

 Legendary

 v8.3.4

 Table of contents

 	Guides

 	Overview

 	Tutorial

 	Admin

 	Authentication and Authorization

 	Background Jobs

 	Content Management

 	DevOps Templates

 	End to End Testing

 	Email

 	Feature Flags

 	Strings File and I18n

 	Tasks and Scripts

 	Linters

 	Phoenix LiveView

 	Modules

 	Legendary.Core.Routes

 	Legendary.CoreWeb.Base64Uploads

 	Legendary.CoreWeb.Plug.TestEndToEnd

 	Legendary.Auth

 	Legendary.Auth.MnesiaClusterSupervisor

 	Legendary.Auth.Roles

 	Legendary.Auth.User

 	Legendary.Auth.UserAdmin

 	Legendary.AuthWeb

 	Legendary.AuthWeb.EmailView

 	Legendary.AuthWeb.ErrorView

 	Legendary.AuthWeb.Helpers

 	Legendary.AuthWeb.LayoutView

 	Legendary.AuthWeb.PageView

 	Legendary.AuthWeb.Plugs.RequireAdmin

 	Legendary.AuthWeb.Pow.ControllerCallbacks

 	Legendary.AuthWeb.Pow.Mailer

 	Legendary.AuthWeb.Pow.RegistrationView

 	Legendary.AuthWeb.Pow.SessionView

 	Legendary.AuthWeb.PowEmailConfirmation.MailerView

 	Legendary.AuthWeb.PowResetPassword.MailerView

 	Legendary.AuthWeb.PowResetPassword.ResetPasswordView

 	Legendary.CoreWeb.Router.PowExtensionRouter

 	Legendary.CoreEmail

 	Legendary.CoreMailer

 	Legendary.CoreWeb.CoreEmailView

 	Legendary.CoreWeb.EmailHelpers

 	Legendary.I18n

 	Legendary.CoreWeb.ErrorHelpers

 	Legendary.CoreWeb.Helpers

 	Legendary.Core

 	Legendary.Core.MapUtils

 	Legendary.Core.Repo

 	Legendary.Core.SharedDBConnectionPool

 	Mix.Legendary

 	Legendary.CoreWeb

 	Legendary.CoreWeb.Endpoint

 	Legendary.CoreWeb.ErrorView

 	Legendary.CoreWeb.Gettext

 	Legendary.CoreWeb.LayoutView

 	Legendary.CoreWeb.Router

 	Legendary.CoreWeb.Router.Helpers

 	Legendary.CoreWeb.Telemetry

 	Legendary.CoreWeb.UserSocket

 	Mix Tasks

 	mix legendary.create_admin

Overview

Legendary is a boilerplate for developing PETAL-stack
Phoenix/Elixir applications without reinventing the wheel. Out-of-the-box, we
include many features that are commonly needed in web applications:
	Features	Authentication & Authorization
	Admin interface & dashboard
	Lightweight content management / blogging
	Background & scheduled jobs with Oban

	Frontend Frameworks	Tailwind CSS
	Alpine JS
	Fluid HTML email templates

	Full CI / DevOps scripts included	GitLab CI
	credo (Elixir linting), Prettier (JS formatting), stylelint (CSS linting)
	sobelow (Elixir security scans)
	Dockerfile
	Complete Kubernetes manifests
	Fly.io configuration

We got tired of setting these things up from scratch on every Phoenix application.
So, we built a boilerplate that lets you start with the unique & interesting thing
that only your application does. We have a roadmap for future feature development
because we still think there are a lot more things we can do to make Phoenix
development better.
Up and Running
Since Legendary is both a template and a framework, you can simply clone the repo
to start using it. It's a fully functional Phoenix app as-is. To start a new project:
git clone https://gitlab.com/mythic-insight/legendary.git <project_name>

In order to start the server, run script/server. Any dependencies required
will be installed automatically using brew,
asdf, and hex.
Now you can visit localhost:4000 from your browser.
Development
Check out the tutorial to learn how to build your first app with
Legendary.
Your main app lives in apps/app/ and you will do most of your
development there. This is a normal Phoenix application and you can develop it
as such. Any resources which apply to developing Phoenix applications will apply
inside of the app. See the Phoenix Guides
for a good starting resource in Phoenix development.
You should not generally need to change code in the other applications which
are part of the framework-- apps/admin, apps/content, apps/core. We encourage you
to avoid changing those as much as possible, because doing so will make it more
difficult to upgrade Legendary to newer versions. However, they are available to
you if you find that there are no other ways to accomplish the changes that you want.
If you find yourself adding functionality to admin, content, or core
that you feel would be beneficial to all Legendary apps, consider making a
code contribution back to the framework!
CI Configuration
Legendary comes with GitLab CI settings which should work for you with minimal
setup.
The CI script will automatically tag successful builds. To do this, you will
need to configure a CI variable named
GITLAB_TOKEN. This token should be a
personal access token with
read_repository, write_repository permissions.
DevOps
The preconfigured CI pipeline generates semantically versioned docker images that
you can deploy in your choice of dockerized hosting. We also provide a manifest
for Kubernetes that is automatically updated with each version (see infrastructure/
for the generated result and infrastructure_templates/ for the templates used to
generate the manifest). We also provide a configuration for fly.io
that works out of the box.

Tutorial

This tutorial will teach by example you to make a simple application with Legendary.
We'll make a simple home inventory app. Our app will let users keep track of their possessions with some key characteristics like name, location, and value. We'll have two types of users— normal users and admins. We'll have a few features:
Normal User Features
	Adding items to their inventory
	Viewing a list of their items
	Updating their items
	Deleting their items

Admin Features
	Adding, viewing, updating, and deleting anyone's items
	Adding product categories and locations

We'll assume you have some general familiarity with programming— that you know a little bit about how to use the shell, a code editor, and git.
Let's get started.
Prerequisites
While not strictly necessary, we recommend a couple of tools to make installing Legendary's dependencies (such as Node, Erlang, and Elixir):
	brew
	asdf

If you use brew and asdf, installing Legendary will automatically install the correct versions of Node, Erlang, and Elixir. Otherwise, you can manually install:
	erlang 24.3.4 or later
	elixir 1.14.1 or later
	nodejs 19.3.0 or later

Making a New Application
The first step is to clone the Legendary application template to a new project directory. We'll call it home_inventory:
$ git clone git@gitlab.com:mythic-insight/legendary.git home_inventory
$ cd home_inventory

This directory contains the skeleton of your app, plus a copy of Legendary to support it.
Let's start our server to check things out:
$ script/server

The first time you run the server, it will automatically install everything your project needs to run. This will take some time. The next time you run the server, everything will already be installed, so the process will be much faster.
You should now be able to visit http://localhost:4000/ and see a home page. Congrats!
[image: Home Page]
Tour of the Code
Generating Our First Resource
A resource is a chunk of related code that represents something your application does. In our example application, for example, we'll have an Item resource that represents one thing in a user's home inventory.
A few tasks go into having Items and having our app do useful things with them:
	We have a group of related things that a user can do, for example, creating an item, updating it, retrieving it to view later, deleting it, or even viewing whole lists of items. This group is called a context module.
	We need to describe what an Item is like, and how Items are stored. This is called a schema.
	We need to accept requests from the browser, perform some operations, then return a response. This is done by a controller.
	We need to generate markup that the browser can understand. This is done with views and templates.

It would be really tedious to have to create all these things by hand. Luckily, we have generators that do the boring part for us. There are a few different included generators, but we'll use phx.gen.html which generates all the parts of a resource. Let's generate our Item resource:
$ cd apps/app
$ mix phx.gen.html Inventory Item items name:string description:text purchase_date:date value:decimal

The generate command has quite a few parts, so let's walk through them one by one.
	mix is the elixir utility for running command line tasks
	phx.gen.html is the name of the generator. phx is for Phoenix (our parent framework), gen is for generators. html is because we're making a resource reachable as an html page.
	Inventory is the context where we are adding our resource. Right now it will just include Item and the Item-related features, but later it could include multiple related resources.
	items is the name of the database table to use to store Items.
	name:string, description:text, etc is a series of fields that each Item will have. The first part is the name of the field (e.g. description) and the second part is the type of the field (e.g. text).

You'll see that the generator made a few files:
* creating lib/app_web/controllers/item_controller.ex
* creating lib/app_web/templates/item/edit.html.eex
* creating lib/app_web/templates/item/form.html.eex
* creating lib/app_web/templates/item/index.html.eex
* creating lib/app_web/templates/item/new.html.eex
* creating lib/app_web/templates/item/show.html.eex
* creating lib/app_web/views/item_view.ex
* creating test/app_web/controllers/item_controller_test.exs
* creating lib/app/inventory/item.ex
* creating priv/repo/migrations/20210409172913_create_items.exs
* creating lib/app/inventory.ex
* injecting lib/app/inventory.ex
* creating test/app/inventory_test.exs
* injecting test/app/inventory_test.exs

In order to start doing things with Items, we need to do two small additional things:
	Migrating our database
	Setting up a route for the Item resource

Migrating Our Database
Database migrations are how the application knows to change your database as you add new features (e.g. adding or deleting tables or columns). To run our pending migration, do this:
$ mix ecto.migrate

Setting Up A Route
A route is what defines the URL structure of your application. It tells your application which URLs should be mapped to which controller actions. Let's add a simple route for Items.
In apps/app/lib/app_web/router.ex, you'll find a part that looks like :
scope "/" do
 pipe_through :browser

 pow_routes()
 pow_extension_routes()
end

We want to add
resources "/items", AppWeb.ItemController

within the scope. The finished code will look like this:
scope "/" do
 pipe_through :browser

 pow_routes()
 pow_extension_routes()
 resources "/items", AppWeb.ItemController
end

This will add some new URLs to our application:
	/items for viewing a list of items
	/items/:id for viewing a single item. :id stands in for a unique ID of the item
	It also maps the create, update, and delete actions for items.

