropdown
For the calendar dropdown, by default we use the airbnb theme provided by flatpickr.
To change this theme, you have to import the desired theme after importing luminous to your app.css file like so:
@import 'luminous/dist/luminous';
@import '../node_modules/flatpickr/dist/themes/material_blue.css';
The path that the flatpickr theme resides, depends on your project's directory structure.

Luminous

[image: test]
[image: Hex.pm]
Luminous
Luminous is a framework for creating dashboards within Phoenix Live
View. It is somewhat inspired by
grafana both conceptually and functionally in that:
	it focuses on time series data (albeit not exclusively)
	it is organized around panels
	it is parameterized by a time range
	it can be parameterized by user-defined variables

Dashboards are defined at compile time using elixir code (see
Luminous.Dashboard.define/4). At runtime, Luminous uses the
following javascript libraries (as live view
hooks)
for supporting client-side visualizations and interactions with the
live view process:
	chartjs for rendering plots
	tabulator for rendering tabular data
	flatpickr for time range selection

Features
	Time range selection and refresh of all dashboard panel queries
	Asynchronous queries and page updates
	User-facing variable dropdowns that are available to panel queries
	Client-side zoom in charts
	Multiple supported chart types (currently :line and :bar)
	Download panel data (CSV, PNG)
	Stat panels (show single or multiple stats)
	Table panels
	Summary statistics in charts

Installation
The package can be installed from hex.pm as follows:
def deps do
 [
 {:luminous, "~> 1.2.0"}
]
end
In order to be able to use the provided components, the library's
javascript and CSS files must be imported to your project:
In assets/js/app.js:
import { ChartJSHook, TableHook, TimeRangeHook } from "luminous"

let Hooks = {
 TimeRangeHook: new TimeRangeHook(),
 ChartJSHook: new ChartJSHook(),
 TableHook: new TableHook()
}

...

let liveSocket = new LiveSocket("/live", Socket, {
 ...
 hooks: Hooks
})
...
Finally, in assets/css/app.css:
@import "../../deps/luminous/dist/luminous.css";
Usage
A demo dashboard has been provided that
showcases some of Luminous' capabilities.
The demo can be inspected live using the project's dev server (run
mix dev in the project and then visit this
page).
Luminous is a framework in the sense that the luminous client is
responsible for specifying queries, variables etc. and Luminous.Live
will call the client's code by setting up all the required plumbing.
In general, a custom dashboard needs to:
	implement the Luminous.Variable behaviour for the
dashboard-specific variables
	implement the Luminous.Query behaviour for loading the necessary
data that will be visualized in the client
	implement the Luminous.TimeRangeSelector behaviour for determining
the default time range for the dashboard
	use the Luminous.Live module for leveraging the live dashboard
functionality and capabilities
	render the dashboard in the view template (only
Luminous.Components.dashboard is necessary but the layout can be
customized by using directly the various components in
Luminous.Components)

Luminous.Components

This module contains a set of components that can be used to create a dashboard.

 Anchor for this section

 Summary

 Functions

 dashboard(assigns)

 The dashboard component is responsible for rendering all the necessary elements

 description(assigns)

 Attributes
	panel (Luminous.Panel) (required)

 listeners(assigns)

 This component registers the JS event listeners for the panel spinners.

 panel(assigns)

 This component is responsible for rendering the panel's data.
Depending on the panel's type, there will be a different visualization.

 panel_statistics(assigns)

 Attributes
	stats (:map) (required)

 time_range(assigns)

 This component is responsible for rendering the time range component.
It consists of a date range picker and a presets dropdown.

 variable(assigns)

 This component is responsible for rendering the dropdown of the assigned variable.

