

 LogicalFile

 v1.0.3

 Table of contents

 	Modules

 	LogicalFile

 	LogicalFile.Macro

 	LogicalFile.Macros.Include

 	LogicalFile.Macros.LineComment

 	LogicalFile.Section

LogicalFile

LogicalFile
One file from many
LogicalFile is a way of creating a logical representation of a unit of lines
of text (e.g. a source code file) supplied by one or more backing files,
presumably separate files on disk. It also provides for a system of macros
that can transform the logical text.
A typical use case for LogicalFile would be to implement a compiler that has
#include style functionality. The compiler works on the whole text but
can translate logical line numbers back to specific files and local line
numbers (for example when an error occurs it can pinpoint the specific file
and line the error arose in).

 Anchor for this section

 Summary

 Types

 t()

 Functions

 assemble(base_path, sections)

 assemble/2 returns a LogicalFile composed of the Sections specified in
the second argument. This is mainly intended for internal use when modifying
a LogicalFile during macro processing.

 contains_source?(logical_file, source_path)

 contains_source?/2 returns true if at least one section from the given
LogicalFile originates from the specified source_path.

 insert(file, source_path, at_line)

 insert/3 inserts a new Section into the LogicalFile at the specified
logical line number at_line and containing the contents of the source_path.

 last_line_number(file)

 last_line_number/1 returns the line number of the last line in the
specified LogicalFile.

 line(file, lno)

 line/2 returns the specified logical line number from the LogicalFile
at lno.

 lines(file)

 lines/1 returns a list of all lines in the LogicalFile in line number
order.

 lines(file, logical_line_range)

 lines/2 takes a LogicalFile and a range of logical line numbers and
returns a list of tuples in the form {file, line} for the corresponding
lines.

 partition_sections(sections, at_line)

 partition_sections/2 accepts a list of Sections and a logical
line number at_line representing an insertion point. It returns a tuple
{sections_before, insert_section, sections_after} by finding the Section
containing at_line and partitioning the remaining Sections around it.

 read(base_path, source_path, macros \\ [])

 read/3 returns a new LogicalFile containing Sections that
represent the contents of the file specified by source_path relative to
base_path and as modified by the macros it is initialised with.

 resolve_line(file, logical_lno)

 resolve_line/2 takes a logical line number logical_lno and returns a
tuple {file, local_line_no} representing the file and file line number
that logical line represents.

 section_including_line(file, lno)

 section_including_line/2 returns the Section that contains the logical
line lno.

 sections_in_order(logical_file)

 sections_in_order/1 takes the Sections backing a LogicalFile and
returns them as a list, ordered by the range of logical line numbers they
represent.

 sections_to_map(sections)

 sections_to_map/1 takes a list of Sections and returns a Map whose
keys are the logical line number ranges of the sections, mapped to the
corresponding sections.

 size(logical_file)

 size/1 returns the number of lines in the LogicalFile.

 update_line(file, lno, fun)

 update_line/3 replaces the content of line lno in the specified
LogicalFile by passing the current contents of the line to the specified
transformation function. This function is expected to return the new
contents of the line.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %LogicalFile{base_path: nil | binary(), sections: map()}

 Anchor for this section

Functions

 Link to this function

 assemble(base_path, sections)

 View Source

assemble/2 returns a LogicalFile composed of the Sections specified in
the second argument. This is mainly intended for internal use when modifying
a LogicalFile during macro processing.

 Link to this function

 contains_source?(logical_file, source_path)

 View Source

contains_source?/2 returns true if at least one section from the given
LogicalFile originates from the specified source_path.

 Examples

iex> file = LogicalFile.read("test/support", "main.source")
iex> assert not LogicalFile.contains_source?(file, "test/support/player.source")
iex> assert LogicalFile.contains_source?(file, "test/support/main.source")

 Link to this function

 insert(file, source_path, at_line)

 View Source

insert/3 inserts a new Section into the LogicalFile at the specified
logical line number at_line and containing the contents of the source_path.
It guarantees that all sections and the logical file remains contiguous.

 Examples

 Link to this function

 last_line_number(file)

 View Source

last_line_number/1 returns the line number of the last line in the
specified LogicalFile.

 Examples

iex> alias LogicalFile.Section
iex> file = LogicalFile.read("test/support", "main.source")
iex> assert 11 = LogicalFile.last_line_number(file)

 Link to this function

 line(file, lno)

 View Source

line/2 returns the specified logical line number from the LogicalFile
at lno.