Let's check it out by going to http://localhost:4000/items
[image: Items Index]
You can see that we get an empty table of Items and a button that says "New Item." Let's see what happens when we click New Item. We get a form that allows us to create a new item, complete with all the fields that we set up.
[image: New Item]
[image: Item Detail Page]
If we save that, we're presented with a detail view for the Item. Note that it has all the things we filled in. If we click "Back", we go back to the table, but now we have an Item!
[image: Items Index After]
If you click on the ... menu in the table row. Try editing the Item. Then try deleting the Item. Pretty cool, right?
Congrats, you've made your first resource!
Admin Site
All Legendary projects come with a built in administration tool. Let's check it out. First, we need to make an admin user:
$ mix legendary.create_admin

Give your email address and a password. Then, go to localhost:4000 and log in. Click Admin in the menu.
You'll see something like this:
[image: Admin Index]
You can see that some of the built-in resources, such as Users, Posts, and Comments are already in the admin. But Item isn't there. How do we add it?
We need to add Item to config/admin.exs:
config :admin, Legendary.Admin,
 resources: [
 # Default admin config
 auth: [
 name: "Auth",
 resources: [
 user: [schema: Legendary.Auth.User, admin: Legendary.Auth.UserAdmin],
]
],
 content: [
 name: "Content",
 resources: [
 post: [schema: Legendary.Content.Post, admin: Legendary.Content.PostAdmin, label: "Posts and Pages", id_column: :name],
 comment: [schema: Legendary.Content.Comment, admin: Legendary.Content.CommentAdmin],
]
],
 # our new code
 inventory: [
 name: "Inventory",
 resources: [
 item: [schema: App.Inventory.Item],
]
]
]
Restart your server. For most changes, you don't need to restart, however, configuration changes like this one require a restart.
You'll see that admin users can now create, update, and delete Items.
Making Things More Interesting
Right now, we have one list of items shared between all users. What if we want to limit each user's list of items to only ones that they created. We can extend our code a bit to accomplish this.
First, let's create a column in our database to store the item owner:
mix ecto.gen.migration add_owner_id_to_items

And use it to add an owner_id column and index for the owner_id column:
defmodule App.Repo.Migrations.AddOwnerIdToItems do
 use Ecto.Migration

 def change do
 alter table("items") do
 add :owner_id, :integer
 end

 create index("items", [:owner_id])
 end
end
And run the migration:
mix ecto.migrate

In item.ex:
schema "items" do
 field :description, :string
 field :name, :string
 field :purchase_date, :date
 field :value, :decimal
 field :owner_id, :integer # new!

 timestamps()
end

def changeset(item, attrs) do
 item
 # Add owner_id
 |> cast(attrs, [:name, :description, :purchase_date, :value, :owner_id])
 # Add owner_id
 |> validate_required([:name, :description, :purchase_date, :value, :owner_id])
end
Now that we have the column, how do we use it? We need to take the id of the current user and pass it along when we create the item. The best place to do this is in the controller:
def create(conn, %{"item" => item_params}) do
 %{id: current_user_id} = Pow.Plug.current_user(conn)

 case Inventory.create_item(Map.merge(item_params, %{"owner_id" => current_user_id})) do
 {:ok, item} ->
 conn
 |> put_flash(:info, "Item created successfully.")
 |> redirect(to: Routes.item_path(conn, :show, item))

 {:error, %Ecto.Changeset{} = changeset} ->
 render(conn, "new.html", changeset: changeset)
 end
 end
Now every item we create will have a defined owner.
We also need to filter the items shown based on the current user. In inventory.ex:
def list_items(user_id) do
 Item
 |> where(owner_id: ^user_id)
 |> Repo.all()
end
and items_controller.ex:
def index(conn, _params) do
 %{id: current_user_id} = Pow.Plug.current_user(conn)

 items = Inventory.list_items(current_user_id)
 render(conn, "index.html", items: items)
end
We also need to prevent any sneaky people from viewing, editing, or deleting an item that doesn't belong to them:
plug :authorize when action in [:show, :edit, :update, :delete]

...

defp authorize(%{params: %{"id" => id}} = conn, _options) do
 item = Inventory.get_item!(id)
 %{id: current_user_id} = Pow.Plug.current_user(conn)

 if item.owner_id != current_user_id do
 conn
 |> put_status(403)
 |> text("Forbidden")
 |> halt()
 else
 conn
 end
end
This adds a plug that will be run before the show, edit, update, and delete actions. It loads the item in question, and checks it against the current user. If they don't match, we give an error message and stop the request. If they match, we continue on to the action.
There's one problem— if a user tries to visit /items and they aren't logged in, they receive an ugly error message instead of being helpfully redirected to sign in. It's a pretty bad experience. Let's fix that. In router.ex, change it so it looks like this:
scope "/" do
 pipe_through :browser

 pow_routes()
 pow_extension_routes()
end

scope "/" do
 pipe_through :browser
 pipe_through :require_auth

 resources "/items", AppWeb.ItemController
end
pipe_through :require_auth tells the framework that those routes are only for signed in users! Give it a try. Notice that if you visit /items while you are logged out, you will be taken to the sign in page. And once you sign in, you'll be taken automatically back to items. Pretty cool!
Testing
When you generate a new resource, Legendary will also generate a set of unit tests that correspond with it. But we just added new, untested functionality.
First, we need to make sure that our tests are run with a user. In item_controller_test.exs:
Add owner_id
@create_attrs %{description: "some description", name: "some name", purchase_date: ~D[2010-04-17], value: "120.5", owner_id: 123}
Add owner_id
@update_attrs %{description: "some updated description", name: "some updated name", purchase_date: ~D[2011-05-18], value: "456.7", owner_id: 123}
@invalid_attrs %{description: nil, name: nil, purchase_date: nil, value: nil}

def fixture(:item) do
 {:ok, item} = Inventory.create_item(@create_attrs)
 item
end

setup %{conn: conn} do
 user = %Legendary.Auth.User{
 id: 123
 }

 conn =
 conn
 |> Pow.Plug.put_config(current_user_assigns_key: :current_user)
 |> Pow.Plug.assign_current_user(user, [])

 %{
 conn: conn
 }
end
And in inventory_test.exs, we need to tell our tests that valid items have an owner_id:
@valid_attrs %{
 description: "test item description",
 name: "item description",
 purchase_date: ~D[2021-04-22],
 value: 200.00,
 owner_id: 123
}
What's Next?
Legendary apps are just Phoenix apps with some bells and whistles included by default. The more you learn about Phoenix development, the more you'll know about building your app with Legendary. Here are some resources that we recommend:
	The Official Phoenix Framework Guides: https://hexdocs.pm/phoenix/overview.html
	Programming Phoenix: https://pragprog.com/titles/phoenix14/programming-phoenix-1-4/
	Phoenix LiveView Course by The Pragmatic Studio: https://pragmaticstudio.com/courses/phoenix-liveview

To learn more about Legendary specifically, check out the guides.

Admin

The admin interface is generated through Kaffy.
You can find extensive documentation on the Kaffy site regarding how to use and
customize your admin interface.
Legendary specific notes:
	The configuration for Kaffy in your Legendary app is located in config/admin.exs.
	Many of the built-in schemas provide admin modules. You shouldn't generally
need to change these, but you may want to do so if you are changing built-in schema modules.

Authentication and Authorization

Legendary provides a set of authentication and authorization features out of the
box.
Authentication
Legendary comes with authentication powered by Pow out
of the box. The default configuration:
	supports sign in and registration with an email and password
	allows password resets
	requires users to confirm their email address before logging in
	emails for email confirmation and password reset will be nicely styled using your app's
email styles

Tip: in development mode, emails your app sends will be visible at http://localhost:4000/sent_emails.

