

 liberator

 v1.3.0

 Table of contents

 	Liberator

 	Changelog

 	Contributing

 	Contributor Covenant Code of Conduct

 	Modules

 	Liberator.Resource

 	Liberator.Codec

 	Liberator.Encoding.Deflate

 	Liberator.Encoding.Gzip

 	Liberator.Encoding.Identity

 	Liberator.MediaType.TextPlainCodec

 	Liberator.Trace

Liberator
[image: Hex.pm]
[image: Build Status]
[image: standard-readme compliant]
[image: Contributor Covenant]

 Changelog - liberator v1.3.0

Changelog
All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
1.3.0 - 2020-10-13
Added
	The :log argument to the :trace option.
Add a trace: :log option to your module's use statement,
and every request will be logged with a trace.
The log message even includes a request ID from Plug.RequestId, if you have one. (#4)
	The :decision_tree_overrides argument to Liberator.Resource.
This is an advanced feature that lets users override parts of the decision tree that Liberator evaluates.
Want to change the ordering of some decisions, or add new ones?
This is the way! (#5)
	The :handler_status_overrides argument to Liberator.Resource.
This is an advanced feature that lets users override status codes associated with handlers.
It's mostly useful for those wanting to implement their own new statuses that Liberator doesn't support.
	The :action_followup_overrides argument to Liberator.Resource.
This is an advanced feature that lets users override the functions called immediately after actions.
It's mostly useful for those wanting to implement their own new actions that Liberator doesn't support.

1.2.0 - 2020-10-12
Added
	The 402 Payment Required status,
along with related callbacks payment_required? and
handle_payment_required/1.
	The 451 Unavailable for Legal Reasons status,
along with related callbacks unavailable_for_legal_reasons?/1 and
handle_unavailable_for_legal_reasons/1.
	The 429 Too Many Requests status,
along with related callbacks too_many_requests?/1 and
handle_too_many_requests/1.
If you return a map containing a :retry_after value,
Liberator will use that to set a retry-after header.
	You can also return a :retry_after value from any other decision function,
like service_available?/1, or moved_permanently?/1, for the same effect.
See MDN's docs on the retry-after header
for more information on why you'd want to do this.

Fixed
	Dates in headers are now parsed properly. (#1)

1.1.0 - 2020-10-04
Added
	This changelog!
	The :trace option:
Add trace: :headers to your use Liberator.Resource statement to
get an x-liberator-trace header added to responses,
and see the result of all decisions.
	Compression options: deflate, gzip, and identity.

Changed
	Codecs are now configurable.
Set the :media_types and :encodings map in Liberator's config to add your own codecs.

Removed
	Liberator.Resource no longer calls use Timex, so your context is less polluted.

Fixed
	Better wildcard handling during content negotiation
	Content negotiation actually obeys q-values for priority

1.0.0 - 2020-10-02
Added
	Basic decision tree navigation

 Contributing - liberator v1.3.0

Contributing
Thank you for considering contributing!
I write libraries in my free time and contributions from others help me make great tools.
Following these guidelines helps to communicate that you respect my time,
as the developer managing and developing this open source project.
In return, I should reciprocate that respect in addressing your issue,
assessing changes, and helping you finalize your pull requests.
Questions and pull requests are more than welcome.
I follow Elixir's tenet of bad documentation being a bug,
so if anything is unclear, please file an issue!
Ideally, my answer to your question will be in an update to the docs.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Working on your first Pull Request? You can learn how from this free series How to Contribute to an Open Source Project on GitHub.
Ground Rules
	Follow the Code of Conduct.
	Keep your commits clear and your pull requests small.
This isn't a big library.
	Run mix format on your files before committing them.
I like clean diffs.
	Run mix credo and resolve anything of yours that comes up.
	Delegate as much as possible to the user, or let them override everything.
	Provide sensible defaults.
If you can use Liberator.Resource in an empty module in an empty Phoenix project,
and make a request that returns 200 OK,
you're doing great.
	Don't pollute the user's context.

Your First Contribution
	Ask questions!
I like writing good documentation, and questions make that work more meaningful.
Use the issue tracker for questions.
There's a questions tag on the issue tracker for that reason.
	Tests are always welcome!
Liberator is a project with a lot of conditional logic,
with a lot of resulting complexity.
	Searching issues or pull requests tagged "help wanted" or "good first issue" are great places to get started.

Getting Started
GitHub makes it really easy to submit pull requests. Just:
	Create your own fork of the code
	Do the changes in your fork
	Submit a pull request

I don't require a CLA or anything like that.
How report a bug
If you find a security vulnerability, do NOT open an issue.
Contact Rosa on keybase.io instead!
In order to determine whether you are dealing with a security issue, ask yourself these two questions:
	Can I access something that's not mine, or something I shouldn't have access to?
	Can I disable something for other people?

If the answer to either of those two questions are "yes",
then you're probably dealing with a security issue.
Note that even if you answer "no" to both questions,
you may still be dealing with a security issue, so if you're unsure,
message me directly.
This project helps developers expose data, but we only want it exposing the correct data!
Please open an issue and
follow the directions in the issue template.
How to suggest a feature or enhancement
The philosopy of this project is to create a small, sharp tool that takes the burden
of the HTTP spec off of the shoulders of developers.
Feature requests and enhancements should stick to this philosophy.
Help me implement the HTTP spec more closely,
or help me do anything that lets developers do more with their valuable time.
Feature requests give meaning to my work.
Open an issue that decribes the feature you'd like to see,
why you need it, and how you'd like it to work.
Code review process
As the primary developer, I will be the one reviewing all pull requests.
I check GitHub almost every day, so you should be able to hear back from me quickly.
However, I only do this in my free time, so please allow me flexibility.
Community
Chat with me on https://gitter.im/liberator-elixir/community.
This is a small project, but I care about the people that care about my work.
I'm also on keybase if you need to message me directly.

If you like this contribution guide, please give a star to Nadia Eghbal's contributing-template project on GitHub.
It was a great help.

 Contributor Covenant Code of Conduct - liberator v1.3.0

Contributor Covenant Code of Conduct
Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or
advances of any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email
address, without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement by sending a
message to Rosa Richter on keybase.io.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series
of actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within
the community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by Mozilla's code of conduct
enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

 Liberator.Resource - liberator v1.3.0

Liberator.Resource behaviour

A controller module that understands and respects the HTTP spec.
This module implements a Plug handler that allows an endpoint to comply to the HTTP specification,
and to do so by just answering a few questions.
Define a simple resource like this:
defmodule MyFirstResource do
 use Liberator.Resource

 def handle_ok(_), do: "Hello world!"
end
To add this plug to a Phoenix application, use the Phoenix.Router.forward/4 keyword in your router:
scope "/", MyApp do
 pipe_through [:browser]

 forward "/api/resource", MyFirstResource
end
If you're using another Plug-based framework, use Plug.forward/4 once you've matched on the path:
defmodule Router do
 def init(opts), do: opts

 def call(conn, opts) do
 case conn do
 %{host: "localhost", path_info: ["resources" | rest]} ->
 Plug.forward(conn, rest, MyFirstResource, opts)

 _ ->
 MainRouter.call(conn, opts)
 end
 end
end
There are lots of decisions to be made during content negotiation,
and Liberator lets gives you access to every single one,
but it's also built with sensible defaults that let you quickly build up a controller.
Content Negotiation
These functions return lists of available values during content negotiation.
If the client has an accept header that does not match a value from these lists,
the plug will return a 406 Not Acceptable response, and call handle_not_acceptable/1.
	Function	Default
	allowed_methods/1	["GET", "HEAD"]
	known_methods/1	["GET", "HEAD", "OPTIONS", "PUT", "POST", "DELETE", "PATCH", "TRACE"]
	available_media_types/1	["text/plain", "application/json"]
	available_languages/1	["*"]
	available_charsets/1	["UTF-8"]
	available_encodings/1	["gzip", "deflate","identity"]

Liberator supports a few basic defaults to help you get up and running.
It uses Jason for application/json media responses,
but you can override that, along with the compression handlers.
Just include your custom codecs in config.exs under the :liberator key.
Media type codecs go under :media_types, and compression goes under :encodings.
Here's the default as an example:
config :liberator,
 media_types: %{
 "text/plain" => Liberator.MediaType.TextPlainCodec,
 "application/json" => Jason
 },
 encodings: %{
 "identity" => Liberator.Encoding.Identity,
 "deflate" => Liberator.Encoding.Deflate,
 "gzip" => Liberator.Encoding.Gzip
 }
As long as your codec module implements an encode!/1 function that accepts and returns a response body,
Liberator will call it at the right place in the pipeline.
Implement the Liberator.Codec behaviour for some compile-time assurance that you've implemented the correct function.
defmodule MyXmlCodec do
 @behaviour Liberator.Codec

 @impl true
 def encode!(body) do
 # your cool new functionality here
 end
end
Preconditions
These functions decide the state of preconditon decisions for the request.
Depending on the specific method and request headers,
the plug may return a 412 Precondition Failed response, a 304 Not Modified response,
or may allow another kind of request to continue.
	Function	Default
	last_modified/1	DateTime.utc_now()
	etag/1	nil

Actions
Actions make the necessary changes to the requested entity.
	Function	Description
	initialize/1	Performs any custom initialization you need before the decision tree starts
	delete!/1	Called for DELETE requests
	patch!/1	Called for PATCH requests
	post!/1	Called for POST requests
	put!/1	Called for PUT requests