 Anchor for this section

Functions

 Link to this function

 dashboard(assigns)

 View Source

The dashboard component is responsible for rendering all the necessary elements:
	title
	variables
	time range selector
	panels

Additinally, it registers callbacks for reacting to panel loading states.

 attributes

 Attributes

	dashboard (Luminous.Dashboard) (required)
	panel_data (:map) (required)

 Link to this function

 description(assigns)

 View Source

 attributes

 Attributes

	panel (Luminous.Panel) (required)

 Link to this function

 listeners(assigns)

 View Source

This component registers the JS event listeners for the panel spinners.

 Link to this function

 panel(assigns)

 View Source

This component is responsible for rendering the panel's data.
Depending on the panel's type, there will be a different visualization.

 attributes

 Attributes

	panel (Luminous.Panel) (required)
	variables (:list) (required)
	panel_data (:map) - not used in table panel.
	time_range_selector (Luminous.TimeRangeSelector) - only for the chart panel.

 Link to this function

 panel_statistics(assigns)

 View Source

 attributes

 Attributes

	stats (:map) (required)

 Link to this function

 time_range(assigns)

 View Source

This component is responsible for rendering the time range component.
It consists of a date range picker and a presets dropdown.

 attributes

 Attributes

	dashboard (Luminous.Dashboard) (required)

 Link to this function

 variable(assigns)

 View Source

This component is responsible for rendering the dropdown of the assigned variable.

 attributes

 Attributes

	variable (Luminous.Variable) (required)

Luminous.Dashboard

A dashboard is a high-level component initialized by the dashboard
live view. It contains all the necessary dashboard attributes such as the
panels, variables and the time range selector. It is initialized at
compile time using define/4 and populated at runtime using populate/1.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 default_time_range(dashboard)

 Returns the dashboard's default time range.

 define(title, arg, time_range_selector, opts \\ [])

 Initialize and return a dashboard at compile time.

 path(dashboard, socket, params)

 Returns the LV path for the specific dashboard based on its configuration.

 populate(dashboard)

 Populate the dashboard's dynamic properties (e.g. variable values, time range etc.) at runtime.

 update_current_time_range(dashboard, time_range)

 Update the dashboard's current time range with a new one.

 update_variables(dashboard, new_variables)

 Update the dashboard's variables with a new list.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.Dashboard{
 action: atom(),
 panels: [Luminous.Panel.t()],
 path: (... -> binary()),
 time_range_selector: Luminous.TimeRangeSelector.t(),
 time_zone: binary(),
 title: binary(),
 variables: [Luminous.Variable.t()]
}

 Anchor for this section

Functions

 Link to this function

 default_time_range(dashboard)

 View Source

 @spec default_time_range(t()) :: Luminous.TimeRange.t()

Returns the dashboard's default time range.

 Link to this function

 define(title, arg, time_range_selector, opts \\ [])

 View Source

 @spec define(
 binary(),
 {(... -> binary()), atom()},
 Luminous.TimeRangeSelector.t(),
 Keyword.t()
) :: t()

Initialize and return a dashboard at compile time.

 Link to this function

 path(dashboard, socket, params)

 View Source

 @spec path(t(), Phoenix.LiveView.Socket.t(), Keyword.t()) :: binary()

Returns the LV path for the specific dashboard based on its configuration.

 Link to this function

 populate(dashboard)

 View Source

 @spec populate(t()) :: t()

Populate the dashboard's dynamic properties (e.g. variable values, time range etc.) at runtime.

 Link to this function

 update_current_time_range(dashboard, time_range)

 View Source

 @spec update_current_time_range(t(), Luminous.TimeRange.t()) :: t()

Update the dashboard's current time range with a new one.

 Link to this function

 update_variables(dashboard, new_variables)

 View Source

 @spec update_variables(t(), [Luminous.Variable.t()]) :: t()

Update the dashboard's variables with a new list.

Luminous.Dashboards.DemoDashboardLive

This module demonstrates the functionality of a dashboard using Luminous.Live.