Your Pow configuration can be customized in config/config.exs.
By default, users can be administrated in the admin interface.
Roles and Authorization
Users have an array of roles. By default, a user has no roles, but they can have
as many as you need. Roles in Legendary are arbitrary strings that you tag a user
with to give them certain privileges.
For example, here's a typical admin user created by the mix legendary.create_admin command:
%Legendary.Auth.User{
 email: "legendary@example.com",
 homepage_url: nil,
 id: 1,
 inserted_at: ~N[2021-02-25 22:14:40],
 # This user has one role-- admin!
 roles: ["admin"],
 updated_at: ~N[2021-02-25 22:14:40]
}
admin happens to be a role that the framework cares about-- via the mix legendary.create_admin command and the :require_admin pipeline that protects
the admin interface. However, you can use any string you want as a role and check
for it in your code. For example, your app might give some users a paid_customer
role and use it to protect certain features. You don't have to declare that in advance with the framework.
In some cases, you may want "resourceful roles"-- a role that corresponds to a
specific resource record in your app. We suggest the following convention for those
role names: :role_name/:resource_type/:id. So that could be owner/home/3 to
indicate the user is the owner of the Home with the id of 3. An authorized guest
to the same home might be guest/home/3.
You can check whether a user has a role by calling Legendary.Auth.Roles.has_role?/2:
Legendary.Auth.Roles.has_role?(user, "admin")
And you can always access the user.roles field directly.
Protected routes
Signed-In Only Routes
You can require that a given route requires a user by piping through the :require_auth pipeline. See apps/app/lib/app_web/router.ex for examples.
Admin Only Routes
You can lock down a route to the app to only admin users by using the :require_admin pipeline. For example, the /admin area of your app is protected
that way. See apps/app/lib/app_web/router.ex for examples.

Background Jobs

Background jobs and periodic jobs in Legendary are powered by Oban. See the Oban documentation for extensive information
on using Oban in your application, including:
	queue configuration
	worker configuration
	unique job constraints
	periodic jobs

The framework itself uses Oban for recurring tasks such as generating sitemaps.
Your app's Oban configuration is available in config/config.exs.

Content Management

Your app includes a basic content management system including a simple blog
(including optional user comments), dynamic pages, and static pages.
Pages and blog posts can be managed from the admin interface. Posts and pages
support content in Markdown.
Blog Posts
Your app has a blog at /blog. Your can create and manage posts from "Content > Pages and Posts"
in the /admin area. You can write your post body in Markdown.
By default, posts have a few fields:
	Type: for a blog post, this will be "Blog Post"
	Slug: this is the url path of your post. For example, a post with slug "hello-world"
would be available at /hello-world.
	Title: the human-readable title of your post.
	Content: this is the body of your post as Markdown. The admin provides a nice
editor in case you don't know Markdown syntax yet or don't want to bother.
	Status: this is Publish if you want your post to be visible to everyone, or draft
if you aren't ready to share it with the world.
	Author: this will normally be you, but we do allow admins to ghost-write for other
users.
	Excerpt: A short summary of your blog post that may show up in search engine results.
	Sticky: sticky posts will always show up first on your blog. They are generally used
for important announcements and community rules.
	Comment status: "open" will allow comments on your post. "closed" hides comments and
does not allow new comments to be entered.
	Ping status: whether the post supports pingbacks.
Coming soon: we don't currently show pingbacks anywhere or notify anyone when a
pingback is received, but we may in the future.
	Menu order: Coming soon: the relative order this blog post will show up in
dynamic menus. Menu management is currently in development. The lower this number,
the higher the post will appear in the menu.

Dynamic Pages
Dynamic pages are very similar to blog posts. The only differences are that their
type is "Page" instead of "Blog Post" and they do not appear in your blog feed.
They are intended for simple pages that will be updated by your admins, but don't
make sense as a blog post-- for example, terms of service or FAQ pages.
The fields of dynamic pages are the same as blog posts.
Static Pages
Legendary also supports static pages. Static pages are not editable from the admin.
However, they provide an easy way for developers on a Legendary app to create
and serve a content page without defining custom controllers and routes. This is
a good fit for pages that are more complex than what can be done with Markdown
in dynamic pages.
Static pages are eex templates located in apps/content/lib/content_web/templates/posts/static_pages/.
For example, the home page of your app is a static page called index.html.eex.
The filename, less the .html.eex part, serves as the slug. In other words, a
static page called pricing.html.eex would have the url path /pricing in your app.
Note: if a static page and a dynamic page have the same slug, the dynamic page
will "win." This allows you to provide a default version of the page as a fallback
in code, while allowing admins to create an updated version of the same page.

Comments
As mentioned above, blog posts can optionally have comments enabled. On these posts,
there will be a feed of comments as well as a comment form at the bottom of the page.
Comments can be managed by admins in the admin interface under "Content > Comments."

DevOps Templates

Legendary includes a full set of DevOps templates designed to make it easy to
test, build, and deploy your app.
Overview
The setup we provide is an opinionated setup based on years of experience building
Phoenix applications and deploying them at scale. It's meant to be efficient and
easy for small teams while scaling to big teams. It's meant to be lean enough
for low-traffic apps while scaling quite well to apps receiving thousands of
requests a second.
Here's the process overview:
	You make commits using conventional commit messages.
	The CI runs tests and builds a Docker image unique to your latest commit.
	Should your tests pass, that Docker image is labeled with a semantic version
driven by your commit messages. We also tag that commit with that version so that
you can refer to it. You never need to manually tag Docker image or a commit, so
long as you follow the commit message convention.
	You can deploy that Docker image to Kubernetes, fly.io, or any other Docker-friendly hosting environment.	CI generates a Kubernetes manifest pointing at that new docker image. You can
apply that manifest to your cluster manually, or use a tool like flux2 to
automate that.
	You can configure the CI script to deploy automatically to fly.io. See the details below.
	If you don't use Kubernetes, you can tell your Docker-ized host to pull the new image in the method provided by that host.

CI Configuration
Legendary comes with GitLab CI settings which should work for you with minimal
setup. This config is located in .gitlab-ci.yml.
The CI script will automatically tag successful builds. To do this, you will
need to configure a CI variable named
GITLAB_TOKEN. This token should be a
personal access token with
read_repository, write_repository permissions.
This CI configuration provides a few nice features:
	Parallel build steps. The tests run while the Docker image builds, so you don't
have to wait for one then the other.
	Fast Docker build configuration. We use Docker BuildKit and a heavily tuned Dockerfile to reduce builld times from 15+ minutes to ~3 minutes.
	Fast Elixir compile times. Out of the box, Elixir compilation can be quite
slow in CI. We employ a few tricks to reduce the compilation time by over 75%
over default CI configuration.
	Automated semantic versioning. So long as you use conventional commit messages,
we will automatically bump the version number appropriately.

Kubernetes Manifests
We also automatically generate a Kubernetes manifest for your app on each successful build. The generate manifest is commited back to your repo at infrastructure/. You can use a tool like flux2 to automatically update the configuration in your Kubernetes cluster from there. Or you could manually apply
it whenever you choose.
The template used to generate the manifest is located in infrastructure_templates. Feel free to customize it if your application needs different Kubernetes config.
Fly.io Configuration
In order to deploy to fly.io, you need to take three steps.
	Change fly.toml to change all references to 'legendary' to your fly.io app name.
	Run flyctl auth token and add that value to Gitlab CI as the environment variable FLY_API_TOKEN.
	Add the environment variable LEGENDARY_FEAT_FLYIO with the value true to Gitlab CI.

End to End Testing

Legendary integrates Cypress for integration and end-to-end (E2E)
testing. In our opinion, Cypress is the best toolkit available for testing end-to-end
in-browser experiences. It has several features that make writing end-to-end tests as
easy as possible:
	Rock-solid builds. In our experience, selenium and chromedriver-based setups
break frequently on even minor version bumps. Every version of Cypress has worked
as intended for us.
	Automatic waiting. Cypress handles async code without needing to manually
sprinkle waits and sleeps through your test code. I know your test framework
says it does auto-waiting. Auto-waiting in Cypress actually works.
	Debugging. You can use Chrome DevTools (or the equivalent in your favorite
browser) to debug your tests.
	Automatic videos of your test runs.

A Word of Advice from Your Pal Robert
Don't over-do it with integration and end-to-end testing. It's tempting to end-to-end
test everything. After all, end-to-end tests should catch any issue in your application,
no matter what layer it happens in: model, view, controller, or even JavaScript.
So what's the problem?
For one, when compared to unit tests, integration and
E2E tests are more labor intensive. It usually takes less time to write several
unit tests covering all the aspects of your feature than it does to write one
end-to-end scenario.
Secondly, integration and e2e tests are good are identifying that you have a problem, but
not where that problem occurs. They cast a broad net. When an e2e test fails, it
does not point to a specific broken function or module. Unit tests do.
Thirdly, E2E tests are slow. They have to wait for your page and
all the related assets to load over a real HTTP connection. This is orders of magnitude
slower than calling some functions.
It's best to stick to the Test Pyramid.
The majority of your tests should be unit tests and the majority of your code
should be tested by unit tests.
[image: Test Pyramid]
Running E2E Tests
To run your Cypress tests, do:
npm run test:integration
Writing E2E Tests
Read the Cypress guide to Writing Your First Test to get started writing e2e tests with Cypress.
Preparing Your Database
In most cases, you'll
need to prepare your database first. Legendary gives you a tool for doing this
called seed sets. Seed sets are Elixir scripts that your Cypress suite can
invoke to make sure the database is in the needed state at the start of a test.
Check the apps/app/test/seed_sets directory. Each seed set is just a .exs file
which can be executed with a Cypress command. There's an example apps/app/test/seed_sets/blog.exs
which prepares the database with a blog post. It looks like this:
alias Legendary.Content.Post
alias Legendary.Content.Repo

%Post{
 title: "Public post",
 name: "public-post",
 status: "publish",
 type: "post",
 date: ~N[2020-01-01T00:00:00],
}
|> Repo.insert!()
You can put whatever Elixir code you need in a seed_set!
From your Cypress tests, you can run a seed_set like:
cy.setupDB("app", "blog")
This invokes the seed set called blog (i.e. blog.exs) from the Elixir app called
app (i.e. your app within the Legendary framework). See
apps/app/cypress/integration/blog_spec.js for the complete example.
You can only have one seed set loaded at a time because loading a seed set also
sets your test up with an isolated database connection. This isolation allows
us to automatically clean up the database between each test.
More Test Writing
Check out the Cypress docs for much more information
on writing tests with Cypress.
CI Setup
We also run the Cypress suite in CI. We save the video of each test as
an artifact so that you can download and view them.