Handlers
Handlers are called at the very end of the decision tree, and allow you
to return content for rendering to the client.
	Function	Status
	handle_ok/1	200
	handle_options/1	200
	handle_created/1	201
	handle_accepted/1	202
	handle_no_content/1	204
	handle_multiple_representations/1	300
	handle_moved_permanently/1	301
	handle_see_other/1	303
	handle_not_modified/1	304
	handle_moved_temporarily/1	307
	handle_malformed/1	400
	handle_unauthorized/1	401
	handle_forbidden/1	403
	handle_not_found/1	404
	handle_method_not_allowed/1	405
	handle_not_acceptable/1	406
	handle_conflict/1	409
	handle_gone/1	410
	handle_precondition_failed/1	412
	handle_request_entity_too_large/1	413
	handle_uri_too_long/1	414
	handle_unsupported_media_type/1	415
	handle_unprocessable_entity/1	422
	handle_too_many_requests/1	429
	handle_unavailable_for_legal_reasons/1	451
	handle_unknown_method/1	501
	handle_not_implemented/1	501
	handle_service_unavailable/1	503

Decisions
Liberator supports a whole lot of decisions points.
Some of them are needed for next to every resource definition.
Others are seldom used or there is no other sensible implementation.
Return any truthy value for a true response.
If you return a map, Liberator will merge that map with the conn's :assigns map,
allowing you to cache data and do work when it makes sense.
For example, the exists?/1 callback is a great place to fetch your resource,
and you can return it as a map for your later functions to act upon.
	Function	Description	Default
	allowed?/1	Is the user allowed to make this request?	true
	authorized?/1	Is necessary authentication information present?	true
	charset_available?/1	Are any of the requested charsets available? Should assign the :charset variable.	Uses values at available_charsets/1
	can_post_to_gone?/1	Should we process a POST to a resource that previously existed?	false
	can_post_to_missing?/1	Should we process a POST to a resource that does not exist?	true
	can_put_to_missing?/1	Should we process a PUT to a resource that does not exist?	true
	conflict?/1	Does the PUT or POST request result in a conflict?	false
	delete_enacted?/1	Was the delete request finally processed?	true
	encoding_available?/1	Is the requested encoding available? Should assign the :encoding variable.	Uses values at available_encodings/1
	etag_matches_for_if_match?/1	Does the etag of the current resource match the If-Match header?	Uses value generated by etag/1
	etag_matches_for_if_none?/1	Does the etag of the current resource match the If-None-Match header?	Uses value generated by etag/1
	existed?/1	Did the resource exist before?	false
	exists?/1	Does the resource exist?	true
	known_content_type?/1	Is the Content-Type of the body known?	true
	known_method?/1	Is the request method known?	Uses values at known_methods/1
	language_available?/1	Is the requested language available? Should assign the :language variable.	Uses values at available_languages/1
	malformed?/1	Is the request malformed?	false
	media_type_available?/1	Is the requested media type available? Should assign the :media_type variale.	Uses values at available_media_types/1
	method_allowed?/1	Is the request method allowed for this resource?	Uses values at allowed_methods/1
	modified_since?/1	Was the resource modified since the date given in the If-Modified-Since header?	Uses value generated by last_modified/1
	moved_permanently?/1	Was the resource moved permanently?	false
	moved_temporarily?/1	Was the resource moved temporarily?	false
	multiple_representations?/1	Are there multiple representations for this resource?	false
	new?/1	Was the resource created by this request?	true
	payment_required?/1	Is payment required before this request can be processed?	false
	post_enacted?/1	Was the POST request finally processed?	true
	put_enacted?/1	Was the PUT request finally processed?	true
	patch_enacted?/1	Was the PATCH request finally processed?	true
	post_redirect?/1	Should the response redirect after a POST?	false
	put_to_different_url?/1	Should the PUT request be made to a different URL?	false
	processable?/1	Is the request body processable?	true
	too_many_requests?/1	Has the client or user issued too many requests in a period of time?	false
	service_available?/1	Is the service available?	true
	unavailable_for_legal_reasons?/1	Is the resource not available, for legal reasons?	false
	uri_too_long?/1	Is the request URI too long?	false
	valid_content_header?/1	Is the Content-Type of the body valid?	true
	valid_entity_length?/1	Is the length of the body valid?	true

Debugging
For every request, Liberator builds a list of the decisions called and their answers.
You can access this list with the :trace option of your use statement.
Set it to :log for a log message of the full trace.
defmodule MyFirstResource do
 use Liberator.Resource, trace: :log

 def handle_ok(_), do: "Hello world!"
end
You'll get a log message like this:
14:57:04.861 [debug] Liberator trace for request "my-very-specific-request-id" to /:

 1. initialize: nil
 2. service_available?: true
 3. known_method?: true
 4. uri_too_long?: false
 5. method_allowed?: true
 6. malformed?: false
 7. authorized?: true
 8. allowed?: true
 9. too_many_requests?: false
 10. payment_required?: false
 11. valid_content_header?: true
 12. known_content_type?: true
 13. valid_entity_length?: true
 14. is_options?: false
 15. accept_exists?: false
 16. accept_language_exists?: false
 17. accept_charset_exists?: false
 18. accept_encoding_exists?: false
 19. processable?: true
 20. unavailable_for_legal_reasons?: false
 21. exists?: true
 22. if_match_exists?: false
 23. if_unmodified_since_exists?: false
 24. if_none_match_exists?: false
 25. if_modified_since_exists?: false
 26. method_delete?: false
 27. method_patch?: false
 28. post_to_existing?: false
 29. put_to_existing?: false
 30. multiple_representations?: false
 31. handle_ok: nil
Liberator will include the request ID set by the Plug.RequestId plug,
if you have it as part of your pipeline.
Set the :trace option to :headers so you can get the trace as HTTP headers.
defmodule MyFirstResource do
 use Liberator.Resource, trace: :headers

 def handle_ok(_), do: "Hello world!"
end
This will add a header called x-liberator-trace that will show you the entire set of decisions, in the order they were made.
Advanced Overrides
Liberator tries to give you access to as much of the program as possible.
Lots of the guts are open for you to play around in.
You probably won't ever need to mess with this stuff,
but it's there if you need it.
Overriding Decisions
These decision points are used internally by Liberator and provide reasonable defaults.
Overriding is possible, but not useful in general.
	Function	Description
	accept_charset_exists?/1	Checks if header Accept-Charset exists.
	accept_encoding_exists?/1	Checks if header Accept-Encoding exists.
	accept_exists?/1	Checks if header Accept exists.
	accept_language_exists?/1	Checks if header Accept-Language exists.
	if_match_exists?/1	Checks if header If-Match exists.
	if_match_star?/1	Checks if header If-Match is *.
	if_match_star_exists_for_missing?/1	Checks if header If-Match exists for a resource that does not exist.
	if_modified_since_exists?/1	Checks if header If-Modified-Since exists.
	if_modified_since_valid_date?/1	Checks if header If-Modified-Since is a valid HTTP date.
	if_none_match?/1	Checks if the request method to handle failed If-None-Match
	if_none_match_exists?/1	Checks if header If-None-Match exists.
	if_none_match_star?/1	Checks if header If-None-Match is *.
	if_unmodified_since_exists?/1	Checks if header If-Unmodified-Since exists.
	if_unmodified_since_valid_date?/1	Checks if header If-Unmodified-Since is a valid HTTP date.
	is_options?/1	Checks if the request method is OPTIONS
	method_delete?/1	Checks if the request method is DELETE
	method_put?/1	Checks if the request method is PUT
	method_patch?/1	Checks if the request method is PATCH
	post_to_gone?/1	Checks if the request method is POST for resources that do not exist anymore.
	post_to_existing?/1	Checks if the request method is POST for resources that do exist.
	post_to_missing?/1	Checks if the request method is POST for resources that do not exist.
	put_to_existing?/1	Checks if the request method is PUT for a resource that exists.

Adding Decisions
Since version 1.3, you can even override the decision, handler, and action trees.
To override the decision tree, add an option named :decision_tree_overrides into your use statement.
The decision tree is a map of atom -> {atom, atom},
where all three atoms should be function names in the module that called use.
The first element of the tuple is the next function to call if the key function returns true,
and the second element of the tuple is the function to call if the function returns false.
Your argument to :decision_tree_overrides will be merged into the default decision tree.
For example, here's me overriding the first chunk of the decision tree so that the decision uri_too_long?/1 is completely skipped.
That decisions happens right after known_method?/1, so just update that key to call the next decision instead, which is known_method?/1
defmodule LongUrisResource do
 use Liberator.Resource,
 decision_tree_overrides: %{
 # instead of known_method?: {:uri_too_long?, :handle_unknown_method}
 known_method?: {:method_allowed?, :handle_unknown_method}
 }
end
Every function in the decision matrix needs an entry.
If you're adding a new decision function of your own,
that new decision needs to be in both a result tuple and a key.
Otherwise, Liberator will throw an exception.
Also note that Liberator cannot detect a cycle in your callbacks,
so be careful!
Adding Handlers
To override the handler status, or add your own,
add an option named :handler_status_overrides to your use statement,
with a map of atom -> integer.
The integers are the status codes that Liberator will set before calling the actual handler function.
If you are adding a new status code to Liberator,
you'll also need to set :decision_tree_overrides in order to actually call this new handler,
as well as a functions of those name defined in the module that called use.
Here's an example of adding a handler for a new status code:
defmodule ResourceLikesToParty do
 use Liberator.Resource,
 decision_tree_overrides: %{
 allowed?: {:likes_to_party?, :handle_forbidden}
 likes_to_party?: {:handle_likes_to_party, :too_many_requests?}
 },
 handler_status_overrides: %{
 handle_likes_to_party: 420
 }
 }

