

 IntSet

 v1.5.2

 Table of contents

 	IntSet

 	Changelog

 	Contributor Covenant Code of Conduct

 	Contributing

 	Modules

 	IntSet

IntSet

[image: Hex.pm]
[image: Elixir CI]
[image: liberapay goals]
[image: standard-readme compliant]
[image: Contributor Covenant]
A time- and memory-efficient data structure for positive integers.
Faster than Elixir's MapSet at set operations (union, intersection, difference, equality),
and slower at everything else.
Also can be serlialized wicked small.
Install
This package can be installed by adding int_set to your list of dependencies in mix.exs:
def deps do
 [
 {:int_set, "~> 1.5"}
]
end
The docs can be found at https://hexdocs.pm/int_set.
Usage
Usage is pretty much the same as with MapSet,
but you're only allowed to put positive integers (including zero) into the set.
A set can be constructed using IntSet.new/0:
iex> IntSet.new
#IntSet<[]>
An IntSet obeys the same set semantics as MapSet, and provides
constant-time operations for insertion, deletion, and membership checking.
Use Enum.member?/2 to check for membership.
iex> IntSet.new(3) |> Enum.member?(3)
true
Sets also implement Collectable, so it can collect values in any context
that a list can:
iex> Enum.into([1, 2, 3], IntSet.new())
#IntSet<[1, 2, 3]>
The inspect/1 implementation for IntSet sorts the members, which makes
it way easier to write doctests:
iex> IntSet.new([3, 1, 2])
#IntSet<[1, 2, 3]>
Working with applications that use bitstrings becomes way easier,
because IntSet.new/1 accepts a bitstring,
and IntSet.bitstring/2 can return one.
iex> IntSet.new(5) |> IntSet.bitstring()
<<0::1, 0::1, 0::1, 0::1, 0::1, 1::1>>

iex> IntSet.new(<<0::1, 0::1, 0::1, 0::1, 0::1, 1::1>>)
#IntSet<[5]>
This also means that an IntSet can be really efficiently serialized with the use of IntSet.bitstring/2, and IntSet.new/1.
Remember to pass the byte_align: true option into IntSet.bitstring/2 when you do this;
most encoding schemes like byte-aligned data.
iex> IntSet.new([4, 8, 15, 16, 23, 42]) |> IntSet.bitstring(byte_align: true) |> Base.encode16()
"088181000020"
iex> Base.decode16!("088181000020") |> IntSet.new()
#IntSet<[4, 8, 15, 16, 23, 42]>
Performance
Check out the iterations-per-second for some operations of MapSet compared to IntSet.
	Op	MapSet	IntSet	Comparison
	new	4.8K	2.46K	1.95x slower
	member?	6.78M	2.93M	2.31x slower
	put	4.19M	1.15M	3.66x slower
	union	156.4K	944.31K	6.04x faster
	difference	48.09	891.27K	18.53x faster
	intersection	14.03K	905.70K	64.54x faster
	equal?	0.26M	2.41M	9.25x faster

Memory usage is also better for union, difference, intersection, and equality.
See the [benchmarks/results] directory for all the benchmarks.
You can run the benchmarks for yourself with mix run benchmarks/benchmark.exs.
Maintainer
This project was developed by Rosa Richter.
You can get in touch with her on Keybase.io.
Contributing
Questions and pull requests are more than welcome.
I follow Elixir's tenet of bad documentation being a bug,
so if anything is unclear, please file an issue!
Ideally, my answer to your question will be in an update to the docs.
Please see CONTRIBUTING.md for all the details you could ever want about helping me with this project.
Note that this project is released with a Contributor Code of Conduct.
By participating in this project you agree to abide by its terms.
License
MIT License
Copyright 2020 Rosa Richter
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
[1.5.2] - 2022-09-05
Added
	Copyright headers are now on all files, following the REUSE Specification.

Changed
	Fixes for Elixir 1.14 deprecations
	The project now uses Earthly for CI.
You can run the entire CI pipeline on your local machine by installing Earthly and running earthly +all.

1.5.1 - 2021-09-12
Added
	Sponshorship link to mix.exs

Fixed
	inspect/2 no longer renders certain sets as charlists.

1.5.0 - 2020-10-10
Changed
	IntSet.bitstring/1 is now IntSet.bitstring/2 and now accepts an option: :byte_align.
When this option is set to true, the bitstring is padded at the end to make it byte-aligned.

1.4.2 - 2019-11-24
Fixed
	IntSet.inverse/2 is now totally fixed.