 Example

iex> file = LogicalFile.read("test/support", "main.source")
iex> assert "%(include.source)" = LogicalFile.line(file, 6)

 Link to this function

 lines(file)

 View Source

lines/1 returns a list of all lines in the LogicalFile in line number
order.

 Link to this function

 lines(file, logical_line_range)

 View Source

lines/2 takes a LogicalFile and a range of logical line numbers and
returns a list of tuples in the form {file, line} for the corresponding
lines.

 Link to this function

 partition_sections(sections, at_line)

 View Source

partition_sections/2 accepts a list of Sections and a logical
line number at_line representing an insertion point. It returns a tuple
{sections_before, insert_section, sections_after} by finding the Section
containing at_line and partitioning the remaining Sections around it.

 Link to this function

 read(base_path, source_path, macros \\ [])

 View Source

read/3 returns a new LogicalFile containing Sections that
represent the contents of the file specified by source_path relative to
base_path and as modified by the macros it is initialised with.
Macros should implement the LogicalFile.Macro behaviours and should be
specified as a list of tuples of the form {module, [options keyword list]}.
See LogicalFile.Macro for further details.

 Examples

iex> file = LogicalFile.read("test/support", "main.source")
iex> assert 11 = LogicalFile.size(file)

 Link to this function

 resolve_line(file, logical_lno)

 View Source

resolve_line/2 takes a logical line number logical_lno and returns a
tuple {file, local_line_no} representing the file and file line number
that logical line represents.

 Examples

iex> alias LogicalFile.Macros.Include
iex> file = LogicalFile.read("test/support", "main.source")
iex> assert {"test/support/main.source", 1} = LogicalFile.resolve_line(file, 1)

 Link to this function

 section_including_line(file, lno)

 View Source

section_including_line/2 returns the Section that contains the logical
line lno.

 Examples

iex> alias LogicalFile.Section
iex> section1 = Section.new("test/support/main.source")
iex> section2 = Section.new("test/support/include.source") |> Section.shift(Section.size(section1))
iex> map = LogicalFile.assemble("test/support", [section1, section2])
iex> assert ^section1 = LogicalFile.section_including_line(map, section1.range.first)
iex> assert ^section2 = LogicalFile.section_including_line(map, section2.range.first)

 Link to this function

 sections_in_order(logical_file)

 View Source

sections_in_order/1 takes the Sections backing a LogicalFile and
returns them as a list, ordered by the range of logical line numbers they
represent.

 Link to this function

 sections_to_map(sections)

 View Source

sections_to_map/1 takes a list of Sections and returns a Map whose
keys are the logical line number ranges of the sections, mapped to the
corresponding sections.

 Link to this function

 size(logical_file)

 View Source

size/1 returns the number of lines in the LogicalFile.

 Examples

iex> file = LogicalFile.read("test/support", "main.source")
iex> 11 = LogicalFile.size(file)

 Link to this function

 update_line(file, lno, fun)

 View Source

update_line/3 replaces the content of line lno in the specified
LogicalFile by passing the current contents of the line to the specified
transformation function. This function is expected to return the new
contents of the line.

 Examples

iex> assert " " =
...> LogicalFile.read("test/support", "main.source")
...> |> LogicalFile.update_line(6, fn line -> String.duplicate(" ", String.length(line)) end)
...> |> LogicalFile.line(6)

LogicalFile.Macro behaviour

A Macro represents a LogicalFile transformation.
Each Macro is implemented by a module through the apply_macro callback
with zero or more arguments in a keyword list.
A 'Macro invocation' is specified as a tuple in the form
{module, [options keyword list]}. A macro is called through the
apply_macro callback which takes a LogicalFile and returns a
possibly transformed LogicalFile.
The macro processor applies macros in turn to a base LogicalFile and each
macro is expected to return a valid LogicalFile.
Sample macro implementations are provided for handling file includes
(LogicalFile.Macros.Include) and single-line comments
(LogicalFile.Macros.LineComment).

 Anchor for this section

 Summary

 Callbacks

 apply_macro(file, options)

 perform macro behaviour on a LogicalFile

 invocation(options)

 generate macro invocation

 Functions

 apply_macros(unprocessed_file, macro_list)

 apply_macros/2 takes a LogicalFile and a list of macro invocations
and applies each macro to transform the LogicalFile.