 def likes_to_party?(_conn), do: Enum.random([true, false])
 def handle_likes_to_party(_conn), do: "Hey come party with me sometime."
end
In this example, the likes_to_party?/1 callback is added,
and if that function returns false, it will continue on with the pipeline,
but if it returns true, then it will call the new handle_likes_to_party/1 callback,
and set the status code to 420.
Adding Actions
Finally, you can override actions as well.
The option is called :action_followup_overrides,
and is a map of atom -> atom,
where both atoms are functions defined in the module that called use.
The first atom is the name of the handler function, like post!/1 or delete!/1.
The second atom is the function that will be called immediately after the action.
Say you're implementing a WebDAV server using Liberator,
and you want to add your own COPY decision, action, and handler.
By overriding some internals, this is how you'd do it,
and still have the power of the decision tree on your side!
defmodule WebDavResource do
 use Liberator.Resource,
 decision_tree_overrides: %{
 method_delete?: {:delete!, :method_copy?}
 method_copy?: {:lock_token_valid?, :method_patch?}
 lock_token_valid?: {:copy!, :handle_locked}
 },
 handler_status_overrides: %{
 handle_locked: 423
 },
 action_followup_overrides: %{
 copy!: :respond_with_entity?
 }
 }

 @impl true
 def available_media_types(_), do: ["application/xml"]

 @impl true
 def allowed_methods(_), do: ["COPY"]

 @impl true
 def known_methods(_), do: ["GET", "HEAD", "OPTIONS", "PUT", "POST", "DELETE", "PATCH", "TRACE", "COPY"]

 def lock_token_valid?(conn), do: MyWebDavBackend.lock_token_valid?(conn)
 def copy!(conn), do: MyWebDavBackend.copy(conn)
 def handle_locked(_conn), do: "Resource Locked"
end

 Anchor for this section

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Callbacks

 accept_charset_exists?(arg1)

 Check if the Accept-Charset header exists.

 accept_encoding_exists?(arg1)

 Check if the Accept-Encoding header exists.

 accept_exists?(arg1)

 Check if the Accept header exists.

 accept_language_exists?(arg1)

 Check if the Accept-Language header exists.

 allowed?(arg1)

 Check the authentication information in the request to see if it has the necessary permissions.

 allowed_methods(arg1)

 Returns a list of HTTP methods that this module serves.

 authorized?(arg1)

 Check for presence ofauthentication information in the request.

 available_charsets(arg1)

 Returns a list of available content charsets.

 available_encodings(arg1)

 Returns a list of available response content encodings (AKA compressions).

 available_languages(arg1)

 Returns a list of available languages.

 available_media_types(arg1)

 Returns a list of content types that this module serves.

 can_post_to_gone?(arg1)

 Decide if we can process a POST to a resource that existed before, or return a 410 Gone response.

 can_post_to_missing?(arg1)

 Check if we can process a post to a resource that does not exist,
or if we should send a 404 Not Found response.

 can_put_to_missing?(arg1)

 Decide if we can PUT to a resource that does not exist, or return 501 Not Implemented.

 charset_available?(arg1)

 Check of the requested charset is available.

 conflict?(arg1)

 Does the PUT or POST request result in a conflict?

 delete!(arg1)

 Called for DELETE requests.

 delete_enacted?(arg1)

 Check if the DELETE request was processed.
Return false here if the request was put on some processing queue and the
delete was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.

 encoding_available?(arg1)

 Check of the requested encoding is available.

 etag(arg1)

 Returns the etag for the current entity.

 etag_matches_for_if_match?(arg1)

 Check if the etag for the current resource matches the value in the If-Match header.

 etag_matches_for_if_none?(arg1)

 Check if the etag of the current resource matches the If-Match-None header.

 existed?(arg1)

 Check if the resource ever existed.

 exists?(arg1)

 Check if the requested entity exists.

 handle_accepted(arg1)

 Returns content for a 202 Accepted response.

 handle_conflict(arg1)

 Returns content for a 409 Conflict response.

 handle_created(arg1)

 Returns content for a 201 Created response.

 handle_forbidden(arg1)

 Returns content for a 403 Forbidden response.

 handle_gone(arg1)

 Returns content for a 410 Gone response.

 handle_malformed(arg1)

 Returns content for a 400 Malformed response.

 handle_method_not_allowed(arg1)

 Returns content for a 405 Method Not Allowed response.

 handle_moved_permanently(arg1)

 Returns content for a 301 Moved Permanently response.

 handle_moved_temporarily(arg1)

 Returns content for a 307 Moved Permanently response.

 handle_multiple_representations(arg1)

 Returns content for a 300 Multiple Representations response.

 handle_no_content(arg1)

 Returns content for a 204 No Content response.

 handle_not_acceptable(arg1)

 Returns content for a 406 Not Acceptable response.

 handle_not_found(arg1)

 Returns content for a 404 Not Found response.

 handle_not_implemented(arg1)

 Returns content for a 501 Not Implemented response.

 handle_not_modified(arg1)

 Returns content for a 304 Not Modified response.

 handle_ok(arg1)

 Returns content for a 200 OK response.

 handle_options(arg1)

 Returns content for a 200 OK response to an OPTIONS request.

 handle_payment_required(arg1)

 Returns content for a 402 Payment Required response.

 handle_precondition_failed(arg1)

 Returns content for a 412 Precondition Failed response.

 handle_request_entity_too_large(arg1)

 Returns content for a 413 Entity Too Large response.

 handle_see_other(arg1)

 Returns content for a 303 See Other response.

 handle_service_unavailable(arg1)

 Returns content for a 503 Service Unavailable response.

 handle_too_many_requests(arg1)

 Returns content for a 429 Too Many Requests response.

 handle_unauthorized(arg1)

 Returns content for a 401 Unauthorized response.

 handle_unavailable_for_legal_reasons(arg1)

 Returns content for a 451 Unavailable for Legal Reasons response.

 handle_unknown_method(arg1)

 Returns content for a 501 Unknown Method response.

 handle_unprocessable_entity(arg1)

 Returns content for a 422 Unprocesable Entity response.

 handle_unsupported_media_type(arg1)

 Returns content for a 415 Unsuppported Media Type response.

 handle_uri_too_long(arg1)

 Returns content for a 414 URI Too Long response.

 if_match_exists?(arg1)

 Check if the If-Match header exists.

 if_match_star?(arg1)

 Check if the If-Match header is *.

 if_match_star_exists_for_missing?(arg1)

 Check if the If-Match * header exists for a resource that does not exist.

 if_modified_since_exists?(arg1)

 Check if the If-Modified-Since header exists.

 if_modified_since_valid_date?(arg1)

 Check if the If-Modified-Since header is a valid HTTP date.

 if_none_match?(arg1)

 Check if the request method to handle failed if-none-match.

 if_none_match_exists?(arg1)

 Check if the If-None-Match header exists.

 if_none_match_star?(arg1)

 Check if the If-None-Match header is *.

 if_unmodified_since_exists?(arg1)

 Check if the If-Unmodified-Since header exists.

 if_unmodified_since_valid_date?(arg1)

 Check if the If-Unmodified-Since header is a valid HTTP date.

 initialize(arg1)

 A hook invoked at the beginning of the decision tree to set up anything you may need.

 is_options?(arg1)

 Check if the request method is Options.

 known_content_type?(arg1)

 Check if the Content-Type of the body is known.

 known_method?(arg1)

 Check of the HTTP method in the request is one we know about.

 known_methods(arg1)

 Returns a list of HTTP methods that exist.

 language_available?(arg1)

 Check if the requested language is available.

 last_modified(arg1)

 Returns the last modified date of your resource.

 malformed?(arg1)

 Check the request for general adherence to some form.

 media_type_available?(arg1)

 Check if the request media type is available.

 method_allowed?(arg1)

 Check if the server supports the request's HTTP method.

 method_delete?(arg1)

 Check if the request method is DELETE.

 method_patch?(arg1)

 Check if the request method is PATCH.

 method_post?(arg1)

 Check if the request method is POST.

 method_put?(arg1)

 Check if the request method is PUT.

 modified_since?(arg1)

 Checks if the resource was modified since the date given in the If-Modified-Since header.

 moved_permanently?(arg1)

 Check if the resource was moved permanently.

 moved_temporarily?(arg1)

 Check if the resource was moved temporarily.

 multiple_representations?(arg1)

 Check if there are multiple representations of the resource.

 new?(arg1)

 Was the resource created by this request?

 patch!(arg1)

 Called for PATCH requests.

 patch_enacted?(arg1)

 Check if the PATCH request was processed.
Return false here if the request was put on some processing queue and the
patch was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.

 payment_required?(arg1)

 Check to see if payment is required for this resource.

 post!(arg1)

 Called for POST requests.

 post_enacted?(arg1)

 Check if the POST request was processed.
Return false here if the request was put on some processing queue and the
post was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.

 post_redirect?(arg1)

 Decide if the response should redirect after a POST.

 post_to_existing?(arg1)

 Check if the request method is POST for a resource that already exists.

 post_to_gone?(arg1)

 Check if the request method is POST for resources that do not exist anymore.

 post_to_missing?(arg1)

 Check if the request method is POST to a resource that doesn't exist.

 processable?(arg1)

 Check if the body of the request can be processed.

 put!(arg1)

 Called for PUT requests.

 put_enacted?(arg1)

 Check if the PUT request was processed.
Return false here if the request was put on some processing queue and the
put was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.

 put_to_different_url?(arg1)

 Decide if a PUT request should be made to a different URL.

 put_to_existing?(arg1)

 Check if the request method is a PUT for a resource that already exists.

 respond_with_entity?(arg1)

 Should the response contain a representation of the resource?

 service_available?(arg1)

 Check if your service is available.

 too_many_requests?(arg1)

 Check to see if the client has performed too many requests.
Used as part of a rate limiting scheme.

 unavailable_for_legal_reasons?(arg1)

 Check if the resource is no longer available, for legal reasons.

 unmodified_since?(arg1)

 Checks if the resource was not modified since the date given in the If-Unmodified-Since header.

 uri_too_long?(arg1)

 Checks the length of the URI.

 valid_content_header?(arg1)

 Check if the Content-Type of the body is valid.

 valid_entity_length?(arg1)

 Check if the length of the body is valid.