Luminous.Dashboards.DemoDashboardLive.Queries

This is where we implement the Luminous.Query behaviour, i.e. all queries
that will be visualized in the dashboard's panels (a panel can
have multiple queries).
All queries have access to the current dashboard variable values
and the selected time range.
All queries must return a Luminous.Query.Result with optional attributes
that specify the visual characteristics of the particular data set
(see Luminous.Query.Attributes).
More details in Luminous.Query.

Luminous.Dashboards.DemoDashboardLive.Variables

This is where we implement the Luminous.Variable behaviour, i.e. define
the dashboard's variables displayed as dropdowns in the view
The first value in each list is the default one.
Values can be either simple (a single binary) or descriptive
(label different than the value).
Variables values are available within queries where they can serve
as parameters.
More details in Luminous.Variable.

Luminous.Live

This module contains a macro that contains the functionality of a dashboard LiveView.
For more information see Luminous.Dashboards.DemoDashboardLive.

Luminous.Panel behaviour

A panel represents a single visual element (chart) in a dashboard
contains many queries.

 Anchor for this section

 Summary

 Types

 panel_type()

 t()

 Callbacks

 transform(t)

 transform a query result to view data acc. to the panel type

 Functions

 define(id, title, type, queries, opts \\ [])

 Initialize a panel at compile time.

 dom_id(panel)

 Returns the DOM id of the given panel.

 is_panel(type)

 refresh(panel, variables, time_range)

 Refresh all panel queries.

 Anchor for this section

Types

 Link to this type

 panel_type()

 View Source

 @type panel_type() :: :chart | :stat | :table

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.Panel{
 description: binary(),
 hook: binary(),
 id: atom(),
 queries: [Luminous.Query.t()],
 stacked_x: boolean(),
 stacked_y: boolean(),
 title: binary(),
 type: panel_type(),
 unit: binary(),
 xlabel: binary(),
 ylabel: binary()
}

 Anchor for this section

Callbacks

 Link to this callback

 transform(t)

 View Source

 @callback transform(Luminous.Query.Result.t()) :: any()

transform a query result to view data acc. to the panel type

 Anchor for this section

Functions

 Link to this function

 define(id, title, type, queries, opts \\ [])

 View Source

 @spec define(atom(), binary(), panel_type(), [Luminous.Query.t()], Keyword.t()) :: t()

Initialize a panel at compile time.

 Link to this function

 dom_id(panel)

 View Source

 @spec dom_id(t()) :: binary()

Returns the DOM id of the given panel.

 Link to this macro

 is_panel(type)

 View Source

 (macro)

 Link to this function

 refresh(panel, variables, time_range)

 View Source

Refresh all panel queries.

Luminous.Panel.Chart

 Anchor for this section

 Summary

 Functions

 statistics(rows, label)

 Anchor for this section

Functions

 Link to this function

 statistics(rows, label)

 View Source

Luminous.Panel.Stat

Luminous.Panel.Table

Luminous.Query behaviour

A query is embedded in a panel and contains a function
which will be executed upon panel refresh to fetch the query's data.

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 query(atom, t, list)

 A module must implement this behaviour to be passed as an argument to Luminous.Query.define/2.
A query must return a list of 2-tuples

 Functions

 define(id, mod)

 Initialize a query at compile time. The module must implement the Luminous.Query behaviour.

 execute(query, time_range, variables)

 Execute the query and return the data as multiple TimeSeries structs.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.Query{id: atom(), mod: module()}

 Anchor for this section

Callbacks

 Link to this callback

 query(atom, t, list)

 View Source

 @callback query(atom(), Luminous.TimeRange.t(), [Luminous.Variable.t()]) ::
 Luminous.Query.Result.t()

A module must implement this behaviour to be passed as an argument to Luminous.Query.define/2.
A query must return a list of 2-tuples:
	the 2-tuple's first element is the time series' label
	the 2-tuple's second element is the label's value
the list must contain a 2-tuple with the label :time and a DateTime value.