 Anchor for this section

Callbacks

 Link to this callback

 apply_macro(file, options)

 View Source

 Specs

 apply_macro(file :: LogicalFile.t(), options :: list()) :: LogicalFile.t()

perform macro behaviour on a LogicalFile

 Link to this callback

 invocation(options)

 View Source

 Specs

 invocation(options :: list()) :: tuple()

generate macro invocation

 Anchor for this section

Functions

 Link to this function

 apply_macros(unprocessed_file, macro_list)

 View Source

apply_macros/2 takes a LogicalFile and a list of macro invocations
and applies each macro to transform the LogicalFile.

LogicalFile.Macros.Include

A sample implementation of a macro that provides 'include file' functionality.
It uses a regular expression to identiy include directives and inserts the
contents of an included file into the LogicalFile at the appropriate place.
It supports included files also including other files.

 Anchor for this section

 Summary

 Functions

 process_includes(file, expr, from_line \\ 1)

 The general strategy is to work section-by-section. Where a section includes
a line that matches the macro expression (which must have a file named
capture to indicate the file to be included) the line is replaced with
blanks, the file is inserted, and the search is restarted on the existing
section (that could have more than one include), otherwise it is restarted
using the next section.

 Anchor for this section

Functions

 Link to this function

 process_includes(file, expr, from_line \\ 1)

 View Source

The general strategy is to work section-by-section. Where a section includes
a line that matches the macro expression (which must have a file named
capture to indicate the file to be included) the line is replaced with
blanks, the file is inserted, and the search is restarted on the existing
section (that could have more than one include), otherwise it is restarted
using the next section.

LogicalFile.Macros.LineComment

A sample implementation of a macro that supports single-line comments where
a comment expression is recognised at the beginning of a line and it
transforms the entire content of that line into whitespace. Note that this
does not allow a line comment to appear at the end of an expression!
While a regular expression could be specified to recognise whitespace as part
of the comment marker a more sophisticated implementation would allow the
comment marker to appear after an expression. It is also left as an exercise
to implement multi-line comments (a la C /.../)

 Anchor for this section

 Summary

 Functions

 process_comments(file, expr)

 The general strategy is to process sections in order.
For each section find any line matching the expression and
transform the entire contents of the line into whitespace.

 Anchor for this section

Functions

 Link to this function

 process_comments(file, expr)

 View Source

The general strategy is to process sections in order.
For each section find any line matching the expression and
transform the entire contents of the line into whitespace.

LogicalFile.Section

A Section represents lines of text from a backing file that represent
a range of logical line numbers within a LogicalFile.
Fields
	source_path the fully qualified file name of the backing file that
the Section represents.
	range the range of logical line numbers the Section represents
	lines a list of the lines in the Section
	offset a value that transforms a logical line number to a local
line number within the backing file.

In the simple case a Section represents the entire contents of a backing
file. However, a Section can be split and moved (for example when another
Section is inserted within its range). Here the offset is adjusted to
allow the conversion of logical line numbers to local line numbers in the
backing file.

 Anchor for this section

 Summary

 Functions

 first_line_number(section)

 first_line_number/1 returns the first logical line number of the specified
Section.

 last_line_number(section)

 last_line_number/1 returns the last logical line number of the specified
Section.

 line(section, lno)

 line/2 returns a String containing the contents of logical line number
lno which is expected to be within the range the Section represents.

 line_matching(section, pred_fn)

 line_matching/2 takes a Section and either a predicate function or a
regular expression and returns a tuple {logical_line_no, line} representing
the first line from the Section that matches.

 lines_matching(section, fun)

 lines_matching/2 takes a Section and either a predicate function or a
regular expression and returns a list of tuples of the form
{logical_lno, line} for each line that matches.

 new(source_path)

 new/1 creates a new Section representing lines from the specified file.

 new(source_path, range, lines, offset \\ 0)

 resolve_line(section, line)

 resolve_line/2 takes a Section and a logical line number line that is
expected to be within the range of the Section and returns a tuple
{file, line} representing the file backing the Section and the
corresponding local line number within the Section

 set_offset(section, new_offset)

 set_offset/2 replaces the line number offset of the specified Section.

 set_range(section, new_range)

 set_range/2 replaces the logical line number range of the specified
Section.

 shift(section, by_lines)

 shift/2 takes a Section and a number of lines to offset the section
by_lines and returns a new Section containing the same lines with the
logical line number range and offset shifted appropriately.