 Anchor for this section

Functions

 Link to this function

 call(conn, opts)

 View Source

Callback implementation for Plug.call/2.

 Link to this function

 init(opts)

 View Source

Callback implementation for Plug.init/1.

 Anchor for this section

Callbacks

 Link to this callback

 accept_charset_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 accept_charset_exists?(Plug.Conn.t()) :: true | false

Check if the Accept-Charset header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 accept_encoding_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 accept_encoding_exists?(Plug.Conn.t()) :: true | false

Check if the Accept-Encoding header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 accept_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 accept_exists?(Plug.Conn.t()) :: true | false

Check if the Accept header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 accept_language_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 accept_language_exists?(Plug.Conn.t()) :: true | false

Check if the Accept-Language header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 allowed?(arg1)

 View Source

 (since 1.0)

 Specs

 allowed?(Plug.Conn.t()) :: true | false

Check the authentication information in the request to see if it has the necessary permissions.
Note the difference between authorized?/1 and allowed?/1.
This function checks if the given request is allowed to perform an action,
but isn't responsible for checking the presence of authentication information in the first place.
By default, always returns true.

 Link to this callback

 allowed_methods(arg1)

 View Source

 (since 1.0)

 Specs

 allowed_methods(Plug.Conn.t()) :: list()

Returns a list of HTTP methods that this module serves.
The methods returned by this function should be upper-case strings, like "GET", "POST", etc.

 Link to this callback

 authorized?(arg1)

 View Source

 (since 1.0)

 Specs

 authorized?(Plug.Conn.t()) :: true | false

Check for presence ofauthentication information in the request.
Note the difference between authorized?/1 and allowed?/1.
This function should just check for the presence of authentication information,
not the content of it.
If you implement this function to return false, your response in handle_unauthorized
must include a WWW-Authenticate header field containing a challenge applicable to the requested resource.
By default, always returns true.

 Link to this callback

 available_charsets(arg1)

 View Source

 (since 1.0)

 Specs

 available_charsets(Plug.Conn.t()) :: list()

Returns a list of available content charsets.
By default, only UTF-8 is supported.

 Link to this callback

 available_encodings(arg1)

 View Source

 (since 1.0)

 Specs

 available_encodings(Plug.Conn.t()) :: list()

Returns a list of available response content encodings (AKA compressions).
By default, only identity (no compression) is supported.

 Link to this callback

 available_languages(arg1)

 View Source

 (since 1.0)

 Specs

 available_languages(Plug.Conn.t()) :: list()

Returns a list of available languages.

 Link to this callback

 available_media_types(arg1)

 View Source

 (since 1.0)

 Specs

 available_media_types(Plug.Conn.t()) :: list()

Returns a list of content types that this module serves.
The types returned by this function should be valid MIME types, like text/plain, application/json, etc.

 Link to this callback

 can_post_to_gone?(arg1)

 View Source

 (since 1.0)

 Specs

 can_post_to_gone?(Plug.Conn.t()) :: true | false

Decide if we can process a POST to a resource that existed before, or return a 410 Gone response.
By default, always returns false.

 Link to this callback

 can_post_to_missing?(arg1)

 View Source

 (since 1.0)

 Specs

 can_post_to_missing?(Plug.Conn.t()) :: true | false

Check if we can process a post to a resource that does not exist,
or if we should send a 404 Not Found response.
By default, always returns true.

 Link to this callback

 can_put_to_missing?(arg1)

 View Source

 (since 1.0)

 Specs

 can_put_to_missing?(Plug.Conn.t()) :: true | false

Decide if we can PUT to a resource that does not exist, or return 501 Not Implemented.
By default, always returns true.

 Link to this callback

 charset_available?(arg1)

 View Source

 (since 1.0)

 Specs

 charset_available?(Plug.Conn.t()) :: true | false

Check of the requested charset is available.
By default, uses the values returned by available_charsets/1.

 Link to this callback

 conflict?(arg1)

 View Source

 (since 1.0)

 Specs

 conflict?(Plug.Conn.t()) :: true | false

Does the PUT or POST request result in a conflict?

 Link to this callback

 delete!(arg1)

 View Source

 (since 1.0)

 Specs

 delete!(Plug.Conn.t()) :: any()

Called for DELETE requests.

 Link to this callback

 delete_enacted?(arg1)

 View Source

 (since 1.0)

 Specs

 delete_enacted?(Plug.Conn.t()) :: true | false

Check if the DELETE request was processed.
Return false here if the request was put on some processing queue and the
delete was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.
By default, always returns true.

 Link to this callback

 encoding_available?(arg1)

 View Source

 (since 1.0)

 Specs

 encoding_available?(Plug.Conn.t()) :: true | false

Check of the requested encoding is available.
By default, uses the values returned by available_encodings/1.

 Link to this callback

 etag(arg1)

 View Source

 (since 1.0)

 Specs

 etag(Plug.Conn.t()) :: String.t()

Returns the etag for the current entity.
This value will be used to respond to caching headers like If-None-Match.

 Link to this callback

 etag_matches_for_if_match?(arg1)

 View Source

 (since 1.0)

 Specs

 etag_matches_for_if_match?(Plug.Conn.t()) :: true | false

Check if the etag for the current resource matches the value in the If-Match header.
By default, checks the header against the value returned by etag/1.

 Link to this callback

 etag_matches_for_if_none?(arg1)

 View Source

 (since 1.0)

 Specs

 etag_matches_for_if_none?(Plug.Conn.t()) :: true | false

Check if the etag of the current resource matches the If-Match-None header.
By default, checks the header against the value returned by etag/1.

 Link to this callback

 existed?(arg1)

 View Source

 (since 1.0)

 Specs

 existed?(Plug.Conn.t()) :: true | false

Check if the resource ever existed.
Answering true here will lead you down the path that leads to
responses like "Moved Permanently" and "Gone", among othes.

 Link to this callback

 exists?(arg1)

 View Source

 (since 1.0)

 Specs

 exists?(Plug.Conn.t()) :: true | false

Check if the requested entity exists.
This is a great place to actually fetch the requested resource,
then return it as a map so it can be merged into the :assigns map of the request.
Returning false here will cause the plug to return a 404 Not Found response.

 Link to this callback

 handle_accepted(arg1)

 View Source

 (since 1.0)

 Specs

 handle_accepted(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 202 Accepted response.

 Link to this callback

 handle_conflict(arg1)

 View Source

 (since 1.0)

 Specs

 handle_conflict(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 409 Conflict response.

 Link to this callback

 handle_created(arg1)

 View Source

 (since 1.0)

 Specs

 handle_created(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 201 Created response.

 Link to this callback

 handle_forbidden(arg1)

 View Source

 (since 1.0)

 Specs

 handle_forbidden(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 403 Forbidden response.

 Link to this callback

 handle_gone(arg1)

 View Source

 (since 1.0)

 Specs

 handle_gone(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 410 Gone response.

 Link to this callback

 handle_malformed(arg1)

 View Source

 (since 1.0)

 Specs

 handle_malformed(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 400 Malformed response.

 Link to this callback

 handle_method_not_allowed(arg1)

 View Source

 (since 1.0)

 Specs

 handle_method_not_allowed(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 405 Method Not Allowed response.

 Link to this callback

 handle_moved_permanently(arg1)

 View Source

 (since 1.0)

 Specs

 handle_moved_permanently(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 301 Moved Permanently response.

 Link to this callback

 handle_moved_temporarily(arg1)

 View Source

 (since 1.0)

 Specs

 handle_moved_temporarily(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 307 Moved Permanently response.

 Link to this callback

 handle_multiple_representations(arg1)

 View Source

 (since 1.0)

 Specs

 handle_multiple_representations(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 300 Multiple Representations response.

 Link to this callback

 handle_no_content(arg1)

 View Source

 (since 1.0)

 Specs

 handle_no_content(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 204 No Content response.

 Link to this callback

 handle_not_acceptable(arg1)

 View Source

 (since 1.0)

 Specs

 handle_not_acceptable(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 406 Not Acceptable response.

 Link to this callback

 handle_not_found(arg1)

 View Source

 (since 1.0)

 Specs

 handle_not_found(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 404 Not Found response.

 Link to this callback

 handle_not_implemented(arg1)

 View Source

 (since 1.0)

 Specs

 handle_not_implemented(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 501 Not Implemented response.

 Link to this callback

 handle_not_modified(arg1)

 View Source

 (since 1.0)

 Specs

 handle_not_modified(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 304 Not Modified response.