 Anchor for this section

Functions

 Link to this function

 define(id, mod)

 View Source

 @spec define(atom(), module()) :: t()

Initialize a query at compile time. The module must implement the Luminous.Query behaviour.

 Link to this function

 execute(query, time_range, variables)

 View Source

 @spec execute(t(), Luminous.TimeRange.t(), [Luminous.Variable.t()]) ::
 Luminous.Query.Result.t()

Execute the query and return the data as multiple TimeSeries structs.

Luminous.Query.Attributes

This struct collects all the attributes that apply to a particular Dataset.
It is specified in the attrs argument of Luminous.Query.Result.new/2.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 define()

 define(opts)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.Query.Attributes{
 fill: boolean(),
 halign: :left | :center | :right,
 order: non_neg_integer() | nil,
 title: binary(),
 type: :line | :bar,
 unit: binary()
}

 Anchor for this section

Functions

 Link to this function

 define()

 View Source

 @spec define() :: t()

 Link to this function

 define(opts)

 View Source

 @spec define(Keyword.t()) :: t()

Luminous.Query.Result

A query Result wraps a columnar data frame with multiple variables.
attrs is a map where keys are variable labels (as specified
in the query's select statement) and values are keyword lists with
visualization properties for the corresponding DataSet. See
Luminous.Query.DataSet.new/3 for details.

 Anchor for this section

 Summary

 Types

 label()

 point()

 row()

 t()

 value()

 Functions

 new(rows, opts \\ [])

 This function can be called in the following ways

 Anchor for this section

Types

 Link to this type

 label()

 View Source

 @type label() :: atom() | binary()

 Link to this type

 point()

 View Source

 @type point() :: {label(), value()}

 Link to this type

 row()

 View Source

 @type row() :: [point()] | map()

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.Query.Result{
 attrs: %{required(binary()) => Luminous.Query.Attributes.t()},
 rows: row()
}

 Link to this type

 value()

 View Source

 @type value() :: number() | Decimal.t() | binary() | nil

 Anchor for this section

Functions

 Link to this function

 new(rows, opts \\ [])

 View Source

 @spec new([row()] | row() | point() | value(), Keyword.t()) :: t()

This function can be called in the following ways:
	with a list of rows, i.e. a list of lists containing 2-tuples {label, value}
	with a single row, i.e. a list of 2-tuples of the form {label, value} (e.g. in the case of single- or multi- stats)
	with a single value (for use in a single-valued stat panel with no label)

Luminous.TimeRange

This module defines a struct with two fields (:from and :to) to represent a time range.
Additionally, various helper functions are defined that operate on time ranges.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add(dt, n, atom)

 from_iso(from_iso, to_iso)

 from_unix(from_unix, to_unix)

 last_month(tz, now \\ nil)

 last_n_days(n, tz, now \\ nil)

 last_week(tz, now \\ nil)

 new(from, to)

 round(dt, atom)

 shift_zone!(time_range, time_zone)

 this_month(tz, now \\ nil)

 this_week(tz, now \\ nil)

 to_map(time_range)

 today(tz, now \\ nil)

 tomorrow(tz, now \\ nil)

 yesterday(tz, now \\ nil)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.TimeRange{from: DateTime.t(), to: DateTime.t()}

 Anchor for this section

Functions

 Link to this function

 add(dt, n, atom)

 View Source

 @spec add(DateTime.t(), integer(), atom()) :: DateTime.t()

 Link to this function

 from_iso(from_iso, to_iso)

 View Source

 @spec from_iso(binary(), binary()) :: t()

 Link to this function

 from_unix(from_unix, to_unix)

 View Source

 @spec from_unix(non_neg_integer(), non_neg_integer()) :: t()

 Link to this function

 last_month(tz, now \\ nil)

 View Source

 @spec last_month(binary(), DateTime.t() | nil) :: t()

 Link to this function

 last_n_days(n, tz, now \\ nil)