 size(section)

 size/1 returns the number of lines in the specified Section.

 split(section)

 split/2 takes a Section and a logical line number at_line expected to be
within the Section and returns a tuple {before_section, after_section}
derived by splitting the contents of the Section at the specified line.

 split(section, lo)

 splittable?(section)

 splittable?/1 takes a Section and determines whether it is splittable. In
general it's not splittable if it contains only one line.

 total_size(sections)

 total_size/1 returns the number of lines contained in the given list of
Sections.

 update_line(section, lno, fun)

 update_line/3 takes a Section a logical number number expected to be
within the Section and a function. It replaces that line with the result
of calling the function with the existing line.

 Anchor for this section

Functions

 Link to this function

 first_line_number(section)

 View Source

first_line_number/1 returns the first logical line number of the specified
Section.

 Link to this function

 last_line_number(section)

 View Source

last_line_number/1 returns the last logical line number of the specified
Section.

 Link to this function

 line(section, lno)

 View Source

line/2 returns a String containing the contents of logical line number
lno which is expected to be within the range the Section represents.

 Examples

iex> alias LogicalFile.Section
iex> section = Section.new("test/support/main.source")
iex> assert "%(include.source)" = Section.line(section, 6)

 Link to this function

 line_matching(section, pred_fn)

 View Source

line_matching/2 takes a Section and either a predicate function or a
regular expression and returns a tuple {logical_line_no, line} representing
the first line from the Section that matches.

 Examples

iex> alias LogicalFile.Section
iex> section = Section.new("test/support/main.source")
iex> include = ~r/%((?<file>.*))/
iex> assert {6, "%(include.source)"} = Section.line_matching(section, fn line -> String.length(line) > 5 end)
iex> assert {6, "%(include.source)"} = Section.line_matching(section, include)

 Link to this function

 lines_matching(section, fun)

 View Source

lines_matching/2 takes a Section and either a predicate function or a
regular expression and returns a list of tuples of the form
{logical_lno, line} for each line that matches.

 Examples

iex> alias LogicalFile.Section
iex> section = Section.new("test/support/commented.source")
iex> assert [{3, "%% nothing here"}, {6, "%% or here"}] = Section.lines_matching(section, fn line ->
...> String.starts_with?(line, "%%")
...> end)
iex> assert [{1, "one"}, {2, "two"}, {8, "six"}] = Section.lines_matching(section, fn line -> String.length(line) <4 end)

 Link to this function

 new(source_path)

 View Source

new/1 creates a new Section representing lines from the specified file.
new/4 creates a new Section representing the contents of the file specified
by source_path and representing a particular range of logical line numbers
and their offset
new/4 for more information.
a range of lines with an offset.
he offset determines how the line numbers in the range are converted into lines in the
source file. For example if the offset is -5 then line 10 will correspond to
line 5 of the source file.

 Examples

iex> alias LogicalFile.Section
iex> section = Section.new("test/support/main.source")
iex> assert "test/support/main.source" = section.source_path
iex> assert 11 = Section.size(section)
iex> assert 1..11 = section.range
iex> assert 0 = section.offset

iex> alias LogicalFile.Section
iex> %Section{source_path: source_path, range: range, lines: lines} =
...> Section.new("foo.source", 1..6, ["one", "two", "three", "four", "five", "six"])
iex> assert "foo.source" = source_path
iex> assert 1..6 = range
iex> assert 6 = Enum.count(lines)

iex> alias LogicalFile.Section
iex> %Section{offset: offset} = Section.new("foo.source", 1..2, ["one", "two"], -7)
iex> assert -7 = offset

iex> alias LogicalFile.Section
iex> assert_raise(RuntimeError, fn ->
...> %Section{} =
...> Section.new("foo.source", 1..5, ["one", "two", "three", "four"])
...> end)

 Link to this function

 new(source_path, range, lines, offset \\ 0)

 View Source

 Link to this function

 resolve_line(section, line)

 View Source

resolve_line/2 takes a Section and a logical line number line that is
expected to be within the range of the Section and returns a tuple
{file, line} representing the file backing the Section and the
corresponding local line number within the Section
number
Maps a line number coming from a source map that may include many sections
into a line number relative to the section. For example a section may represent
source included from another file.
E.g. File 1 contains 20 lines & File 2 contains 10 lines if we insert File 2
we get a structure like:
Lines 1..10 => File 1: Lines 1..10
Lines 11..20 => File 2: Lines 1..10
Lines 21..30 => File 1: Lines 11..20
If we ask for line 15 this maps to File 2, line 5. This means file 2 is
offset from the map by -10. If we ask for line 25 this maps to file 1
line 15, again offset by -10.

 Examples

iex> alias LogicalFile.Section
iex> section =
...> Section.new("test/support/main.source")
...> |> Section.set_range(21..30)
...> |> Section.set_offset(-10)
iex> assert {"test/support/main.source", 15} = Section.resolve_line(section, 25)

 Link to this function

 set_offset(section, new_offset)

 View Source

set_offset/2 replaces the line number offset of the specified Section.

 Link to this function

 set_range(section, new_range)

 View Source

set_range/2 replaces the logical line number range of the specified
Section.

 Link to this function

 shift(section, by_lines)

 View Source

shift/2 takes a Section and a number of lines to offset the section
by_lines and returns a new Section containing the same lines with the
logical line number range and offset shifted appropriately.

 Examples

iex> alias LogicalFile.Section
iex> section =
...> Section.new("foo.source", 1..4, ["one", "two", "three", "four"])
...> |> Section.shift(10)
iex> assert 11..14 = section.range
iex> assert -10 = section.offset

 Link to this function

 size(section)

 View Source

size/1 returns the number of lines in the specified Section.

 Examples

iex> alias LogicalFile.Section
iex> section = Section.new("foo.source", 1..4, ["one", "two", "three", "four"])
iex> assert 4 = Section.size(section)

 Link to this function

 split(section)

 View Source

split/2 takes a Section and a logical line number at_line expected to be
within the Section and returns a tuple {before_section, after_section}
derived by splitting the contents of the Section at the specified line.
The before_section contains all lines up to the specified line, the
after_section contains all lines from the specified line to the end of
the Section.

 Examples

iex> alias LogicalFile.Section
iex> section = Section.new("foo.source", 1..6, ["one", "two", "three", "four", "five", "six"])
iex> {%Section{} = first, %Section{} = second} = Section.split(section, 4)
iex> assert "foo.source" = first.source_path
iex> assert 1..3 = first.range
iex> assert ["one", "two", "three"] = first.lines
iex> assert "foo.source" = second.source_path
iex> assert 4..6 = second.range
iex> assert ["four", "five", "six"] = second.lines

iex> alias LogicalFile.Section
iex> assert_raise(RuntimeError, fn ->
...> section = Section.new("foo.source", 1..4, ["one", "two", "three", "four"])
...> Section.split(section, 0)
...> end)

iex> alias LogicalFile.Section
iex> section = Section.new("foo.source", 1..3, ["alpha", "beta", "delta"]) |> Section.shift(36)
iex> {s1, s2} = Section.split(section, 38)
iex> assert %Section{range: 37..37, offset: -36, lines: ["alpha"]} = s1
iex> assert %Section{range: 38..39, offset: -36, lines: ["beta", "delta"]} = s2

 Link to this function

 split(section, lo)

 View Source

 Link to this function

 splittable?(section)

 View Source

splittable?/1 takes a Section and determines whether it is splittable. In
general it's not splittable if it contains only one line.

 Examples

iex> alias LogicalFile.Section
iex> section1 = Section.new("bar.source", 1..1, ["one"])
iex> section2 = Section.new("foo.source", 1..2, ["one", "two"])
iex> assert not Section.splittable?(section1)
iex> assert Section.splittable?(section2)

 Link to this function

 total_size(sections)

 View Source

total_size/1 returns the number of lines contained in the given list of
Sections.

 Examples

iex> alias LogicalFile.Section
iex> section1 = Section.new("foo.source", 1..4, ["one", "two", "three", "four"])
iex> section2 = Section.new("bar.source", 5..7, ["alpha", "beta", "delta"])
iex> assert 7 = Section.total_size([section1, section2])

 Link to this function

 update_line(section, lno, fun)

 View Source

update_line/3 takes a Section a logical number number expected to be
within the Section and a function. It replaces that line with the result
of calling the function with the existing line.

 Examples

iex> alias LogicalFile.Section
iex> section = Section.new("test/support/main.source")
...> |> Section.update_line(6, fn line -> String.duplicate(" ", String.length(line)) end)
iex> assert " " = Section.line(section, 6)

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