 Link to this callback

 handle_ok(arg1)

 View Source

 (since 1.0)

 Specs

 handle_ok(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 200 OK response.

 Link to this callback

 handle_options(arg1)

 View Source

 (since 1.0)

 Specs

 handle_options(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 200 OK response to an OPTIONS request.

 Link to this callback

 handle_payment_required(arg1)

 View Source

 (since 1.2)

 Specs

 handle_payment_required(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 402 Payment Required response.
Please note that the 402 status code is experimental, and is "reserved for future use."

 Link to this callback

 handle_precondition_failed(arg1)

 View Source

 (since 1.0)

 Specs

 handle_precondition_failed(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 412 Precondition Failed response.

 Link to this callback

 handle_request_entity_too_large(arg1)

 View Source

 (since 1.0)

 Specs

 handle_request_entity_too_large(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 413 Entity Too Large response.

 Link to this callback

 handle_see_other(arg1)

 View Source

 (since 1.0)

 Specs

 handle_see_other(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 303 See Other response.

 Link to this callback

 handle_service_unavailable(arg1)

 View Source

 (since 1.0)

 Specs

 handle_service_unavailable(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 503 Service Unavailable response.

 Link to this callback

 handle_too_many_requests(arg1)

 View Source

 (since 1.2)

 Specs

 handle_too_many_requests(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 429 Too Many Requests response.
For more information on this response type, see RFC 6585, section 4.

 Link to this callback

 handle_unauthorized(arg1)

 View Source

 (since 1.0)

 Specs

 handle_unauthorized(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 401 Unauthorized response.

 Link to this callback

 handle_unavailable_for_legal_reasons(arg1)

 View Source

 (since 1.2)

 Specs

 handle_unavailable_for_legal_reasons(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 451 Unavailable for Legal Reasons response.
For more information on this response type, see RFC 7725.

 Link to this callback

 handle_unknown_method(arg1)

 View Source

 (since 1.0)

 Specs

 handle_unknown_method(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 501 Unknown Method response.

 Link to this callback

 handle_unprocessable_entity(arg1)

 View Source

 (since 1.0)

 Specs

 handle_unprocessable_entity(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 422 Unprocesable Entity response.

 Link to this callback

 handle_unsupported_media_type(arg1)

 View Source

 (since 1.0)

 Specs

 handle_unsupported_media_type(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 415 Unsuppported Media Type response.

 Link to this callback

 handle_uri_too_long(arg1)

 View Source

 (since 1.0)

 Specs

 handle_uri_too_long(Plug.Conn.t()) :: Plug.Conn.t()

Returns content for a 414 URI Too Long response.

 Link to this callback

 if_match_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 if_match_exists?(Plug.Conn.t()) :: true | false

Check if the If-Match header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 if_match_star?(arg1)

 View Source

 (since 1.0)

 Specs

 if_match_star?(Plug.Conn.t()) :: true | false

Check if the If-Match header is *.
Used internally; it is not advised to override this function.

 Link to this callback

 if_match_star_exists_for_missing?(arg1)

 View Source

 (since 1.0)

 Specs

 if_match_star_exists_for_missing?(Plug.Conn.t()) :: true | false

Check if the If-Match * header exists for a resource that does not exist.
Used internally; it is not advised to override this function.

 Link to this callback

 if_modified_since_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 if_modified_since_exists?(Plug.Conn.t()) :: true | false

Check if the If-Modified-Since header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 if_modified_since_valid_date?(arg1)

 View Source

 (since 1.0)

 Specs

 if_modified_since_valid_date?(Plug.Conn.t()) :: true | false

Check if the If-Modified-Since header is a valid HTTP date.
Used internally; it is not advised to override this function.

 Link to this callback

 if_none_match?(arg1)

 View Source

 (since 1.0)

 Specs

 if_none_match?(Plug.Conn.t()) :: true | false

Check if the request method to handle failed if-none-match.
Used internally; it is not advised to override this function.

 Link to this callback

 if_none_match_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 if_none_match_exists?(Plug.Conn.t()) :: true | false

Check if the If-None-Match header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 if_none_match_star?(arg1)

 View Source

 (since 1.0)

 Specs

 if_none_match_star?(Plug.Conn.t()) :: true | false

Check if the If-None-Match header is *.
Used internally; it is not advised to override this function.

 Link to this callback

 if_unmodified_since_exists?(arg1)

 View Source

 (since 1.0)

 Specs

 if_unmodified_since_exists?(Plug.Conn.t()) :: true | false

Check if the If-Unmodified-Since header exists.
Used internally; it is not advised to override this function.

 Link to this callback

 if_unmodified_since_valid_date?(arg1)

 View Source

 (since 1.0)

 Specs

 if_unmodified_since_valid_date?(Plug.Conn.t()) :: true | false

Check if the If-Unmodified-Since header is a valid HTTP date.
Used internally; it is not advised to override this function.

 Link to this callback

 initialize(arg1)

 View Source

 (since 1.0)

 Specs

 initialize(Plug.Conn.t()) :: any()

A hook invoked at the beginning of the decision tree to set up anything you may need.
You can return a map here and it will be merged with the given conn's :assigns map.

 Link to this callback

 is_options?(arg1)

 View Source

 (since 1.0)

 Specs

 is_options?(Plug.Conn.t()) :: true | false

Check if the request method is Options.
Used internally; it is not advised to override this function.

 Link to this callback

 known_content_type?(arg1)

 View Source

 (since 1.0)

 Specs

 known_content_type?(Plug.Conn.t()) :: true | false

Check if the Content-Type of the body is known.
By default, always returns true.

 Link to this callback

 known_method?(arg1)

 View Source

 (since 1.0)

 Specs

 known_method?(Plug.Conn.t()) :: true | false

Check of the HTTP method in the request is one we know about.
This is different from allowed_methods/1 in that this function
checks to see if the given HTTP method is an HTTP method at all.
You probably want to override allowed_methods/1 and not this one,
unless you're extending HTTP with more verbs.
If this function returns false, then the plug will return a 501 Unknown Method response.
By default, allows the methods returned by known_methods/1.

 Link to this callback

 known_methods(arg1)

 View Source

 (since 1.0)

 Specs

 known_methods(Plug.Conn.t()) :: list()

Returns a list of HTTP methods that exist.
Note that this is to filter bad HTTP requests, not to filter requests that your endpoint does not serve.
You probably want to implement allowed_methods/1 instead.
The methods returned by this function should be upper-case strings, like "GET", "POST", etc.

 Link to this callback

 language_available?(arg1)

 View Source

 (since 1.0)

 Specs

 language_available?(Plug.Conn.t()) :: true | false

Check if the requested language is available.
By default, uses the values returned by available_languages/1.

 Link to this callback

 last_modified(arg1)

 View Source

 (since 1.0)

 Specs

 last_modified(Plug.Conn.t()) :: DateTime.t()

Returns the last modified date of your resource.
This value will be used to respond to caching headers like If-Modified-Since.

 Link to this callback

 malformed?(arg1)

 View Source

 (since 1.0)

 Specs

 malformed?(Plug.Conn.t()) :: true | false

Check the request for general adherence to some form.
If this function returns false, then the plug will return a 400 Malformed response.
If you're checking the body of a request against some schema,
you should override processable?/1 instead.
By default, always returns false.

 Link to this callback

 media_type_available?(arg1)

 View Source

 (since 1.0)

 Specs

 media_type_available?(Plug.Conn.t()) :: true | false

Check if the request media type is available.
By default, uses the values returned by available_media_types/1.

 Link to this callback

 method_allowed?(arg1)

 View Source

 (since 1.0)

 Specs

 method_allowed?(Plug.Conn.t()) :: true | false

Check if the server supports the request's HTTP method.
Override allowed_methods/1 instead of this function to let this plug perform the check for you.
By default, allows the methods returned by allowed_methods/1.

 Link to this callback

 method_delete?(arg1)

 View Source

 (since 1.0)

 Specs

 method_delete?(Plug.Conn.t()) :: true | false

Check if the request method is DELETE.
Used internally; it is not advised to override this function.

 Link to this callback

 method_patch?(arg1)

 View Source

 (since 1.0)

 Specs

 method_patch?(Plug.Conn.t()) :: true | false

Check if the request method is PATCH.
Used internally; it is not advised to override this function.

 Link to this callback

 method_post?(arg1)

 View Source

 (since 1.0)

 Specs

 method_post?(Plug.Conn.t()) :: true | false

Check if the request method is POST.
Used internally; it is not advised to override this function.

 Link to this callback

 method_put?(arg1)

 View Source

 (since 1.0)

 Specs

 method_put?(Plug.Conn.t()) :: true | false

Check if the request method is PUT.
Used internally; it is not advised to override this function.

 Link to this callback

 modified_since?(arg1)

 View Source

 (since 1.0)

 Specs

 modified_since?(Plug.Conn.t()) :: true | false

Checks if the resource was modified since the date given in the If-Modified-Since header.
By default, checks the header against the value returned by last_modified/1.

 Link to this callback

 moved_permanently?(arg1)

 View Source

 (since 1.0)

 Specs

 moved_permanently?(Plug.Conn.t()) :: true | false

Check if the resource was moved permanently.
By default, always returns false.

 Link to this callback

 moved_temporarily?(arg1)

 View Source

 (since 1.0)

 Specs

 moved_temporarily?(Plug.Conn.t()) :: true | false

Check if the resource was moved temporarily.
By default, always returns false.