 View Source

 @spec last_n_days(non_neg_integer(), binary(), DateTime.t() | nil) :: t()

 Link to this function

 last_week(tz, now \\ nil)

 View Source

 @spec last_week(binary(), DateTime.t() | nil) :: t()

 Link to this function

 new(from, to)

 View Source

 @spec new(DateTime.t(), DateTime.t()) :: t()

 Link to this function

 round(dt, atom)

 View Source

 @spec round(DateTime.t(), atom()) :: DateTime.t()

 Link to this function

 shift_zone!(time_range, time_zone)

 View Source

 @spec shift_zone!(t(), binary()) :: t()

 Link to this function

 this_month(tz, now \\ nil)

 View Source

 @spec this_month(binary(), DateTime.t() | nil) :: t()

 Link to this function

 this_week(tz, now \\ nil)

 View Source

 @spec this_week(binary(), DateTime.t() | nil) :: t()

 Link to this function

 to_map(time_range)

 View Source

 @spec to_map(t()) :: map()

 Link to this function

 today(tz, now \\ nil)

 View Source

 @spec today(binary(), DateTime.t() | nil) :: t()

 Link to this function

 tomorrow(tz, now \\ nil)

 View Source

 @spec tomorrow(binary(), DateTime.t() | nil) :: t()

 Link to this function

 yesterday(tz, now \\ nil)

 View Source

 @spec yesterday(binary(), DateTime.t() | nil) :: t()

Luminous.TimeRangeSelector behaviour

A selector represents the widget in the dashboard that allows
for selecting a time range/period. It is defined at compile time
and populated at compile time (current value).
It can also be updated with a new value.

 Anchor for this section

 Summary

 Types

 preset()

 t()

 time_zone()

 Callbacks

 default_time_range(time_zone)

 This behaviour needs to be implemented by the module that is passed to define/2.

 Functions

 default_time_range(selector, time_zone)

 Returns the default time range of the selector, in the given time zone.

 define(mod, opts \\ [])

 Initialize and return a time range selector at compile time.

 get_time_range_for(selector, preset, time_zone)

 Calculates and returns the time range for the given preset in the given
time zone.

 populate(selector, time_zone)

 Populate the selector's dynamic properties (e.g. current time range) at runtime.

 presets()

 Returns a list with the available time range presets.

 update_current(selector, time_range)

 Updates the current time range of the selector.

 Anchor for this section

Types

 Link to this type

 preset()

 View Source

 @type preset() :: binary()

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.TimeRangeSelector{
 current_time_range: nil | Luminous.TimeRange.t(),
 hook: binary(),
 id: binary(),
 mod: module()
}

 Link to this type

 time_zone()

 View Source

 @type time_zone() :: binary()

 Anchor for this section

Callbacks

 Link to this callback

 default_time_range(time_zone)

 View Source

 @callback default_time_range(time_zone()) :: Luminous.TimeRange.t()

This behaviour needs to be implemented by the module that is passed to define/2.

 Anchor for this section

Functions

 Link to this function

 default_time_range(selector, time_zone)

 View Source

 @spec default_time_range(t(), time_zone()) :: Luminous.TimeRange.t()

Returns the default time range of the selector, in the given time zone.

 Link to this function

 define(mod, opts \\ [])

 View Source

 @spec define(module(), Keyword.t()) :: t()

Initialize and return a time range selector at compile time.

 Link to this function

 get_time_range_for(selector, preset, time_zone)

 View Source

 @spec get_time_range_for(t(), preset(), time_zone()) :: Luminous.TimeRange.t()

Calculates and returns the time range for the given preset in the given
time zone.

 Link to this function

 populate(selector, time_zone)

 View Source

 @spec populate(t(), time_zone()) :: t()

Populate the selector's dynamic properties (e.g. current time range) at runtime.

 Link to this function

 presets()

 View Source

 @spec presets() :: [preset()]

Returns a list with the available time range presets.