Email

Fluid Email Templates
We provide an email template based on
Cerberus's Fluid Template. This
is a template well-suited for transactional email that has been well-tested on
a wide variety of email clients. It should let you send nice looking email from
your app without having to think about it a lot.
Branding / Theming
Of course, you might want to customize the style of your emails to match your app's
unique look or brand. The trick is that for emails to really work across a broad
set of common clients, they need to inline their CSS. We take care of this for
you.
You can customize the variables (colors, sizes, etc) in config/email_styles.exs
and we'll apply them to your emails.
Mailer
Of course, you may want to send your own emails. We provide two modules to help:
	Legendary.CoreEmail: responsible for generating emails to your specifications
	Legendary.CoreMailer: responsible for sending emails per your configuration

Both are powered by Bamboo so you
can follow the Bamboo documentation to learn more about customizing and using
email in your app.
Here's an example:
defmodule App.HelloEmail do
 import Bamboo.Email
 use Bamboo.Phoenix, view: AppWeb.EmailView

 def send_hello_email(to) do
 to_address
 |> hello_email()
 |> Legendary.CoreMailer.deliver_later()
 end

 def hello_email(to_address) do
 Legendary.CoreEmail.base_email()
 |> to(to_address)
 |> render(:hello, to_address: to_address)
 end
end
Tip: in development mode, any email you send can be viewed at localhost:4000/sent_emails.

Email Helpers
Fluid email templates don't do any good if the content of your HTML emails isn't also as fluid and well-tested. We provide email tag helpers so that you don't
have to hand-craft email-friendly HTML. See Legendary.CoreWeb.EmailHelpers.
For example, your hello.html.eex might look something like this:
<%= preview do %>
 Have you heard of our awesome app?
<% end %>

<%= h1 do %>
 Hello, <%= to_address %>
<% end %>
<%= p do %>
 We hope you'll join us.
<% end %>

<%= styled_button href: "http://example.com/" do %>
 Join us!
<% end %>
We'll handle generating all of the nested tags and inline CSS needed to make the
email look good.

Feature Flags

Legendary comes with Fun with Flags
preconfigured for managing feature flags.
This allows you to have more granular control over which users see which features
and when. For example, you can hide a feature which is not complete, or show it
to only a select group of testers.
Fun With Flags supports a variety of different feature gate types. From
the Fun With Flags docs:
	Boolean: globally on and off.
	Actors: on or off for specific structs or data. The FunWithFlags.Actor protocol can be implemented for types and structs that should have specific rules. For example, in web applications it's common to use a %User{} struct or equivalent as an actor, or perhaps the current country of the request.
	Groups: on or off for structs or data that belong to a category or satisfy a condition. The FunWithFlags.Group protocol can be implemented for types and structs that belong to groups for which a feature flag can be enabled or disabled. For example, one could implement the protocol for a %User{} struct to identify administrators.
	%-of-Time: globally on for a percentage of the time. It ignores actors and groups. Mutually exclusive with the %-of-actors gate.
	%-of-Actors: globally on for a percentage of the actors. It only applies when the flag is checked with a specific actor and is ignored when the flag is checked without actor arguments. Mutually exclusive with the %-of-time gate.

Since feature flags may be checked often (sometimes multiple times per request),
Fun With Flags uses a two-layer approach. Flags are cached in ETS
and also persisted to longer-term storage so that they are not lost when the app
restarts.
By default, Legendary caches the flags for five minutes. We use Ecto for
persistence. We also use Phoenix PubSub to inform application nodes when a flag
has been updated. This configuration is a sensible default that we would not
expect you to need to change in most cases.
UI
We integrate the Fun With Flags UI for managing flags. You can reach it through
a link in the admin.

Strings File and I18n

It's a good idea to extract any human-readable strings in your application out
into a configuration file. The reason is two-fold:
	It makes it easier for developers to update "copy" in the application and even
allows non-developers on a team to make copy changes.
	When your application supports multiple languages, it is easy for translators
to provide translations for all of your copy at once.

In Legendary, we provide a set of tools for doing this via linguist.
	(English) strings are stored in config/i18n/en.yml.
	You can call Legendary.I18n.t!/2 to get a string by its key. For example: Legendary.I18n.t! "en", "site.title" retrieves the english version of the
string labeled "title" under the section "site" on en.yml.

Tip: if you use t! a lot (good job!), you can import it in your view module
to save some typing like import Legendary.I18n, only: [t!: 2] and then use it like <%= t! "en", "site.title" %> in your templates.

Note that the first argument is a two-letter language code. In order to support
other languages, you can provide more yml files in config/i18n (example, config/i18n/fr.yml for French) and call t!/2 with that language code instead.
Linguist also supports templated translations. If you have a section in en.yml like this:
app:
 hello_message: Hello, %{name}!
then you could call t! substitutions like this:
t! "en", "app.hello_message", name: "Legend"
to get the string "Hello, legend!"
On the roadmap: in the future, we intend to provide a mechanism for detecting
and managing each visitor's language and providing those strings if available.

Tasks and Scripts

Legendary follows the scripts to rule them all pattern. This allows any developers familiar with the pattern,
either from other Legendary projects, or from other projects that use the pattern,
to immediately pick up a project and get it running.
Here's a summary of the scripts you'll mostly use:
	bootstrap installs all the dependencies needed to run the project.
	update is used to update dependencies.
	server runs the server.
	console runs the interactive console.
	test runs the test suite.

When you run server, console, or test, the script will make sure all the right
dependencies are in place (by running bootstrap or update). This means you can
go straight to running script/server and it should just work.
We encourage you to customize these scripts to the needs of your project as it grows. A developer should only ever have to run script/server to run the server,
and should not need to remember anything beyond that. script/bootstrap should always install everything you need to set up the project from scratch. If you
find yourself updating setup steps in your project's README.md, consider how you
might automate away that setup in your scripts.

Linters

Legendary ships with a set of reasonable default linter configurations to help
enforce consistent code style in your application. This is particularly valuable
when working together as a team. However, even when working solo, linters will
find some errors in your code and help you to avoid needless changes in the future.
Included linters:
	credo for Elixir
	prettier for JavaScript
	stylelint for CSS

Pre-commit hooks
If you would like to lint your code before every commit, you can use
lefthook to do so. We include a
lefthook.yml that runs credo, prettier, and stylelint for you.
First, if you do not have it installed already, you will need to
install lefthook.
On the Mac with Homebrew, this is as simple as brew install lefthook. Instructions
for other environments are available in the lefthook documentation linked above.
Then you can install the hooks via lefthook install. You can test them without
committing by running lefthook run pre-commit.
Linters in CI
The included .gitlab-ci.yml runs credo, prettier, and stylelint in CI as an
additional consistency check.

Phoenix LiveView

Legendary comes with pre-styled templates for Phoenix LiveView.
Running mix phx.live.gen will result in a styled LiveView resource.
Please note that Legendary comes with an extended apps/app/lib/app_web/live/live_helpers.ex file (mainly authentication)
and accompanying tests in apps/app/test/app_web/live_helpers_test.exs.
If you don't need and LiveView functionality at all you can remove both files and the import in apps/app/lib/app_web.ex:
 defp view_helpers do
 quote do
 # Use all HTML functionality (forms, tags, etc)
 use Phoenix.HTML

 # Import LiveView and .heex helpers (live_render, live_patch, <.form>, etc)
 import Phoenix.LiveView.Helpers
 import AppWeb.LiveHelpers # <=========== Remove this line

 # Import basic rendering functionality (render, render_layout, etc)
 import Phoenix.View

 import AppWeb.ErrorHelpers
 import AppWeb.Gettext
 import Legendary.CoreWeb.Helpers
 alias AppWeb.Router.Helpers, as: Routes
 end
 end
 If you want to re-add LiveView support again you can simply run mix phx.gen.live.
 This recreates apps/app/lib/app_web/live/live_helpers.ex and re-injects the import into apps/app/lib/app_web.ex.
 It will not however re-create the test file apps/app/test/app_web/live_helpers_test.exs.