1.4.1 - 2019-11-24
Fixed
	Some problems with IntSet.inverse/2 and padding were fixed.

1.4.0 - 2019-11-24
Added
	The IntSet.inverse/2 function, which is like taking the difference of your IntSet with a completely-full IntSet with n members.
Say you have a list of indices, and you want to create a list of all the indices you don't have.
Just take the inverse, providing a member limit.
	Added an .editorconfig file to the project.

1.3.0 - 2018-05-25
Added
	The IntSet.equal?/2 function.
It does exactly what you think.
	The IntSet.intersection/2 function.
Returns the elements that are in both sets.

1.2.1 - 2018-02-09
Added
	IntSet.difference/2 now has a typespec.
	IntSet.disjoint?/2 now has docs and a typespec.

Changed
	IntSet.union/2 has been optimized

1.2.0 - 2018-02-06
Added
	The IntSet.difference/2 function.
This function subtracts set B's members from set A.
	The IntSet.disjoint?/2 function.
Returns true if sets A and B have no members in common.

Changed
	The Collectable implementation was dramatically optimized.

1.1.0 - 2018-02-03
Added
	The IntSet.bitstring/1 function.
Returns a binary with bits flipped at the indices at which the set has members.
For example, say you have a set containing 0, 1, and 4.
Calling IntSet.bitstring/1 on that set will return a five-bit-long binary with the first, second, and fifth bits set to 1, and the rest are 0.
	The library is now typespecced and documented.

1.0.0 - 2018-02-01
Added
	Constructor IntSet.new/0, which creates a new empty set.
	Constructor IntSet.new/1, which accepts either an enumerable and returns a set containing those elements.
This constructor also accepts a bitstring.
See the documentation for details on that behavior.
	The IntSet.put/2 function.
Just like MapSet.put/2, this function returns a new set with the given value added.
	The IntSet.delete/2 function.
Again, just like MapSet.delete/2.
Returns a new set with the given value removed.
	The IntSet.union/2 function.
Returns a set that contains elements of both given sets.
	An implementation of Inspect that sorts members before printing them,
so the order can be relied upon in doctests.
	An implementation of Collectable.
	An implementation of Enumerable.

Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or
advances of any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email
address, without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement by sending a
message to Rosa Richter on keybase.io.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series
of actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within
the community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by Mozilla's code of conduct
enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

Contributing

Thank you for considering contributing!
I write libraries in my free time and contributions from others help me make great tools.
Following these guidelines helps to communicate that you respect my time,
as the developer managing and developing this open source project.
In return, I should reciprocate that respect in addressing your issue,
assessing changes, and helping you finalize your pull requests.
Questions and pull requests are more than welcome.
I follow Elixir's tenet of bad documentation being a bug,
so if anything is unclear, please file an issue!
Ideally, my answer to your question will be in an update to the docs.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Working on your first Pull Request? You can learn how from this free series How to Contribute to an Open Source Project on GitHub.
Ground Rules
	Follow the Code of Conduct.
	Keep your commits clear and your pull requests small.
This isn't a big library.
	Run mix format on your files before committing them.
I like clean diffs.
	Run mix credo and resolve anything of yours that comes up.
	No dependencies.

Your First Contribution
	Ask questions!
I like writing good documentation, and questions make that work more meaningful.
Use the issue tracker for questions.
There's a questions tag on the issue tracker for that reason.
	Tests are always welcome!
If you've got some edge case you're worried about, help me test for it!
	Searching issues or pull requests tagged "help wanted" or "good first issue" are great places to get started.

Getting Started
GitHub makes it really easy to submit pull requests. Just:
	Create your own fork of the code
	Do the changes in your fork
	Submit a pull request

I don't require a CLA or anything like that.
How report a bug
If you find a security vulnerability, do NOT open an issue.
Contact Rosa on keybase.io instead!
In order to determine whether you are dealing with a security issue, ask yourself these two questions:
	Can I access something that's not mine, or something I shouldn't have access to?
	Can I disable something for other people?

If the answer to either of those two questions are "yes",
then you're probably dealing with a security issue.
Note that even if you answer "no" to both questions,
you may still be dealing with a security issue, so if you're unsure,
message me directly.
Please open an issue and
follow the directions in the issue template.
How to suggest a feature or enhancement
The philosopy of this project is to create a small, sharp tool that
takes some burden off of the shoulders of developers.
Feature requests and enhancements should stick to this philosophy.
Help me do anything that lets developers do more with their valuable time.
Feature requests give meaning to my work.
Open an issue that decribes the feature you'd like to see,
why you need it, and how you'd like it to work.
Code review process
As the primary developer, I will be the one reviewing all pull requests.
I check GitHub almost every day, so you should be able to hear back from me quickly.
However, I only do this in my free time, so please allow me flexibility.