 Link to this callback

 multiple_representations?(arg1)

 View Source

 (since 1.0)

 Specs

 multiple_representations?(Plug.Conn.t()) :: true | false

Check if there are multiple representations of the resource.

 Link to this callback

 new?(arg1)

 View Source

 (since 1.0)

 Specs

 new?(Plug.Conn.t()) :: true | false

Was the resource created by this request?

 Link to this callback

 patch!(arg1)

 View Source

 (since 1.0)

 Specs

 patch!(Plug.Conn.t()) :: any()

Called for PATCH requests.

 Link to this callback

 patch_enacted?(arg1)

 View Source

 (since 1.0)

 Specs

 patch_enacted?(Plug.Conn.t()) :: true | false

Check if the PATCH request was processed.
Return false here if the request was put on some processing queue and the
patch was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.
By default, always returns true.

 Link to this callback

 payment_required?(arg1)

 View Source

 (since 1.2)

 Specs

 payment_required?(Plug.Conn.t()) :: true | false

Check to see if payment is required for this resource.
If this function returns true, then the plug will return a 402 Payment Required response.
Please note that the 402 status code is experimental, and is "reserved for future use."
By default, always returns false.

 Link to this callback

 post!(arg1)

 View Source

 (since 1.0)

 Specs

 post!(Plug.Conn.t()) :: any()

Called for POST requests.

 Link to this callback

 post_enacted?(arg1)

 View Source

 (since 1.0)

 Specs

 post_enacted?(Plug.Conn.t()) :: true | false

Check if the POST request was processed.
Return false here if the request was put on some processing queue and the
post was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.
By default, always returns true.

 Link to this callback

 post_redirect?(arg1)

 View Source

 (since 1.0)

 Specs

 post_redirect?(Plug.Conn.t()) :: true | false

Decide if the response should redirect after a POST.
By default, always returns false.

 Link to this callback

 post_to_existing?(arg1)

 View Source

 (since 1.0)

 Specs

 post_to_existing?(Plug.Conn.t()) :: true | false

Check if the request method is POST for a resource that already exists.
Used internally; it is not advised to override this function.

 Link to this callback

 post_to_gone?(arg1)

 View Source

 (since 1.0)

 Specs

 post_to_gone?(Plug.Conn.t()) :: true | false

Check if the request method is POST for resources that do not exist anymore.
Used internally; it is not advised to override this function.

 Link to this callback

 post_to_missing?(arg1)

 View Source

 (since 1.0)

 Specs

 post_to_missing?(Plug.Conn.t()) :: true | false

Check if the request method is POST to a resource that doesn't exist.
Used internally; it is not advised to override this function.

 Link to this callback

 processable?(arg1)

 View Source

 (since 1.0)

 Specs

 processable?(Plug.Conn.t()) :: true | false

Check if the body of the request can be processed.
This is a good place to parse a JSON body if that's what you're doing.
Returning false here would cause the plug to return a 422 Unprocessable response.

 Link to this callback

 put!(arg1)

 View Source

 (since 1.0)

 Specs

 put!(Plug.Conn.t()) :: any()

Called for PUT requests.

 Link to this callback

 put_enacted?(arg1)

 View Source

 (since 1.0)

 Specs

 put_enacted?(Plug.Conn.t()) :: true | false

Check if the PUT request was processed.
Return false here if the request was put on some processing queue and the
put was not actually enacted yet.
Returning false here would return a 202 Accepted instead of some other response.
By default, always returns true.

 Link to this callback

 put_to_different_url?(arg1)

 View Source

 (since 1.0)

 Specs

 put_to_different_url?(Plug.Conn.t()) :: true | false

Decide if a PUT request should be made to a different URL.
By default, always returns false.

 Link to this callback

 put_to_existing?(arg1)

 View Source

 (since 1.0)

 Specs

 put_to_existing?(Plug.Conn.t()) :: true | false

Check if the request method is a PUT for a resource that already exists.

 Link to this callback

 respond_with_entity?(arg1)

 View Source

 (since 1.0)

 Specs

 respond_with_entity?(Plug.Conn.t()) :: true | false

Should the response contain a representation of the resource?

 Link to this callback

 service_available?(arg1)

 View Source

 (since 1.0)

 Specs

 service_available?(Plug.Conn.t()) :: true | false

Check if your service is available.
This is the first function called in the entire pipeline,
and lets you check to make sure everything works before going deeper.
If this function returns false, then the plug will return a 503 Service Not Available response.
If this function returns a map containing a value called :retry_after,
Liberator will put this value into a retry-after header,
Some crawlers and spiders honor this value,
so they will not bother you while you're down,
and will continue to index your site afterward.
See MDN's docs on the retry-after header
for more information.
By default, always returns true.

 Link to this callback

 too_many_requests?(arg1)

 View Source

 (since 1.2)

 Specs

 too_many_requests?(Plug.Conn.t()) :: true | false

Check to see if the client has performed too many requests.
Used as part of a rate limiting scheme.
If you return a map containing a :retry_after key,
then the response's retry-after header will be automatically set.
The value of this key can be either an Elixir DateTime object,
a String HTTP date, or an integer of seconds.
All of these values tell the client when they can attempt their request again.
Note that if you provide a String for this value,
it should be formatted as an HTTP date.
If you do return map with the key :retry_after set,
and its value is not a DateTime, integer, or valid String,
then Liberator will raise an exception.
By default, always returns false.

 Link to this callback

 unavailable_for_legal_reasons?(arg1)

 View Source

 (since 1.2)

 Specs

 unavailable_for_legal_reasons?(Plug.Conn.t()) :: true | false

Check if the resource is no longer available, for legal reasons.
If this function returns true,
then the plug will return a 451 Unavailable for Legal Reasons response.
By default, always returns false.

 Link to this callback

 unmodified_since?(arg1)

 View Source

 (since 1.0)

 Specs

 unmodified_since?(Plug.Conn.t()) :: true | false

Checks if the resource was not modified since the date given in the If-Unmodified-Since header.
By default, checks the header against the value returned by last_modified/1.

 Link to this callback

 uri_too_long?(arg1)

 View Source

 (since 1.0)

 Specs

 uri_too_long?(Plug.Conn.t()) :: true | false

Checks the length of the URI.
If this function returns true, then the plug will return a 414 URI Too Long response.
By default, always returns false.

 Link to this callback

 valid_content_header?(arg1)

 View Source

 (since 1.0)

 Specs

 valid_content_header?(Plug.Conn.t()) :: true | false

Check if the Content-Type of the body is valid.
By default, always returns true.

 Link to this callback

 valid_entity_length?(arg1)

 View Source

 (since 1.0)

 Specs

 valid_entity_length?(Plug.Conn.t()) :: true | false

Check if the length of the body is valid.
By default, always returns true.

 Liberator.Codec - liberator v1.3.0

Liberator.Codec behaviour

A behaviour module for media type and compression codecs.
Liberator uses this behaviour to help make sure at compile-time that codecs will be called successfully.
Include it in your own module for the same peace of mind.

 Anchor for this section

 Summary

 Callbacks

 encode!(binary)

 Encode a binary into an encoded form, and raises if there's an error.

 Anchor for this section

Callbacks

 Link to this callback

 encode!(binary)

 View Source

 Specs

 encode!(binary()) :: binary()

Encode a binary into an encoded form, and raises if there's an error.

 Liberator.Encoding.Deflate - liberator v1.3.0

Liberator.Encoding.Deflate

An implementation of the deflate compression used in HTTP.

 Liberator.Encoding.Gzip - liberator v1.3.0

Liberator.Encoding.Gzip

An implementation of the gzip compression used in HTTP.

 Liberator.Encoding.Identity - liberator v1.3.0

Liberator.Encoding.Identity

An implementation of the identity compression used in HTTP.
That is to say, a no-op function that returns its argument.

 Liberator.MediaType.TextPlainCodec - liberator v1.3.0

Liberator.MediaType.TextPlainCodec

An implementation of a text/plain encoder for HTTP.
That is to say, a no-op that returns its argument.

 Liberator.Trace - liberator v1.3.0

Liberator.Trace

Decision tracing functions.

 Anchor for this section

 Summary

 Functions

 get_trace(conn)

 Get the log of all decisions made on the given conn.

 headers(trace)

 Get a list of tuples for the x-liberator-trace header,
based on the given trace.

 log(trace, request_path, request_id \\ nil)

 Log a message containing the given trace,
along with its request path and optional request ID.

 Anchor for this section

Functions

 Link to this function

 get_trace(conn)

 View Source

 (since 1.1)

Get the log of all decisions made on the given conn.

 Link to this function

 headers(trace)

 View Source

 (since 1.3)

Get a list of tuples for the x-liberator-trace header,
based on the given trace.

 Link to this function

 log(trace, request_path, request_id \\ nil)

 View Source

 (since 1.3)

Log a message containing the given trace,
along with its request path and optional request ID.