Legendary.Core.Routes

Router module that brings in core framework routes, such as the feature flag
admin interface. Can be included like:
use Legendary.Core.Routes

Legendary.CoreWeb.Base64Uploads

Utilities for converting data uris and base64 strings to Plug.Upload structs
so they can be processed in the same way as files submitted by multipart forms.

 Anchor for this section

 Summary

 Functions

 base64_to_upload(str, content_type)

 binary_to_upload(binary, content_type)

 data_uri_to_upload(str)

 Anchor for this section

Functions

 Link to this function

 base64_to_upload(str, content_type)

 View Source

 Link to this function

 binary_to_upload(binary, content_type)

 View Source

 Link to this function

 data_uri_to_upload(str)

 View Source

Legendary.CoreWeb.Plug.TestEndToEnd

Provides an API used by Cypress to remote control the database state for
integration tests.

 Anchor for this section

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Anchor for this section

Functions

 Link to this function

 call(conn, opts)

 View Source

Callback implementation for Plug.call/2.

 Link to this function

 init(opts)

 View Source

Callback implementation for Plug.init/1.

Legendary.Auth

Legendary.Auth keeps the contexts that define your domain
and business logic.
Contexts are also responsible for managing your data, regardless
if it comes from the database, an external API or others.

Legendary.Auth.MnesiaClusterSupervisor

Manages the cache in Mnesia for Pow. This allows users to remain logged in
even if their traffic is hitting different nodes in the cluster.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_arg)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(init_arg)

 View Source

Legendary.Auth.Roles

Functions for working with roles on users, such as testing whether a user has
a role.

 Anchor for this section

 Summary

 Functions

 has_role?(userlike, role)

 Anchor for this section

Functions

 Link to this function

 has_role?(userlike, role)

 View Source

Legendary.Auth.User

The baseline user schema module.

 Anchor for this section

 Summary

 Functions

 admin_changeset(user_or_changeset, attrs)

 changeset(user_or_changeset, attrs)

 Callback implementation for Pow.Ecto.Schema.changeset/2.

 confirm_email_changeset(changeset, attrs)

 pow_changeset(user_or_changeset, attrs)

 pow_confirm_email_changeset(changeset, attrs)

 See PowEmailConfirmation.Ecto.Schema.confirm_email_changeset/2.

 pow_current_password_changeset(user_or_changeset, attrs)

 pow_extension_changeset(changeset, attrs)

 pow_extension_validate_after_compilation!(env, bytecode)

 pow_password_changeset(user_or_changeset, attrs)

 pow_reset_password_changeset(changeset, attrs)

 See PowResetPassword.Ecto.Schema.reset_password_changeset/2.

 pow_user_id_field()

 pow_user_id_field_changeset(user_or_changeset, attrs)

 pow_validate_after_compilation!(env, bytecode)

 pow_verify_password(user, password)

 reset_password_changeset(changeset, attrs)

 verify_password(user, password)

 Callback implementation for Pow.Ecto.Schema.verify_password/2.

 Anchor for this section

Functions

 Link to this function

 admin_changeset(user_or_changeset, attrs)

 View Source

 Link to this function

 changeset(user_or_changeset, attrs)

 View Source

Callback implementation for Pow.Ecto.Schema.changeset/2.

 Link to this function

 confirm_email_changeset(changeset, attrs)

 View Source

 Link to this function

 pow_changeset(user_or_changeset, attrs)

 View Source

 Link to this function

 pow_confirm_email_changeset(changeset, attrs)

 View Source

See PowEmailConfirmation.Ecto.Schema.confirm_email_changeset/2.

 Link to this function

 pow_current_password_changeset(user_or_changeset, attrs)

 View Source

 Link to this function

 pow_extension_changeset(changeset, attrs)

 View Source

 Link to this function

 pow_extension_validate_after_compilation!(env, bytecode)

 View Source

 Link to this function

 pow_password_changeset(user_or_changeset, attrs)

 View Source

 Link to this function

 pow_reset_password_changeset(changeset, attrs)

 View Source

See PowResetPassword.Ecto.Schema.reset_password_changeset/2.

 Link to this function

 pow_user_id_field()

 View Source

 Link to this function

 pow_user_id_field_changeset(user_or_changeset, attrs)

 View Source

 Link to this function

 pow_validate_after_compilation!(env, bytecode)

 View Source

 Link to this function

 pow_verify_password(user, password)

 View Source

 Link to this function

 reset_password_changeset(changeset, attrs)

 View Source

 Link to this function

 verify_password(user, password)

 View Source

Callback implementation for Pow.Ecto.Schema.verify_password/2.

Legendary.Auth.UserAdmin

Custom admin login for user records.

 Anchor for this section

 Summary

 Functions

 create_changeset(schema, attrs)

 custom_links(schema)

 form_fields(_)

 index(_)

 update_changeset(schema, attrs)

 widgets(schema, conn)

 Anchor for this section

Functions

 Link to this function

 create_changeset(schema, attrs)

 View Source

 Link to this function

 custom_links(schema)

 View Source

 Link to this function

 form_fields(_)

 View Source

 Link to this function

 index(_)

 View Source

 Link to this function

 update_changeset(schema, attrs)

 View Source

 Link to this function

 widgets(schema, conn)

 View Source

Legendary.AuthWeb

The entrypoint for defining your web interface, such
as controllers, views, channels and so on.
This can be used in your application as:
use Legendary.AuthWeb, :controller
use Legendary.AuthWeb, :view
The definitions below will be executed for every view,
controller, etc, so keep them short and clean, focused
on imports, uses and aliases.
Do NOT define functions inside the quoted expressions
below. Instead, define any helper function in modules
and import those modules here.

 Anchor for this section

 Summary

 Functions

 __using__(which)

 When used, dispatch to the appropriate controller/view/etc.

 channel()

 controller()

 mailer_view()

 router()

 view()

 Anchor for this section

Functions

 Link to this macro

 __using__(which)

 View Source

 (macro)

When used, dispatch to the appropriate controller/view/etc.

 Link to this function

 channel()

 View Source

 Link to this function

 controller()

 View Source

 Link to this function

 mailer_view()

 View Source

 Link to this function

 router()

 View Source

 Link to this function

 view()

 View Source

Legendary.AuthWeb.EmailView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 raw_content(text)

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 raw_content(text)

 View Source

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.ErrorView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.Helpers

Utility functions for working with users and roles.

 Anchor for this section

 Summary

 Functions

 current_user(conn)

 has_role?(conn_or_socket, role)

 Anchor for this section

Functions

 Link to this function

 current_user(conn)

 View Source

 Link to this function

 has_role?(conn_or_socket, role)

 View Source

Legendary.AuthWeb.LayoutView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.PageView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.Plugs.RequireAdmin

A plug that returns 403 unauthorized if the user is not an admin. Used
to block out logged-in-only routes.

 Anchor for this section

 Summary

 Functions

 call(conn, opts)

 init(opts)

 Anchor for this section

Functions

 Link to this function

 call(conn, opts)

 View Source

 Link to this function

 init(opts)

 View Source

Legendary.AuthWeb.Pow.ControllerCallbacks

Hook into Pow Controllers to provide additional framework feature. In particular,
we disconnect any active live views when a user logs out. This will cause the
live view to re-connect with the new session environment.

 Anchor for this section

 Summary

 Functions

 before_process(controller, action, results, config)

 See Pow.Extension.Phoenix.ControllerCallbacks.before_process/4.

 before_respond(controller, action, results, config)

 See Pow.Extension.Phoenix.ControllerCallbacks.before_respond/4.

 Anchor for this section

Functions

 Link to this function

 before_process(controller, action, results, config)

 View Source

See Pow.Extension.Phoenix.ControllerCallbacks.before_process/4.

 Link to this function

 before_respond(controller, action, results, config)

 View Source

See Pow.Extension.Phoenix.ControllerCallbacks.before_respond/4.

Legendary.AuthWeb.Pow.Mailer

Mailer module for Pow which links it to our well-styled defaults.

 Anchor for this section

 Summary

 Functions

 render(email, template, assigns \\ [])

 Render an Phoenix template and set the body on the email.

 Anchor for this section

Functions

 Link to this function

 render(email, template, assigns \\ [])

 View Source

Render an Phoenix template and set the body on the email.
Pass an atom as the template name (:welcome_email) to render HTML and plain
text emails. Use a string if you only want to render one type, e.g.
"welcome_email.text" or "welcome_email.html". Scroll to the top for more examples.

Legendary.AuthWeb.Pow.RegistrationView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.Pow.SessionView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.PowEmailConfirmation.MailerView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 subject(atom, assigns)

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 subject(atom, assigns)

 View Source

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.PowResetPassword.MailerView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 subject(atom, assigns)

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 subject(atom, assigns)

 View Source

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.AuthWeb.PowResetPassword.ResetPasswordView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.CoreWeb.Router.PowExtensionRouter

 Anchor for this section

 Summary

 Functions

 routes()

 Anchor for this section

Functions

 Link to this function

 routes()

 View Source

Legendary.CoreEmail

The core library for email in the application. The functions here can be composed in the application to send
different emails.