 Link to this function

 update_current(selector, time_range)

 View Source

 @spec update_current(t(), Luminous.TimeRange.t()) :: t()

Updates the current time range of the selector.

Luminous.Variable behaviour

A variable is defined at compile time and its values are determined at runtime.
It also stores a current value that can be updated. A variable value is
descriptive in that it contains a label (for display purposes) and the actual value.

 Anchor for this section

 Summary

 Types

 descriptive_value()

 simple_value()

 t()

 Callbacks

 variable(atom)

 A module must implement this behaviour to be passed as an argument to define/3.

 Functions

 define(id, label, mod)

 Defines a new variable and returns the struct does not
calculate the values yet (see populate/1).
The module must implement the Luminous.Variable behaviour.

 extract_label(arg1)

 Extracts and returns the label from the descriptive variable value.

 extract_value(arg1)

 Extract and returns the value from the descriptive variable value.

 find(variables, id)

 Find and return the variable with the specified id in the supplied variables.

 get_current(arg1)

 Returns the variable's current (descriptive) value or nil.

 get_current_and_extract_value(variables, variable_id)

 Find the variable with the supplied id in the supplied variables
and return its current extracted value.

 populate(var)

 Uses the query to populate the variables's values and returns the new struct.
Additionally, it sets the current value to be the first of the calculated values.

 update_current(var, new_value)

 Replaces the variables current value with the new value and returns the new struct.
It performs a check whether the supplied value is a valid value (i.e. exists in values).
If it's not, then it returns the struct unchanged.

 Anchor for this section

Types

 Link to this type

 descriptive_value()

 View Source

 @type descriptive_value() :: %{label: binary(), value: binary()}

 Link to this type

 simple_value()

 View Source

 @type simple_value() :: binary()

 Link to this type

 t()

 View Source

 @type t() :: %Luminous.Variable{
 current: descriptive_value() | nil,
 id: atom(),
 label: binary(),
 mod: module(),
 values: [descriptive_value()]
}

 Anchor for this section

Callbacks

 Link to this callback

 variable(atom)

 View Source

 @callback variable(atom()) :: [simple_value() | descriptive_value()]

A module must implement this behaviour to be passed as an argument to define/3.

 Anchor for this section

Functions

 Link to this function

 define(id, label, mod)

 View Source

 @spec define(atom(), binary(), module()) :: t()

Defines a new variable and returns the struct does not
calculate the values yet (see populate/1).
The module must implement the Luminous.Variable behaviour.

 Link to this function

 extract_label(arg1)

 View Source

 @spec extract_label(descriptive_value()) :: binary()

Extracts and returns the label from the descriptive variable value.

 Link to this function

 extract_value(arg1)

 View Source

 @spec extract_value(descriptive_value()) :: binary()

Extract and returns the value from the descriptive variable value.

 Link to this function

 find(variables, id)

 View Source

 @spec find([t()], atom()) :: t() | nil

Find and return the variable with the specified id in the supplied variables.

 Link to this function

 get_current(arg1)

 View Source

 @spec get_current(t()) :: descriptive_value() | nil

Returns the variable's current (descriptive) value or nil.

 Link to this function

 get_current_and_extract_value(variables, variable_id)

 View Source

 @spec get_current_and_extract_value([t()], atom()) :: binary()

Find the variable with the supplied id in the supplied variables
and return its current extracted value.

 Link to this function

 populate(var)

 View Source

 @spec populate(t()) :: t()

Uses the query to populate the variables's values and returns the new struct.
Additionally, it sets the current value to be the first of the calculated values.

 Link to this function

 update_current(var, new_value)

 View Source

 @spec update_current(t(), binary()) :: t()

Replaces the variables current value with the new value and returns the new struct.
It performs a check whether the supplied value is a valid value (i.e. exists in values).
If it's not, then it returns the struct unchanged.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

