

 jackalope

 v0.4.1

 Table of contents

 	Changelog

 	Modules

 	Jackalope

 	Jackalope.Handler

 	Jackalope.Handler.Logger

Changelog

v0.4.1
	Updates	Now using tortoise311 forked from tortoise

v0.4.0
	Updates	Session work list can be bounded to a set size

v0.3.0
	Updates	Moved to Tortoise 0.10.0
	Last-will message callbacks

v0.2.0
	Bug fixes	Fix topic return type for :payload_decode_error - This is a breaking
change if you're using it.
	Reduce logging when everything is working fine

v0.1.0
Initial release to hex.

Jackalope

Jackalope is an opinionated MQTT library that simplifies the use of
Tortoise MQTT with cloud IoT
services.
Jackalope aims to make an interface that:
	Ensure that important messages are delivered to the broker, by
having a local "post office" and tracking the in flight messages,
and implementing a concept of ttl (time to live) on the messages
placed in the mailbox; ensuring the "request to unlock the door"
won't happen two hours later when the MQTT connection finally
reconnects. This allows Jackalope to accept publish and
subscription requests while the connection is down.

	Makes it impossible (or at least hard) to do things that AWS IoT
and other popular services do not support; such as publishing a
message or subscribing to a topic filter with a greater quality of
service than allowed, or publishing a message with the retain flag
set

	Makes it easy to connect to AWS IoT with the correct encryption
enabled (Coming soon!)

Besides this Jackalope aims to provide helpers for local testing,
allowing you to test your application without having a connection to
AWS; Jackalope should take care of that.
Usage
The Jackalope module implements a start_link/1 function; use this
to start Jackalope as part of your application supervision tree. If
properly supervised it will allow you to start and stop Jackalope
with the part the application that needs MQTT connectivity.
Jackalope is configured using a keyword list, consult the
Jackalope.start_link/1 documentation for information on the
available option values.
Once Jackalope is running it is possible to subscribe, unsubscribe,
and publish messages to the broker; in addition to this there are some
connection specific functionality is exposed, allowing us to ask for
the connection status, and request a connection reconnect.
	Jackalope.subscribe(topic) request a subscription to a specific
topic. The topic will be added to the list of topics Jackalope
will ensure we are subscribed to.

	Jackalope.unsubscribe(topic) will request an unsubscribe from a
specific topic and remove the topic from the list of topics
Jackalope ensure are subscribed to.

	Jackalope.publish(topic, payload) will publish a message to the
MQTT broker;

	Jackalope.reconnect() will disconnect from the broker and
reconnect; this is useful if the device changes network connection.

Please see the documentation for each of the functions for more
information on usage; especially the subscribe and publish functions
accepts options such as setting quality of service and time to live.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 publish(topic, payload, opts \\ [])

 Publish a message to the MQTT broker

 reconnect()

 Request the MQTT client to reconnect to the broker

 start_link(opts)

 Start a Jackalope session

 subscribe(topic_filter, opts \\ [])

 Place a subscription request for a given topic_filter

 unsubscribe(topic_filter, opts \\ [])

 Place an unsubscribe request for the given topic_filter

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 publish(topic, payload, opts \\ [])

 View Source

Publish a message to the MQTT broker
The payload will get published on topic. Jackalope will keep
the message in a queue until we got a connection, at which point it
will dispatch the publish. This of course present us with a problem:
what if we place a publish request to "unlock the front door" while
the client is offline? We don't want to receive a message that the
front door has been unlocked two hours later when the MQTT client
reconnect; To solve that problem we have a ttl option we can
specify on the publish.
Jackalope.publish("doors/front_door", %{action: "unlock"}, ttl: 5_000)
Currently ttl is the only queue option available; to set MQTT
Publish options, such as the quality of service, can be done like
this:
Jackalope.publish({"room/salon/temp", qos: 1}, %{temp: 21})
The available package options are:
	qos (default 1) set the quality of service of the message
delivery; Notice that only quality of service 0 an 1 are
supported by AWS IoT; specifying 2 will result in an error.

	retain has to be false, as AWS IoT does not support retained
publish messages

Notice that Jackalope will JSON encode the payload; so the data
should be JSON encodable.

 Link to this function

 reconnect()

 View Source

 Specs

 reconnect() :: :ok

Request the MQTT client to reconnect to the broker
This can be useful on devices that has multiple network
interfaces. After the reconnect Jackalope will subscribe to the
topic_filters it was subscribed to, ensuring that we are in sync
with the subscription state.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link(keyword()) :: Supervisor.on_start()

Start a Jackalope session
This will start a supervised group of processes; part of the group
will keep track of the topic filter subscription state, and hold a
list of yet to be published messages, as well as the requested
subscription changes; the other part of the process tree will keep
the MQTT connection specific parts, making sure we got a
connection. See the main documentation on the Jackalope module for
more information on the process architecture.
Jackalope.start_link/1 takes a keyword list containing option
values, that configure the instance, as an argument. The available
options and their defaults are:
	client_id (default: "jackalope"), string that will be used as
the client_id of the MQTT connection; see t Tortoise.client_id
for more information on valid client ids. Notice that the
client_id needs to be unique on the server, so two clients may not
have the same client_id.

	initial_topics (optional) specifies a list of topic_filters
Jackalope should connect to when a connection has been
established. Notice that this list is only used for the initial
connect, should a reconnect happen later in the life-cycle, the
current subscription state tracked by Jackalope will be used.

	handler (default: Jackalope.Handler.Logger) specifies the
module implementing the callbacks (implementing
Jackalope.Handler behaviour) to use. This module reacts to
the events Jackalope communicates about the connection
life-cycle, including receiving a message on a
subscribed topic filter. Read the documentation for
Jackalope.Handler for more information on the events and
callbacks.

	server (default: {Tortoise.Transport.Tcp, [host: "localhost", port: 1883]}) specifies the
connection type, and its options, to use when connecting to the
MQTT server. The default specification will attempt to connect to
a broker running on localhost:1883, on an insecure
connection. This value should only be used for testing and
development;.

	max_work_list_size (default: :infinity) specifies the maximum
number of unexpired work orders Jackalope will retain in its work list
(the commands yet to be sent to the MQTT server). When the maximum is
reached, the oldest work order is dropped before adding a new work order.

	last_will (default: nil) specifies the last will message that
should get published on the MQTT broker if the connection is
closed or dropped unexpectedly. If we want to specify a last will
topic we should define a keyword list containing the following:
	topic (Required) the topic to post the last will message to;
this should be specified as a string and it should be a valid
MQTT topic; consult t Tortoise.topic for more info on valid
MQTT topics.
	payload (default: nil) the payload of the last will message;
notice that we will attempt to JSON encode the payload term
(unless it is nil), so it will fail if the data fails the JSON
encode.
	qos (default: 0) either 0 or 1, denoting the quality of
service the last will message should get published with; note
that QoS=2 is not supported by AWS IoT.

	TODO backoff make backoff a configurable value

 Link to this function

 subscribe(topic_filter, opts \\ [])

 View Source

Place a subscription request for a given topic_filter
Once Jackalope has successfully subscribed to the topic_filter it
will get added to the list of topic filters to ensure when
reconnecting; this ensure that Jackalope have a consistent view of
the subscription state, even if the MQTT client reconnect with a
clean session state.
 Jackalope.subscribe("rooms/living-room/temperature")
It is possible to specify the maximum quality of service to
subscribe to like so:
 Jackalope.subscribe({"rooms/kitchen/water-leak-sensor", qos: 1})
The default QoS is 1; Notice that AWS IoT does not support
subscriptions with QoS=2, so only 0 and 1 are permitted.
Like the public message it is possible to set a time to live on the
subscribe request:
 Jackalope.subscribe("golf/+/result", ttl: 5_000)
This will not dispatch the subscribe request Jackalope cannot get it
to the broker within the specified duration (in ms).

 Link to this function

 unsubscribe(topic_filter, opts \\ [])

 View Source

Place an unsubscribe request for the given topic_filter
This will place a unsubscribe and inform Jackalope to remove the
given topic_filter from the list of subscriptions to ensure.
 Jackalope.unsubscribe("room/lobby/doorbell")
The only configuration option is the ttl value, which can be set
like so:
 Jackalope.unsubscribe("room/lobby/doorbell", ttl: 1_000)
Like all the other messages, this will drop the message if it stays
too long in the queue.

Jackalope.Handler behaviour

Behaviour defining callbacks triggered during the MQTT life-cycle
The jackalope handler is stateless, so if state is needed one could
route the messages to stateful processes, and inform the system
about connection and subscription state.
Most of the callbacks are optional.

 Anchor for this section

 Summary

 Types

 last_will()

 payload()

 topic()

 topic_filter()

 topic_levels()

 Callbacks

 connection(status)

 Called when the MQTT connection changes status

 handle_error(reason)

 Handle errors produced by Jackalope that should be reacted to

 handle_message(topic_levels, payload)

 Called when receiving a message matching one of the subscriptions

 last_will()

 Produces the last will message for the current connection, or nil if the last will in the connection options is to be used
Example: [topic: hub_serial_number/message", payload: %{code: "going_down", msg: "Last will message"}, qos: 1]

 subscription(status, topic_filter)

 Called when a topic filter subscription state changes

 Anchor for this section

Types

 Link to this type

 last_will()

 View Source

 Specs

 last_will() :: [topic: topic(), payload: payload(), qos: non_neg_integer()]

 Link to this type

 payload()

 View Source

 Specs

 payload() :: term()

 Link to this type

 topic()

 View Source

 Specs

 topic() :: Tortoise.topic()

 Link to this type

 topic_filter()

 View Source

 Specs

 topic_filter() :: Tortoise.topic_filter()

 Link to this type

 topic_levels()

 View Source

 Specs

 topic_levels() :: [String.t()]

 Anchor for this section

Callbacks

 Link to this callback

 connection(status)

 View Source

 (optional)

 Specs

 connection(status :: :up | :down) :: any()

Called when the MQTT connection changes status
This can be used to inform other parts of the system about the state
of the connection; possible values are :up and :down, where up
means that the MQTT client has a connection to the broker; down
means that the connection has been dropped.

 Link to this callback

 handle_error(reason)

 View Source

 (optional)

 Specs

 handle_error(reason) :: any()
when reason:
 {:payload_decode_error, Jason.DecodeError.t(),
 {topic_levels(), payload_string :: String.t()}}
 | {:publish_error, {topic(), payload(), opts}, error_reason :: term()}
 | {:publish_error, jackalope_work_order :: term(), :ttl_expired},
 opts: Keyword.t()

Handle errors produced by Jackalope that should be reacted to
During the connection life-cycle various errors can occur, and while
Jackrabbit and Tortoise will try to correct the situation, some
errors require user intervention. The optional handle_error/1
callback can help inform the surrounding system of errors.
@impl Jackalope.Handler
def handle_error({:publish_error, work_order, :ttl_expired}) do
 Logger.error("Work order expired: #{inspect(work_order)}")
end

def handle_error(_otherwise) do
 _ignore = nil
end
If this callback is implemented one should make sure to make a
catch-all to prevent unhandled errors from crashing the handler.

 Link to this callback

 handle_message(topic_levels, payload)

 View Source

 Specs

 handle_message(topic_levels(), payload()) :: any()

Called when receiving a message matching one of the subscriptions
The callback will receive two arguments; the MQTT topic in list
form, where each of the topic levels are an item. This allows us to
pattern match on topic filters with wildcards.
The payload should be a term; at this point the message will have
been run through a JSON decoder. If the JSON decode should fail the
optional handle_error/1 callback would have been triggered
instead.

 Link to this callback

 last_will()

 View Source

 Specs

 last_will() :: last_will() | nil

Produces the last will message for the current connection, or nil if the last will in the connection options is to be used
Example: [topic: hub_serial_number/message", payload: %{code: "going_down", msg: "Last will message"}, qos: 1]

 Link to this callback

 subscription(status, topic_filter)

 View Source

 (optional)

 Specs

 subscription(status :: :up | :down, topic_filter()) :: any()

Called when a topic filter subscription state changes
This can be used to inform other parts of the system that we should
(or shouldn't) expect messages received on the given topic_filter.
The status values are :up and :down, where up means that the
broker has accepted a subscription request to the specific
topic_filter, and down means that the broker has accepted an
unsubscribe request.

Jackalope.Handler.Logger

A Jackalope.Handler that logs everything it sees
This handler will be used by Jackalope if no handler has been
specified in the option list passed to Jackalope.start_link/1.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