 Anchor for this section

 Summary

 Functions

 base_email()

 render(email, template, assigns \\ [])

 Render an Phoenix template and set the body on the email.

 Anchor for this section

Functions

 Link to this function

 base_email()

 View Source

 Link to this function

 render(email, template, assigns \\ [])

 View Source

Render an Phoenix template and set the body on the email.
Pass an atom as the template name (:welcome_email) to render HTML and plain
text emails. Use a string if you only want to render one type, e.g.
"welcome_email.text" or "welcome_email.html". Scroll to the top for more examples.

Legendary.CoreMailer

The base mailer for email for the application.

 Anchor for this section

 Summary

 Functions

 deliver(email)

 deliver_later(email, opts \\ [])

 deliver_now(email, opts \\ [])

 Anchor for this section

Functions

 Link to this function

 deliver(email)

 View Source

 @spec deliver(any()) :: no_return()

 Link to this function

 deliver_later(email, opts \\ [])

 View Source

 Link to this function

 deliver_now(email, opts \\ [])

 View Source

 @spec deliver_now(Bamboo.Email.t(), Enum.t()) ::
 Bamboo.Email.t() | {any(), Bamboo.Email.t()}

Legendary.CoreWeb.CoreEmailView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.CoreWeb.EmailHelpers

HTML helpers for emails.

 Anchor for this section

 Summary

 Functions

 application_styles(group)

 button(opts, list)

 col(n, opts, list)

 effective_styles(group, overrides \\ %{})

 footer()

 framework_styles()

 framework_styles(group)

 h1(list)

 h2(list)

 header(list)

 hero_image(opts)

 p(list)

 preview(list)

 row(list)

 spacer()

 styled_button(opts, list)

 ul(opts)

 Anchor for this section

Functions

 Link to this function

 application_styles(group)

 View Source

 Link to this function

 button(opts, list)

 View Source

 Link to this function

 col(n, opts, list)

 View Source

 @spec col(
 number(),
 keyword(),
 [{:do, any()}, ...]
) :: {:safe, [...]}

 Link to this function

 effective_styles(group, overrides \\ %{})

 View Source

 Link to this function

 footer()

 View Source

 Link to this function

 framework_styles()

 View Source

 Link to this function

 framework_styles(group)

 View Source

 Link to this function

 h1(list)

 View Source

 Link to this function

 h2(list)

 View Source

 Link to this function

 header(list)

 View Source

 Link to this function

 hero_image(opts)

 View Source

 Link to this function

 p(list)

 View Source

 Link to this function

 preview(list)

 View Source

 Link to this function

 row(list)

 View Source

 Link to this function

 spacer()

 View Source

 Link to this function

 styled_button(opts, list)

 View Source

 Link to this function

 ul(opts)

 View Source

Legendary.I18n

The internationalization and strings module. Keeps strings outside the codebase and allows them to
be replaced on a per locale basis by editing yml files.

 Anchor for this section

 Summary

 Functions

 do_t(arg1, arg2, bindings)

 locales()

 t(locale, path, binding \\ [])

 t!(locale, path, bindings \\ [])

 Anchor for this section

Functions

 Link to this function

 do_t(arg1, arg2, bindings)

 View Source

 Link to this function

 locales()

 View Source

 Link to this function

 t(locale, path, binding \\ [])

 View Source

 Link to this function

 t!(locale, path, bindings \\ [])

 View Source

Legendary.CoreWeb.ErrorHelpers

Conveniences for translating and building error messages.

 Anchor for this section

 Summary

 Functions

 error_class(form, field)

 error_tag(form, field, opts \\ [])

 Generates tag for inlined form input errors.

 translate_error(arg)

 Translates an error message using gettext.

 Anchor for this section

Functions

 Link to this function

 error_class(form, field)

 View Source

 Link to this function

 error_tag(form, field, opts \\ [])

 View Source

Generates tag for inlined form input errors.

 Link to this function

 translate_error(arg)

 View Source

Translates an error message using gettext.

Legendary.CoreWeb.Helpers

HTML helpers for our styled (Tailwind) forms.

 Anchor for this section

 Summary

 Functions

 changeset_error_block(arg)

 current_user(a)

 See Legendary.AuthWeb.Helpers.current_user/1.

 flash_block(arg)

 floating_form(title, changeset, list)

 floating_page_wrapper(arg)

 group_rounding_class(arg, current, list \\ ["rounded-l", "", "rounded-r"])

 has_role?(a, b)

 See Legendary.AuthWeb.Helpers.has_role?/2.

 paginator(arg)

 pow_extension_enabled?(arg)

 styled_button(text, opts \\ [])

 styled_button_link(assigns)

 Slots
	inner_block (required)

 styled_button_link(text, opts)

 styled_button_live_patch(text, opts)

 styled_button_live_redirect(text, opts)

 styled_input(f, field, opts \\ [], options \\ nil, block_list \\ [])

 Anchor for this section

Functions

 Link to this function

 changeset_error_block(arg)

 View Source

 Link to this function

 current_user(a)

 View Source

See Legendary.AuthWeb.Helpers.current_user/1.

 Link to this function

 flash_block(arg)

 View Source

 Link to this function

 floating_form(title, changeset, list)

 View Source

 @spec floating_form(any(), atom() | %{action: any()}, [{:do, any()}, ...]) ::
 {:safe, [...]}

 Link to this function

 floating_page_wrapper(arg)

 View Source

 Link to this function

 group_rounding_class(arg, current, list \\ ["rounded-l", "", "rounded-r"])

 View Source

 Link to this function

 has_role?(a, b)

 View Source

See Legendary.AuthWeb.Helpers.has_role?/2.

 Link to this function

 paginator(arg)

 View Source

 Link to this function

 pow_extension_enabled?(arg)

 View Source

 Link to this function

 styled_button(text, opts \\ [])

 View Source

 Link to this function

 styled_button_link(assigns)

 View Source

 slots

 Slots

	inner_block (required)

 Link to this function

 styled_button_link(text, opts)

 View Source

 Link to this function

 styled_button_live_patch(text, opts)

 View Source

 Link to this function

 styled_button_live_redirect(text, opts)

 View Source

 Link to this function

 styled_input(f, field, opts \\ [], options \\ nil, block_list \\ [])

 View Source

Legendary.Core

Legendary.Core keeps the contexts that define your domain
and business logic.
Contexts are also responsible for managing your data, regardless
if it comes from the database, an external API or others.

Legendary.Core.MapUtils

Generic additional utility functions for Maps.

 Anchor for this section

 Summary

 Functions

 deep_merge(base, override)

 Anchor for this section

Functions

 Link to this function

 deep_merge(base, override)

 View Source

Legendary.Core.Repo

 Anchor for this section

 Summary

 Functions

 aggregate(queryable, aggregate, opts \\ [])

 Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

 Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.all/2.

 checked_out?()

 Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

 Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

 Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

 Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 A convenience function for SQL-based repositories that forces all connections in the
pool to disconnect within the given interval.

 exists?(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 A convenience function for SQL-based repositories that executes an EXPLAIN statement or similar
depending on the adapter to obtain statistics for the given query.

 get(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

 Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 in_transaction?()

 Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

 Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

 Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

 Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

 Callback implementation for Ecto.Repo.prepare_query/3.

 put_dynamic_repo(dynamic)

 Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 A convenience function for SQL-based repositories that executes the given query.

 query!(sql, params \\ [], opts \\ [])

 A convenience function for SQL-based repositories that executes the given query.

 query_many(sql, params \\ [], opts \\ [])

 A convenience function for SQL-based repositories that executes the given multi-result query.

 query_many!(sql, params \\ [], opts \\ [])

 A convenience function for SQL-based repositories that executes the given multi-result query.

 reload(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

 Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

 Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 A convenience function for SQL-based repositories that translates the given query to SQL.

 transaction(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

 Callback implementation for Ecto.Repo.update_all/3.

 Anchor for this section

Functions

 Link to this function

 aggregate(queryable, aggregate, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.aggregate/3.

 Link to this function

 aggregate(queryable, aggregate, field, opts)

 View Source

Callback implementation for Ecto.Repo.aggregate/4.

 Link to this function

 all(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.all/2.

 Link to this function

 checked_out?()

 View Source

Callback implementation for Ecto.Repo.checked_out?/0.

 Link to this function

 checkout(fun, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.checkout/2.

 Link to this function

 child_spec(opts)

 View Source

 Link to this function

 config()

 View Source

Callback implementation for Ecto.Repo.config/0.

 Link to this function

 default_options(operation)

 View Source

Callback implementation for Ecto.Repo.default_options/1.

 Link to this function

 delete(struct, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.delete/2.

 Link to this function

 delete!(struct, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.delete!/2.

 Link to this function

 delete_all(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.delete_all/2.

 Link to this function

 disconnect_all(interval, opts \\ [])

 View Source

A convenience function for SQL-based repositories that forces all connections in the
pool to disconnect within the given interval.
See Ecto.Adapters.SQL.disconnect_all/3 for more information.