OEBPS/dist/app-68d4672fcc635d8d3973.js
!function(e){var n={};function a(t){if(n[t])return n[t].exports;var r=n[t]={i:t,l:!1,exports:{}};return e[t].call(r.exports,r,r.exports,a),r.l=!0,r.exports}a.m=e,a.c=n,a.d=function(e,n,t){a.o(e,n)||Object.defineProperty(e,n,{enumerable:!0,get:t})},a.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},a.t=function(e,n){if(1&n&&(e=a(e)),8&n)return e;if(4&n&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.create(null);if(a.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:e}),2&n&&"string"!=typeof e)for(var r in e)a.d(t,r,function(n){return e[n]}.bind(null,r));return t},a.n=function(e){var n=e&&e.__esModule?function(){return e.default}:function(){return e};return a.d(n,"a",n),n},a.o=function(e,n){return Object.prototype.hasOwnProperty.call(e,n)},a.p="",a(a.s=39)}([,function(e,n,a){!function(e){"object"==typeof window&&window||"object"==typeof self&&self;(function(e){var n=[],a=Object.keys,t={},r={},i=/^(no-?highlight|plain|text)$/i,s=/\blang(?:uage)?-([\w-]+)\b/i,o=/((^(<[^>]+>|\t|)+|(?:\n)))/gm,l={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0};function c(e){return e.replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">")}function d(e){return e.nodeName.toLowerCase()}function u(e,n){var a=e&&e.exec(n);return a&&0===a.index}function g(e){return i.test(e)}function m(e){var n,a={},t=Array.prototype.slice.call(arguments,1);for(n in e)a[n]=e[n];return t.forEach((function(e){for(n in e)a[n]=e[n]})),a}function p(e){var n=[];return function e(a,t){for(var r=a.firstChild;r;r=r.nextSibling)3===r.nodeType?t+=r.nodeValue.length:1===r.nodeType&&(n.push({event:"start",offset:t,node:r}),t=e(r,t),d(r).match(/br|hr|img|input/)||n.push({event:"stop",offset:t,node:r}));return t}(e,0),n}function _(e){function n(e){return e&&e.source||e}function t(a,t){return new RegExp(n(a),"m"+(e.case_insensitive?"i":"")+(t?"g":""))}!function r(i,s){if(!i.compiled){if(i.compiled=!0,i.keywords=i.keywords||i.beginKeywords,i.keywords){var o={},l=function(n,a){e.case_insensitive&&(a=a.toLowerCase()),a.split(" ").forEach((function(e){var a=e.split("|");o[a[0]]=[n,a[1]?Number(a[1]):1]}))};"string"==typeof i.keywords?l("keyword",i.keywords):a(i.keywords).forEach((function(e){l(e,i.keywords[e])})),i.keywords=o}i.lexemesRe=t(i.lexemes||/\w+/,!0),s&&(i.beginKeywords&&(i.begin="\\b("+i.beginKeywords.split(" ").join("|")+")\\b"),i.begin||(i.begin=/\B|\b/),i.beginRe=t(i.begin),i.end||i.endsWithParent||(i.end=/\B|\b/),i.end&&(i.endRe=t(i.end)),i.terminator_end=n(i.end)||"",i.endsWithParent&&s.terminator_end&&(i.terminator_end+=(i.end?"|":"")+s.terminator_end)),i.illegal&&(i.illegalRe=t(i.illegal)),null==i.relevance&&(i.relevance=1),i.contains||(i.contains=[]),i.contains=Array.prototype.concat.apply([],i.contains.map((function(e){return function(e){return e.variants&&!e.cached_variants&&(e.cached_variants=e.variants.map((function(n){return m(e,{variants:null},n)}))),e.cached_variants||e.endsWithParent&&[m(e)]||[e]}("self"===e?i:e)}))),i.contains.forEach((function(e){r(e,i)})),i.starts&&r(i.starts,s);var c=i.contains.map((function(e){return e.beginKeywords?"\\.?("+e.begin+")\\.?":e.begin})).concat([i.terminator_end,i.illegal]).map(n).filter(Boolean);i.terminators=c.length?t(c.join("|"),!0):{exec:function(){return null}}}}(e)}function b(e,n,a,r){function i(e,n){var a=m.case_insensitive?n[0].toLowerCase():n[0];return e.keywords.hasOwnProperty(a)&&e.keywords[a]}function s(e,n,a,t){var r='')+n+(a?"":"")}function o(){y+=null!=h.subLanguage?function(){var e="string"==typeof h.subLanguage;if(e&&!t[h.subLanguage])return c(x);var n=e?b(h.subLanguage,x,!0,v[h.subLanguage]):f(x,h.subLanguage.length?h.subLanguage:void 0);return h.relevance>0&&(w+=n.relevance),e&&(v[h.subLanguage]=n.top),s(n.language,n.value,!1,!0)}():function(){var e,n,a,t;if(!h.keywords)return c(x);for(t="",n=0,h.lexemesRe.lastIndex=0,a=h.lexemesRe.exec(x);a;)t+=c(x.substring(n,a.index)),(e=i(h,a))?(w+=e[1],t+=s(e[0],c(a[0]))):t+=c(a[0]),n=h.lexemesRe.lastIndex,a=h.lexemesRe.exec(x);return t+c(x.substr(n))}(),x=""}function d(e){y+=e.className?s(e.className,"",!0):"",h=Object.create(e,{parent:{value:h}})}function g(e,n){if(x+=e,null==n)return o(),0;var t=function(e,n){var a,t;for(a=0,t=n.contains.length;a<t;a++)if(u(n.contains[a].beginRe,e))return n.contains[a]}(n,h);if(t)return t.skip?x+=n:(t.excludeBegin&&(x+=n),o(),t.returnBegin||t.excludeBegin||(x=n)),d(t),t.returnBegin?0:n.length;var r=function e(n,a){if(u(n.endRe,a)){for(;n.endsParent&&n.parent;)n=n.parent;return n}if(n.endsWithParent)return e(n.parent,a)}(h,n);if(r){var i=h;i.skip?x+=n:(i.returnEnd||i.excludeEnd||(x+=n),o(),i.excludeEnd&&(x=n));do{h.className&&(y+=""),h.skip||(w+=h.relevance),h=h.parent}while(h!==r.parent);return r.starts&&d(r.starts),i.returnEnd?0:n.length}if(function(e,n){return!a&&u(n.illegalRe,e)}(n,h))throw new Error('Illegal lexeme "'+n+'" for mode "'+(h.className||"<unnamed>")+'"');return x+=n,n.length||1}var m=E(e);if(!m)throw new Error('Unknown language: "'+e+'"');_(m);var p,h=r||m,v={},y="";for(p=h;p!==m;p=p.parent)p.className&&(y=s(p.className,"",!0)+y);var x="",w=0;try{for(var N,k,O=0;h.terminators.lastIndex=O,N=h.terminators.exec(n);)k=g(n.substring(O,N.index),N[0]),O=N.index+k;for(g(n.substr(O)),p=h;p.parent;p=p.parent)p.className&&(y+="");return{relevance:w,value:y,language:e,top:h}}catch(e){if(e.message&&-1!==e.message.indexOf("Illegal"))return{relevance:0,value:c(n)};throw e}}function f(e,n){n=n||l.languages||a(t);var r={relevance:0,value:c(e)},i=r;return n.filter(E).forEach((function(n){var a=b(n,e,!1);a.language=n,a.relevance>i.relevance&&(i=a),a.relevance>r.relevance&&(i=r,r=a)})),i.language&&(r.second_best=i),r}function h(e){return l.tabReplace||l.useBR?e.replace(o,(function(e,n){return l.useBR&&"\n"===e?"
":l.tabReplace?n.replace(/\t/g,l.tabReplace):""})):e}function v(e){var a,t,i,o,u,m=function(e){var n,a,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",a=s.exec(i))return E(a[1])?a[1]:"no-highlight";for(n=0,t=(i=i.split(/\s+/)).length;n<t;n++)if(g(r=i[n])||E(r))return r}(e);g(m)||(l.useBR?(a=document.createElementNS("http://www.w3.org/1999/xhtml","div")).innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n"):a=e,u=a.textContent,i=m?b(m,u,!0):f(u),(t=p(a)).length&&((o=document.createElementNS("http://www.w3.org/1999/xhtml","div")).innerHTML=i.value,i.value=function(e,a,t){var r=0,i="",s=[];function o(){return e.length&&a.length?e[0].offset!==a[0].offset?e[0].offset<a[0].offset?e:a:"start"===a[0].event?e:a:e.length?e:a}function l(e){i+="<"+d(e)+n.map.call(e.attributes,(function(e){return" "+e.nodeName+'="'+c(e.value).replace('"',""")+'"'})).join("")+">"}function u(e){i+="</"+d(e)+">"}function g(e){("start"===e.event?l:u)(e.node)}for(;e.length||a.length;){var m=o();if(i+=c(t.substring(r,m[0].offset)),r=m[0].offset,m===e){s.reverse().forEach(u);do{g(m.splice(0,1)[0]),m=o()}while(m===e&&m.length&&m[0].offset===r);s.reverse().forEach(l)}else"start"===m[0].event?s.push(m[0].node):s.pop(),g(m.splice(0,1)[0])}return i+c(t.substr(r))}(t,p(o),u)),i.value=h(i.value),e.innerHTML=i.value,e.className=function(e,n,a){var t=n?r[n]:a,i=[e.trim()];return e.match(/\bhljs\b/)||i.push("hljs"),-1===e.indexOf(t)&&i.push(t),i.join(" ").trim()}(e.className,m,i.language),e.result={language:i.language,re:i.relevance},i.second_best&&(e.second_best={language:i.second_best.language,re:i.second_best.relevance}))}function y(){if(!y.called){y.called=!0;var e=document.querySelectorAll("pre code");n.forEach.call(e,v)}}function E(e){return e=(e||"").toLowerCase(),t[e]||t[r[e]]}e.highlight=b,e.highlightAuto=f,e.fixMarkup=h,e.highlightBlock=v,e.configure=function(e){l=m(l,e)},e.initHighlighting=y,e.initHighlightingOnLoad=function(){addEventListener("DOMContentLoaded",y,!1),addEventListener("load",y,!1)},e.registerLanguage=function(n,a){var i=t[n]=a(e);i.aliases&&i.aliases.forEach((function(e){r[e]=n}))},e.listLanguages=function(){return a(t)},e.getLanguage=E,e.inherit=m,e.IDENT_RE="[a-zA-Z]\\w*",e.UNDERSCORE_IDENT_RE="[a-zA-Z_]\\w*",e.NUMBER_RE="\\b\\d+(\\.