If you like this contribution guide, please give a star to Nadia Eghbal's contributing-template project on GitHub.
It was a great help.

IntSet

Efficiently store and index a set of non-negative integers.
A set can be constructed using IntSet.new/0:
iex> IntSet.new
#IntSet<[]>
An IntSet obeys the same set semantics as MapSet, and provides
constant-time operations for insertion, deletion, and membership checking.
Use Enum.member?/2 to check for membership.
iex> IntSet.new(3) |> Enum.member?(3)
true
Sets also implement Collectable, so it can collect values in any context
that a list can:
iex> Enum.into([1, 2, 3], IntSet.new())
#IntSet<[1, 2, 3]>
The inspect/1 implementation for IntSet sorts the members, which makes
it way easier to write doctests:
iex> IntSet.new([3, 1, 2])
#IntSet<[1, 2, 3]>
Working with applications that use bitstrings becomes way easier,
because IntSet.new/1 accepts a bitstring,
and IntSet.bitstring/2 can return one.
iex> IntSet.new(5) |> IntSet.bitstring()
<<0::1, 0::1, 0::1, 0::1, 0::1, 1::1>>

iex> IntSet.new(<<0::1, 0::1, 0::1, 0::1, 0::1, 1::1>>)
#IntSet<[5]>
Performance
An IntSet is significantly faster than Elixir's MapSet at set operations (union, intersection, difference, equality),
but slower at everything else.
The case for memory usage is similar:
better than MapSet for set operations,
worse for everything else.
	Op	MapSet	IntSet	Comparison
	new	4.8K	2.46K	1.95x slower
	member?	6.78M	2.93M	2.31x slower
	put	4.19M	1.15M	3.66x slower
	union	156.4K	944.31K	6.04x faster
	difference	48.09	891.27K	18.53x faster
	intersection	14.03K	905.70K	64.54x faster
	equal?	0.26M	2.41M	9.25x faster

There is a benchmark checked into the project repo
at perf/performance_test.exs.
You can run it with mix run to see some results for yourself.
Serialization
With the use of IntSet.bitstring/2, and IntSet.new/1,
you can serialize this collection very efficiently.
Remember to pass the byte_align: true option into IntSet.bitstring/2 when you do this;
most encoding schemes like byte-aligned data.
iex> IntSet.new([4, 8, 15, 16, 23, 42]) |> IntSet.bitstring(byte_align: true) |> Base.encode16()
"088181000020"
iex> Base.decode16!("088181000020") |> IntSet.new()
#IntSet<[4, 8, 15, 16, 23, 42]>

 Anchor for this section

 Summary

 Types

 t()

 Functions

 bitstring(int_set, opts \\ [])

 Get a bitstring representing the members of a set.

 delete(set, x)

 Remove a number from the int set.

 difference(int_set1, int_set2)

 Returns a set that is int_set1 without the members of int_set2.

 disjoint?(int_set1, int_set2)

 Checks if int_set and int_set2 have no members in common.

 equal?(int_set1, int_set2)

 Checks if two sets are equal

 intersection(int_set1, int_set2)

 Find all elements that are in both int_set1 and int_set2.

 inverse(int_set, n)

 Returns a set of size n with all members not in the given IntSet.

 new()

 Create an empty int set.

 new(members)

 Create an int set with some starting value.

 put(s, x)

 Add a value to the int set.

 union(x, y)

 Create a new set that contains all of the elements of both x and y.

 Anchor for this section

Types

 Link to this opaque

 t()

 View Source

 (opaque)

 @opaque t()

 Anchor for this section

Functions

 Link to this function

 bitstring(int_set, opts \\ [])

 View Source

 (since 1.1.0)

Get a bitstring representing the members of a set.

 examples

 Examples

iex> IntSet.new(0) |> IntSet.bitstring()
<<1::1>>

iex> IntSet.new(5) |> IntSet.bitstring()
<<0::1, 0::1, 0::1, 0::1, 0::1, 1::1>>

iex> IntSet.new() |> IntSet.bitstring()
<<>>
You can also provide a :byte_align option,
which will pad the end of the binary with zeroes until you're at a nice round n-byte size.
By default this options is false.
iex> IntSet.new(5) |> IntSet.bitstring(byte_align: true)
<<0::1, 0::1, 0::1, 0::1, 0::1, 1::1, 0::1, 0::1>>

 Link to this function

 delete(set, x)

 View Source

 (since 1.0.0)

 @spec delete(t(), non_neg_integer()) :: t()

Remove a number from the int set.

 examples

 Examples

iex> set = IntSet.new(5)
#IntSet<[5]>
iex> IntSet.delete(set, 5)
#IntSet<[]>

 Link to this function

 difference(int_set1, int_set2)

 View Source

 (since 1.2.0)

 @spec difference(t(), t()) :: t()

Returns a set that is int_set1 without the members of int_set2.

 examples

 Examples

iex> IntSet.difference(IntSet.new([1, 2]), IntSet.new([2, 3, 4]))
#IntSet<[1]>

 Link to this function

 disjoint?(int_set1, int_set2)

 View Source

 (since 1.2.0)

 @spec disjoint?(t(), t()) :: boolean()

Checks if int_set and int_set2 have no members in common.

 examples

 Examples

iex> IntSet.disjoint?(IntSet.new([1, 2]), IntSet.new([3, 4]))
true

iex> IntSet.disjoint?(IntSet.new([1, 2]), IntSet.new([2, 3]))
false

 Link to this function

 equal?(int_set1, int_set2)

 View Source

 (since 1.3.0)

 @spec equal?(t(), t()) :: boolean()

Checks if two sets are equal

 examples

 Examples

iex> IntSet.equal?(IntSet.new([1, 2]), IntSet.new([2, 1, 1]))
true
iex> IntSet.equal?(IntSet.new([1, 2]), IntSet.new([3, 4]))
false

 Link to this function

 intersection(int_set1, int_set2)

 View Source

 (since 1.3.0)

 @spec intersection(t(), t()) :: t()

Find all elements that are in both int_set1 and int_set2.

 examples

 Examples

iex> IntSet.intersection(IntSet.new([1, 2]), IntSet.new([2, 3, 4]))
#IntSet<[2]>

iex> IntSet.intersection(IntSet.new([1, 2]), IntSet.new([3, 4]))
#IntSet<[]>

 Link to this function

 inverse(int_set, n)

 View Source

 (since 1.4.0)

 @spec inverse(t(), non_neg_integer()) :: t()

Returns a set of size n with all members not in the given IntSet.
You can visualize this operation as calling IntSet.difference/2
with the first argument being a full IntSet of size n.

 examples

 Examples

iex> IntSet.new(0) |> IntSet.inverse(1)
#IntSet<[]>

iex> IntSet.new(0) |> IntSet.inverse(8)
#IntSet<[1, 2, 3, 4, 5, 6, 7]>

iex> IntSet.new() |> IntSet.inverse(3)
#IntSet<[0, 1, 2]>

iex> IntSet.new() |> IntSet.inverse(9)
#IntSet<[0, 1, 2, 3, 4, 5, 6, 7, 8]>

 Link to this function

 new()

 View Source

 (since 1.0.0)

 @spec new() :: t()

Create an empty int set.

 examples

 Examples

iex> IntSet.new
#IntSet<[]>

 Link to this function

 new(members)

 View Source

 (since 1.0.0)

 @spec new(non_neg_integer() | Enum.t() | bitstring()) :: t()

Create an int set with some starting value.

 examples

 Examples

You can create a set with a single starting value.
iex> IntSet.new(0)
#IntSet<[0]>
You can also provide an enumerable of integers to start with.
iex> IntSet.new([1, 2, 3])
#IntSet<[1, 2, 3]>
Lastly, you can initialize the set with a bit string.
Binary strings are interpreted as little-endian, with the very first bit
of the string representing the number zero.
iex> IntSet.new(<<1 :: 1>>)
#IntSet<[0]>

iex> IntSet.new(<<0b1000_1000>>)
#IntSet<[0, 4]>

iex> IntSet.new(<<0 :: 1>>)
#IntSet<[]>

 Link to this function

 put(s, x)

 View Source

 (since 1.0.0)

 @spec put(t(), non_neg_integer()) :: t()

Add a value to the int set.

 examples

 Examples

iex> set = IntSet.new()
#IntSet<[]>
iex> IntSet.put(set, 0)
#IntSet<[0]>

 Link to this function

 union(x, y)

 View Source

 (since 1.0.0)

 @spec union(t(), t()) :: t()

Create a new set that contains all of the elements of both x and y.

 examples

 Examples

iex> a = IntSet.new(7)
iex> b = IntSet.new(4)
iex> IntSet.union(a, b)
#IntSet<[4, 7]>

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