 Link to this function

 exists?(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.exists?/2.

 Link to this function

 explain(operation, queryable, opts \\ [])

 View Source

A convenience function for SQL-based repositories that executes an EXPLAIN statement or similar
depending on the adapter to obtain statistics for the given query.
See Ecto.Adapters.SQL.explain/4 for more information.

 Link to this function

 get(queryable, id, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.get/3.

 Link to this function

 get!(queryable, id, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.get!/3.

 Link to this function

 get_by(queryable, clauses, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.get_by/3.

 Link to this function

 get_by!(queryable, clauses, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.get_by!/3.

 Link to this function

 get_dynamic_repo()

 View Source

Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 Link to this function

 in_transaction?()

 View Source

Callback implementation for Ecto.Repo.in_transaction?/0.

 Link to this function

 insert(struct, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.insert/2.

 Link to this function

 insert!(struct, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.insert!/2.

 Link to this function

 insert_all(schema_or_source, entries, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.insert_all/3.

 Link to this function

 insert_or_update(changeset, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.insert_or_update/2.

 Link to this function

 insert_or_update!(changeset, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.insert_or_update!/2.

 Link to this function

 load(schema_or_types, data)

 View Source

Callback implementation for Ecto.Repo.load/2.

 Link to this function

 one(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.one/2.

 Link to this function

 one!(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.one!/2.

 Link to this function

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.preload/3.

 Link to this function

 prepare_query(operation, query, opts)

 View Source

Callback implementation for Ecto.Repo.prepare_query/3.

 Link to this function

 put_dynamic_repo(dynamic)

 View Source

Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 Link to this function

 query(sql, params \\ [], opts \\ [])

 View Source

A convenience function for SQL-based repositories that executes the given query.
See Ecto.Adapters.SQL.query/4 for more information.

 Link to this function

 query!(sql, params \\ [], opts \\ [])

 View Source

A convenience function for SQL-based repositories that executes the given query.
See Ecto.Adapters.SQL.query!/4 for more information.

 Link to this function

 query_many(sql, params \\ [], opts \\ [])

 View Source

A convenience function for SQL-based repositories that executes the given multi-result query.
See Ecto.Adapters.SQL.query_many/4 for more information.

 Link to this function

 query_many!(sql, params \\ [], opts \\ [])

 View Source

A convenience function for SQL-based repositories that executes the given multi-result query.
See Ecto.Adapters.SQL.query_many!/4 for more information.

 Link to this function

 reload(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.reload/2.

 Link to this function

 reload!(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.reload!/2.

 Link to this function

 rollback(value)

 View Source

 @spec rollback(term()) :: no_return()

Callback implementation for Ecto.Repo.rollback/1.

 Link to this function

 start_link(opts \\ [])

 View Source

Callback implementation for Ecto.Repo.start_link/1.

 Link to this function

 stop(timeout \\ 5000)

 View Source

Callback implementation for Ecto.Repo.stop/1.

 Link to this function

 stream(queryable, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.stream/2.

 Link to this function

 to_sql(operation, queryable)

 View Source

A convenience function for SQL-based repositories that translates the given query to SQL.
See Ecto.Adapters.SQL.to_sql/3 for more information.

 Link to this function

 transaction(fun_or_multi, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.transaction/2.

 Link to this function

 update(struct, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.update/2.

 Link to this function

 update!(struct, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.update!/2.

 Link to this function

 update_all(queryable, updates, opts \\ [])

 View Source

Callback implementation for Ecto.Repo.update_all/3.

Legendary.Core.SharedDBConnectionPool

A shareable connection pool. We use this so that all the apps connecting to
one database can use on connection pool, even if they have different repos.
This allows a reasonable number of connections to be available per application
without requiring a huge number of connections to the database.

 Anchor for this section

 Summary

 Functions

 checkout(pool, caller, opts)

 See DBConnection.ConnectionPool.checkout/3.

 child_spec(arg)

 start_link(arg)

 Anchor for this section

Functions

 Link to this function

 checkout(pool, caller, opts)

 View Source

See DBConnection.ConnectionPool.checkout/3.

 Link to this function

 child_spec(arg)

 View Source

 Link to this function

 start_link(arg)

 View Source

Mix.Legendary

Parent module for all Legendary framework mix tasks. Provides some helpers
used by tasks and generators.

Legendary.CoreWeb

The entrypoint for defining your web interface, such
as controllers, views, channels and so on.
This can be used in your application as:
use Legendary.CoreWeb, :controller
use Legendary.CoreWeb, :view
The definitions below will be executed for every view,
controller, etc, so keep them short and clean, focused
on imports, uses and aliases.
Do NOT define functions inside the quoted expressions
below. Instead, define any helper function in modules
and import those modules here.

 Anchor for this section

 Summary

 Functions

 __using__(which)

 When used, dispatch to the appropriate controller/view/etc.

 channel()

 controller()

 mailer_view()

 router()

 view()

 Anchor for this section

Functions

 Link to this macro

 __using__(which)

 View Source

 (macro)

When used, dispatch to the appropriate controller/view/etc.

 Link to this function

 channel()

 View Source

 Link to this function

 controller()

 View Source

 Link to this function

 mailer_view()

 View Source

 Link to this function

 router()

 View Source

 Link to this function

 view()

 View Source

Legendary.CoreWeb.Endpoint

 Anchor for this section

 Summary

 Functions

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Anchor for this section

Functions

 Link to this function

 broadcast(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast/3.

 Link to this function

 broadcast!(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 Link to this function

 broadcast_from(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 Link to this function

 broadcast_from!(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 Link to this function

 call(conn, opts)

 View Source

Callback implementation for Plug.call/2.

 Link to this function

 child_spec(opts)

 View Source

Returns the child specification to start the endpoint
under a supervision tree.

 Link to this function

 config(key, default \\ nil)

 View Source

Returns the endpoint configuration for key
Returns default if the key does not exist.

 Link to this function

 config_change(changed, removed)

 View Source

Reloads the configuration given the application environment changes.

 Link to this function

 host()

 View Source

Returns the host for the given endpoint.

 Link to this function

 init(opts)

 View Source

Callback implementation for Plug.init/1.

 Link to this function

 local_broadcast(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 Link to this function

 local_broadcast_from(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 Link to this function

 path(path)

 View Source

Generates the path information when routing to this endpoint.

 Link to this function

 script_name()

 View Source

Generates the script name.

 Link to this function

 start_link(opts \\ [])

 View Source

Starts the endpoint supervision tree.

 options

 Options

	:log_access_url - if the access url should be logged
once the endpoint starts

All other options are merged into the endpoint configuration.

 Link to this function

 static_integrity(path)

 View Source

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 Link to this function

 static_lookup(path)

 View Source

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 Link to this function

 static_path(path)

 View Source

Generates a route to a static file in priv/static.

 Link to this function

 static_url()

 View Source

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 Link to this function

 struct_url()

 View Source

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 Link to this function

 subscribe(topic, opts \\ [])

 View Source

Callback implementation for Phoenix.Endpoint.subscribe/2.

 Link to this function

 unsubscribe(topic)

 View Source

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 Link to this function

 url()

 View Source

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

Legendary.CoreWeb.ErrorView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.CoreWeb.Gettext

A module providing Internationalization with a gettext-based API.
By using Gettext,
your module gains a set of macros for translations, for example:
import Legendary.CoreWeb.Gettext

Simple translation
gettext("Here is the string to translate")

Plural translation
ngettext("Here is the string to translate",
 "Here are the strings to translate",
 3)

Domain-based translation
dgettext("errors", "Here is the error message to translate")
See the Gettext Docs for detailed usage.

 Anchor for this section

 Summary

 Functions

 dgettext(domain, msgid, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.dgettext/3.

 dgettext_noop(domain, msgid)

 Callback implementation for Gettext.Backend.dgettext_noop/2.

 dngettext(domain, msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.dngettext/5.

 dngettext_noop(domain, msgid, msgid_plural)

 Callback implementation for Gettext.Backend.dngettext_noop/3.

 dpgettext(domain, msgctxt, msgid, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.dpgettext/4.

 dpgettext_noop(domain, msgctxt, msgid)

 dpngettext(domain, msgctxt, msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.dpngettext/6.

 dpngettext_noop(domain, msgctxt, msgid, msgid_plural)

 gettext(msgid, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.gettext/2.

 gettext_comment(comment)

 Callback implementation for Gettext.Backend.gettext_comment/1.

 gettext_noop(msgid)

 Callback implementation for Gettext.Backend.gettext_noop/1.

 handle_missing_bindings(exception, incomplete)

 Callback implementation for Gettext.Backend.handle_missing_bindings/2.

 handle_missing_plural_translation(locale, domain, msgctxt, msgid, msgid_plural, n, bindings)

 Callback implementation for Gettext.Backend.handle_missing_plural_translation/7.

 handle_missing_translation(locale, domain, msgctxt, msgid, bindings)

 Callback implementation for Gettext.Backend.handle_missing_translation/5.

 lgettext(locale, domain, msgctxt \\ nil, msgid, bindings)

 lngettext(locale, domain, msgctxt \\ nil, msgid, msgid_plural, n, bindings)

 ngettext(msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.ngettext/4.

 ngettext_noop(msgid, msgid_plural)

 Callback implementation for Gettext.Backend.ngettext_noop/2.

 pgettext(msgctxt, msgid, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.pgettext/3.

 pgettext_noop(msgid, context)

 pngettext(msgctxt, msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 Callback implementation for Gettext.Backend.pngettext/5.

 pngettext_noop(msgctxt, msgid, msgid_plural)

 Anchor for this section

Functions

 Link to this macro

 dgettext(domain, msgid, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.dgettext/3.

 Link to this macro

 dgettext_noop(domain, msgid)

 View Source

 (macro)

Callback implementation for Gettext.Backend.dgettext_noop/2.

 Link to this macro

 dngettext(domain, msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.dngettext/5.

 Link to this macro

 dngettext_noop(domain, msgid, msgid_plural)

 View Source

 (macro)

Callback implementation for Gettext.Backend.dngettext_noop/3.

 Link to this macro

 dpgettext(domain, msgctxt, msgid, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.dpgettext/4.

 Link to this macro

 dpgettext_noop(domain, msgctxt, msgid)

 View Source

 (macro)

 Link to this macro

 dpngettext(domain, msgctxt, msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.dpngettext/6.

 Link to this macro

 dpngettext_noop(domain, msgctxt, msgid, msgid_plural)

 View Source

 (macro)

 Link to this macro

 gettext(msgid, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.gettext/2.

 Link to this macro

 gettext_comment(comment)

 View Source

 (macro)

Callback implementation for Gettext.Backend.gettext_comment/1.

 Link to this macro

 gettext_noop(msgid)

 View Source

 (macro)

Callback implementation for Gettext.Backend.gettext_noop/1.

 Link to this function

 handle_missing_bindings(exception, incomplete)

 View Source

Callback implementation for Gettext.Backend.handle_missing_bindings/2.

 Link to this function

 handle_missing_plural_translation(locale, domain, msgctxt, msgid, msgid_plural, n, bindings)

 View Source

Callback implementation for Gettext.Backend.handle_missing_plural_translation/7.

 Link to this function

 handle_missing_translation(locale, domain, msgctxt, msgid, bindings)

 View Source

Callback implementation for Gettext.Backend.handle_missing_translation/5.

 Link to this function

 lgettext(locale, domain, msgctxt \\ nil, msgid, bindings)

 View Source

 Link to this function

 lngettext(locale, domain, msgctxt \\ nil, msgid, msgid_plural, n, bindings)

 View Source

 Link to this macro

 ngettext(msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.ngettext/4.

 Link to this macro

 ngettext_noop(msgid, msgid_plural)

 View Source

 (macro)

Callback implementation for Gettext.Backend.ngettext_noop/2.

 Link to this macro

 pgettext(msgctxt, msgid, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.pgettext/3.

 Link to this macro

 pgettext_noop(msgid, context)

 View Source

 (macro)

 Link to this macro

 pngettext(msgctxt, msgid, msgid_plural, n, bindings \\ Macro.escape(%{}))

 View Source

 (macro)

Callback implementation for Gettext.Backend.pngettext/5.

 Link to this macro

 pngettext_noop(msgctxt, msgid, msgid_plural)

 View Source

 (macro)

Legendary.CoreWeb.LayoutView

 Anchor for this section

 Summary

 Functions

 __resource__()

 The resource name, as an atom, for this view

 render(template, assigns \\ %{})

 Renders the given template locally.

 template_not_found(template, assigns)

 Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

 Anchor for this section

Functions

 Link to this function

 __resource__()

 View Source

The resource name, as an atom, for this view

 Link to this function

 render(template, assigns \\ %{})

 View Source

Renders the given template locally.

 Link to this function

 template_not_found(template, assigns)

 View Source

 @spec template_not_found(Phoenix.Template.name(), map()) :: no_return()

Callback invoked when no template is found.
By default it raises but can be customized
to render a particular template.

Legendary.CoreWeb.Router

 Anchor for this section

 Summary

 Functions

 api(conn, _)

 browser(conn, _)

 call(conn, opts)

 Callback invoked by Plug on every request.

 init(opts)

 Callback required by Plug that initializes the router
for serving web requests.

 Anchor for this section

Functions

 Link to this function

 api(conn, _)

 View Source

 Link to this function

 browser(conn, _)

 View Source

 Link to this function

 call(conn, opts)

 View Source

Callback invoked by Plug on every request.

 Link to this function

 init(opts)

 View Source

Callback required by Plug that initializes the router
for serving web requests.

Legendary.CoreWeb.Router.Helpers

Module with named helpers generated from Legendary.CoreWeb.Router.

 Anchor for this section

 Summary

 Functions

 path(data, path)

 Generates the path information including any necessary prefix.

 pow_email_confirmation_confirmation_path(conn_or_endpoint, action, id)

 pow_email_confirmation_confirmation_path(conn_or_endpoint, action, id, params)

 pow_email_confirmation_confirmation_url(conn_or_endpoint, action, id)

 pow_email_confirmation_confirmation_url(conn_or_endpoint, action, id, params)

 pow_registration_path(conn_or_endpoint, action)

 pow_registration_path(conn_or_endpoint, action, params)

 pow_registration_url(conn_or_endpoint, action)

 pow_registration_url(conn_or_endpoint, action, params)

 pow_reset_password_reset_password_path(conn_or_endpoint, action)

 pow_reset_password_reset_password_path(conn_or_endpoint, action, params)

 pow_reset_password_reset_password_path(conn_or_endpoint, action, id, params)

 pow_reset_password_reset_password_url(conn_or_endpoint, action)

 pow_reset_password_reset_password_url(conn_or_endpoint, action, params)

 pow_reset_password_reset_password_url(conn_or_endpoint, action, id, params)

 pow_session_path(conn_or_endpoint, action)

 pow_session_path(conn_or_endpoint, action, params)

 pow_session_url(conn_or_endpoint, action)

 pow_session_url(conn_or_endpoint, action, params)

 static_integrity(endpoint, path)

 Generates an integrity hash to a static asset given its file path.

 static_path(conn, path)

 Generates path to a static asset given its file path.

 static_url(conn, path)

 Generates url to a static asset given its file path.

 url(data)

 Generates the connection/endpoint base URL without any path information.

 Anchor for this section

Functions

 Link to this function

 path(data, path)

 View Source

Generates the path information including any necessary prefix.

 Link to this function

 pow_email_confirmation_confirmation_path(conn_or_endpoint, action, id)

 View Source

 Link to this function

 pow_email_confirmation_confirmation_path(conn_or_endpoint, action, id, params)

 View Source

 Link to this function

 pow_email_confirmation_confirmation_url(conn_or_endpoint, action, id)

 View Source

 Link to this function

 pow_email_confirmation_confirmation_url(conn_or_endpoint, action, id, params)

 View Source

 Link to this function

 pow_registration_path(conn_or_endpoint, action)

 View Source

 Link to this function

 pow_registration_path(conn_or_endpoint, action, params)

 View Source

 Link to this function

 pow_registration_url(conn_or_endpoint, action)

 View Source

 Link to this function

 pow_registration_url(conn_or_endpoint, action, params)

 View Source

 Link to this function

 pow_reset_password_reset_password_path(conn_or_endpoint, action)

 View Source

 Link to this function

 pow_reset_password_reset_password_path(conn_or_endpoint, action, params)

 View Source

 Link to this function

 pow_reset_password_reset_password_path(conn_or_endpoint, action, id, params)

 View Source

 Link to this function

 pow_reset_password_reset_password_url(conn_or_endpoint, action)

 View Source

 Link to this function

 pow_reset_password_reset_password_url(conn_or_endpoint, action, params)

 View Source

 Link to this function

 pow_reset_password_reset_password_url(conn_or_endpoint, action, id, params)

 View Source

 Link to this function

 pow_session_path(conn_or_endpoint, action)

 View Source

 Link to this function

 pow_session_path(conn_or_endpoint, action, params)

 View Source

 Link to this function

 pow_session_url(conn_or_endpoint, action)

 View Source

 Link to this function

 pow_session_url(conn_or_endpoint, action, params)

 View Source

 Link to this function

 static_integrity(endpoint, path)

 View Source

Generates an integrity hash to a static asset given its file path.

 Link to this function

 static_path(conn, path)

 View Source

Generates path to a static asset given its file path.

 Link to this function

 static_url(conn, path)

 View Source

Generates url to a static asset given its file path.

 Link to this function

 url(data)

 View Source

Generates the connection/endpoint base URL without any path information.

Legendary.CoreWeb.Telemetry

Collects metrics for the application and allows them to be transmitted using the Telemetry framework.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 metrics()

 start_link(arg)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 metrics()

 View Source

 Link to this function

 start_link(arg)

 View Source

Legendary.CoreWeb.UserSocket

mix legendary.create_admin

Mix task to create an admin user from the command line.

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