\\d+)?",e.C_NUMBER_RE="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BINARY_NUMBER_RE="\\b(0b[01]+)",e.RE_STARTERS_RE="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BACKSLASH_ESCAPE={begin:"\\\\[\\s\\S]",relevance:0},e.APOS_STRING_MODE={className:"string",begin:"'",end:"'",illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},e.QUOTE_STRING_MODE={className:"string",begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},e.PHRASAL_WORDS_MODE={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},e.COMMENT=function(n,a,t){var r=e.inherit({className:"comment",begin:n,end:a,contains:[]},t||{});return r.contains.push(e.PHRASAL_WORDS_MODE),r.contains.push({className:"doctag",begin:"(?:TODO|FIXME|NOTE|BUG|XXX):",relevance:0}),r},e.C_LINE_COMMENT_MODE=e.COMMENT("//","$"),e.C_BLOCK_COMMENT_MODE=e.COMMENT("/*","*/"),e.HASH_COMMENT_MODE=e.COMMENT("#","$"),e.NUMBER_MODE={className:"number",begin:e.NUMBER_RE,relevance:0},e.C_NUMBER_MODE={className:"number",begin:e.C_NUMBER_RE,relevance:0},e.BINARY_NUMBER_MODE={className:"number",begin:e.BINARY_NUMBER_RE,relevance:0},e.CSS_NUMBER_MODE={className:"number",begin:e.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},e.REGEXP_MODE={className:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[e.BACKSLASH_ESCAPE,{begin:/\[/,end:/\]/,relevance:0,contains:[e.BACKSLASH_ESCAPE]}]},e.TITLE_MODE={className:"title",begin:e.IDENT_RE,relevance:0},e.UNDERSCORE_TITLE_MODE={className:"title",begin:e.UNDERSCORE_IDENT_RE,relevance:0},e.METHOD_GUARD={begin:"\\.\\s*"+e.UNDERSCORE_IDENT_RE,relevance:0}})(n)}()},,,,,,,function(e,n){e.exports=function(e){var n={className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{(.*?)}/}]},a={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,n,{className:"variable",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]}]};return{aliases:["sh","zsh"],lexemes:/-?[a-z\._]+/,keywords:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},contains:[{className:"meta",begin:/^#![^\n]+sh\s*$/,relevance:10},{className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0},e.HASH_COMMENT_MODE,a,{className:"string",begin:/'/,end:/'/},n]}}},function(e,n){e.exports=function(e){var n={begin:/[A-Z_\.\-]+\s*:/,returnBegin:!0,end:";",endsWithParent:!0,contains:[{className:"attribute",begin:/\S/,end:":",excludeEnd:!0,starts:{endsWithParent:!0,excludeEnd:!0,contains:[{begin:/[\w-]+\(/,returnBegin:!0,contains:[{className:"built_in",begin:/[\w-]+/},{begin:/\(/,end:/\)/,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]}]},e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{className:"number",begin:"#[0-9A-Fa-f]+"},{className:"meta",begin:"!important"}]}}]};return{case_insensitive:!0,illegal:/[=\/|'\$]/,contains:[e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:/#[A-Za-z0-9_-]+/},{className:"selector-class",begin:/\.[A-Za-z0-9_-]+/},{className:"selector-attr",begin:/\[/,end:/\]/,illegal:"$"},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{begin:"@(font-face|page)",lexemes:"[a-z-]+",keywords:"font-face page"},{begin:"@",end:"[{;]",illegal:/:/,contains:[{className:"keyword",begin:/\w+/},{begin:/\s/,endsWithParent:!0,excludeEnd:!0,relevance:0,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},{className:"selector-tag",begin:"[a-zA-Z-][a-zA-Z0-9_-]*",relevance:0},{begin:"{",end:"}",illegal:/\S/,contains:[e.C_BLOCK_COMMENT_MODE,n]}]}}},function(e,n){e.exports=function(e){return{aliases:["patch"],contains:[{className:"meta",relevance:10,variants:[{begin:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{begin:/^*** +\d+,\d+ +****$/},{begin:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{className:"comment",variants:[{begin:/Index: /,end:/$/},{begin:/={3,}/,end:/$/},{begin:/^\-{3}/,end:/$/},{begin:/^*{3} /,end:/$/},{begin:/^\+{3}/,end:/$/},{begin:/*{5}/,end:/*{5}$/}]},{className:"addition",begin:"^\\+",end:"$"},{className:"deletion",begin:"^\\-",end:"$"},{className:"addition",begin:"^\\!",end:"$"}]}}},function(e,n){e.exports=function(e){return{aliases:["https"],illegal:"\\S",contains:[{begin:"^HTTP/[0-9\\.]+",end:"$",contains:[{className:"number",begin:"\\b\\d{3}\\b"}]},{begin:"^[A-Z]+ (.*?) HTTP/[0-9\\.]+$",returnBegin:!0,end:"$",contains:[{className:"string",begin:" ",end:" ",excludeBegin:!0,excludeEnd:!0},{begin:"HTTP/[0-9\\.]+"},{className:"keyword",begin:"[A-Z]+"}]},{className:"attribute",begin:"^\\w",end:": ",excludeEnd:!0,illegal:"\\n|\\s|=",starts:{end:"$",relevance:0}},{begin:"\\n\\n",starts:{subLanguage:[],endsWithParent:!0}}]}}},function(e,n){e.exports=function(e){var n="[A-Za-z$_][0-9A-Za-z$_]*",a={keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},t={className:"number",variants:[{begin:"\\b(0[bB][01]+)"},{begin:"\\b(0[oO][0-7]+)"},{begin:e.C_NUMBER_RE}],relevance:0},r={className:"subst",begin:"\\$\\{",end:"\\}",keywords:a,contains:[]},i={className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE,r]};r.contains=[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,i,t,e.REGEXP_MODE];var s=r.contains.concat([e.C_BLOCK_COMMENT_MODE,e.C_LINE_COMMENT_MODE]);return{aliases:["js","jsx"],keywords:a,contains:[{className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},{className:"meta",begin:/^#!/,end:/$/},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,i,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,t,{begin:/[{,]\s*/,relevance:0,contains:[{begin:n+"\\s*:",returnBegin:!0,relevance:0,contains:[{className:"attr",begin:n,relevance:0}]}]},{begin:"("+e.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.REGEXP_MODE,{className:"function",begin:"(\\(.*?\\)|"+n+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:n},{begin:/\(\s*\)/},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:a,contains:s}]}]},{begin:/</,end:/(\/\w+|\w+\/)>/,subLanguage:"xml",contains:[{begin:/<\w+\s*\/>/,skip:!0},{begin:/<\w+/,end:/(\/\w+|\w+\/)>/,skip:!0,contains:[{begin:/<\w+\s*\/>/,skip:!0},"self"]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:n}),{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:s}],illegal:/\[|%/},{begin:/\$[(.]/},e.METHOD_GUARD,{className:"class",beginKeywords:"class",end:/[{;=]/,excludeEnd:!0,illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"constructor",end:/\{/,excludeEnd:!0}],illegal:/#(?!!)/}}},function(e,n){e.exports=function(e){var n={literal:"true false null"},a=[e.QUOTE_STRING_MODE,e.C_NUMBER_MODE],t={end:",",endsWithParent:!0,excludeEnd:!0,contains:a,keywords:n},r={begin:"{",end:"}",contains:[{className:"attr",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE],illegal:"\\n"},e.inherit(t,{begin:/:/})],illegal:"\\S"},i={begin:"\\[",end:"\\]",contains:[e.inherit(t)],illegal:"\\S"};return a.splice(a.length,0,r,i),{contains:a,keywords:n,illegal:"\\S"}}},function(e,n){e.exports=function(e){return{aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$"},{begin:"^.+?\\n[=-]{2,}$"}]},{begin:"<",end:">",subLanguage:"xml",relevance:0},{className:"bullet",begin:"^([*+-]|(\\d+\\.))\\s+"},{className:"strong",begin:"[*_]{2}.+?[*_]{2}"},{className:"emphasis",variants:[{begin:"*.+?*"},{begin:"_.+?_",relevance:0}]},{className:"quote",begin:"^>\\s+",end:"$"},{className:"code",variants:[{begin:"^```w*s*$",end:"^```s*$"},{begin:"`.+?`"},{begin:"^({4}|\t)",end:"$",relevance:0}]},{begin:"^[-*]{3,}",end:"$"},{begin:"\\[.+?\\][\\(\\[].*?[\\)\\]]",returnBegin:!0,contains:[{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0,relevance:0},{className:"link",begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}],relevance:10},{begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]}]}}},function(e,n){e.exports=function(e){var n=e.COMMENT("--","$");return{case_insensitive:!0,illegal:/[<>{}*#]/,contains:[{beginKeywords:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment",end:/;/,endsWithParent:!0,lexemes:/[\w\.]+/,keywords:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping n