

 hyper

 v1.0.0

 Table of contents

 	HyperLogLog for Erlang

 	LICENSE

 	Changelog pre v1

 	Modules

 	hyper

 	hyper_binary

 	hyper_const

 	hyper_register

 	hyper_utils

HyperLogLog for Erlang

[image: Hex.pm]
[image: Hex.pm]
This is an implementation of the HyperLogLog algorithm in
Erlang. Using HyperLogLog you can estimate the cardinality of very
large data sets using constant memory. The relative error is 1.04 * sqrt(2^P). When creating a new HyperLogLog filter, you provide the
precision P, allowing you to trade memory for accuracy. The union of
two filters is lossless.
In practice this allows you to build efficient analytics systems. For
example, you can create a new filter in each mapper and feed it a
portion of your dataset while the reducers simply union together all
filters they receive. The filter you end up with is exactly the same
filter as if you would sequentially insert all data into a single
filter.
In addition to the base algorithm, we have implemented the new estimator as
based on Mean Limit as described this great paper by Otmar Ertl.
This new estimator greatly improves the estimates for lower cardinalities while
using a single estimator for the whole range of cardinalities.
TODO
	[x] Use rebar3
	[x] Work on OTP 23
	[x] Fix the estimator
	[x] Fix reduce_precision
	[x] add reduce_precision for array, allowing unions
	[] Better document the main module
	[x] Move documentation to ExDoc
	[x] Delete dead code
	[x] Rework test suite to be nice to modify
	[] Rework Intersection using this paper by Otmar Ertl
	[] Redo benchmarks

Usage
1> hyper:insert(<<"foobar">>, hyper:insert(<<"quux">>, hyper:new(4))).
{hyper,4,
 {hyper_binary,{dense,<<0,0,0,0,0,0,0,0,64,0,0,0>>,
 [{8,1}],
 1,16}}}

2> hyper:card(v(-1)).
2.136502281992361
The errors introduced by estimations can be seen in this example:
3> rand:seed(exsss, {1, 2, 3}).
{#{bits => 58,jump => #Fun<rand.3.47293030>,
 next => #Fun<rand.0.47293030>,type => exsss,
 uniform => #Fun<rand.1.47293030>,
 uniform_n => #Fun<rand.2.47293030>},
 [117085240290607817|199386643319833935]}
4> Run = fun (P, Card) -> hyper:card(lists:foldl(fun (_, H) -> Int = rand:uniform(10000000000000), hyper:insert(<<Int:64/integer>>, H) end, hyper:new(P), lists:seq(1, Card))) end.
#Fun<erl_eval.12.80484245>
5> Run(12, 10_000).
10038.192365345985
6> Run(14, 10_000).
9967.916262642864
7> Run(16, 10_000).
9972.832893293473
A filter can be persisted and read later. The serialized struct is formatted for usage with jiffy:
8> Filter = hyper:insert(<<"foo">>, hyper:new(4)).
{hyper,4,
 {hyper_binary,{dense,<<4,0,0,0,0,0,0,0,0,0,0,0>>,[],0,16}}}
9> Filter =:= hyper:from_json(hyper:to_json(Filter)).
true
As of today, we only support the binary backend. More to come
You can select a different backend. See below for a description of why
you might want to do so. They serialize in exactly the same way, but
can't be mixed in memory.
Is it any good?
No idea ! I do not know anyone that uses it extensively, but it is relatively
well tested. As far as i can tell, it is the only FOSS implementation that does
precision reduction properly !
Hacking
Documentation
We use ex_doc for documentation. In order to generate the docs, you need to install it
mix escript.install hex ex_doc
ex_doc --version

Then generate the docs, after targetting the correct version in docs.sh
docs.sh

Backends
Effort has been spent on implementing different backends in the
pursuit of finding the right performance trade-off. Fill rate refers to how many
registers has a value other than 0.
	hyper_binary: Fixed memory usage (6 bits * 2^P), fastest on insert,
union, cardinality and serialization. Best default choice.

You can also implement your own backend. In test theres a
bunch of tests run for all backends, including some PropEr tests. The
test suite will ensure your backend gives correct estimates and
correctly encodes/decodes the serialized filters.
Fork
This is a fork of the original Hyper library by GameAnalytics. It was not
maintained anymore.
The main difference are a move to the rand module for tests and to rebar3
as a build tool, in order to support OTP 23+.
The carray backend was dropped, as it was never moved outside of experimental
status and could not be serialised for a distributed use. Some backends using
NIF may come back in the future.
The bisect implementation was dropped too. Its use case was limited and it
forced a dependency on a library that was not maintained either.
The gb backend was dropped for the time being too.
The Array backend was dropped for the time being too.
The estimator was rebuilt following this paper by Otmar Ertl, as it was
broken for any precision not 14. This should also provide better estimation
across the board for cardinality.
The reduce_precision function has been rebuilt properly, as it was quite
simply wrong. This fixed a lot of bugs for unions.

LICENSE

The MIT License (MIT)

Copyright (c) 2014 Game Analytics ApS and 2021 Thomas Depierre

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Changelog pre v1

1.0.0 [2022-12-22]
	BREAKING CHANGE. Refactored precision into the backend, to allow each backend to have access to the precision information for their internal work. This means there is now a precision/1 callback that every backend need to implement.

0.6.0 [2022-09-27]
Enhancements
	Added documentation to the main module

0.5.0 (2022-09-02)
Enhancements
	The behaviour have been cleaned up and the relationship between the behaviour and the API have been cleaned up. In particular, the run_of_zeroes is now done in the backend.
	The array backend have been dropped. If you want it back, PR welcome.

0.4.0 (2022-06-25)
Enhancements
	The behaviour have been cleaned up and the relationship between the behaviour and the API have been cleaned up.
	There is now a version atom in each HLL generated. This is not too important right now, but will be used in the future to block merging two HLL with incompatible versions (as an example if the hashing strategy changed)

hyper

hyper is the reference implementation of hyperloglog for erlang
Hyperloglog is an algorithm based on a probabilistic datastructure to solve the count-distinct problem. It allows an approximation of the distinct element of a large collection, with a limited memory usage and the ability to be distributed and merged losslessly.
This module is the interface you use to interact with the hyperloglog. hyper accept multiple backend for the implementation of hyperloglog, each with a different set of tradeoff and performance.
For more details on how to use it, look at new/3, insert/2 and card/1
[bookmark: How_does_it_work]How does it work
Without entering in all the details, the hyperloglog datastructure is based on a limited set of elements. Details of how these are implemented will vary between different backend and implementations, but the high level idea stay the same. - A hash function that output a 64bit hash - A set of numbered "bins", controlled by the precision - An estimator function
For every element to insert, the element is hashed into a binary N, then the leftmost P bits are used to define which bin the element belong. In this bin, we store the number of zeroes before the first 1 in the leftmost bit of the leftover, after truncating the leftmost N bit. If this number is bigger than the one currently in the bin, we update it. Otherwise we do nothing. Our input is inserted.
Later, when we want to get an estimation of the cardinality, we apply the estimator function to the set of bins. The details of the estimator are too complex for this documentation, but suffice to say that they are proven to reduce the estimation error to stay under a tight boundary.
[bookmark: References]References
For more details, here is a list of reference papers that have been used to implement this library.
	HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm
	New Cardinality Estimation Methods for HyperLogLog Sketches]

In particular huge thanks to Omar Ertl for his clear work on this domain.

 Anchor for this section

 Summary

 Types

 filter/0

 precision/0

 registers/0

 value/0

 version/0

 Functions

 bytes(Hyper)

 return the size in bytes of the hyper structure in memory

 card(Hyper)

 Estimate the cardinality of a hyper structure

 compact(Hyper)

 compact the underlying hyper structure. Do not use, considered an implementation detail of the backend. Will be removed in the future.

 from_json(Struct)

 deprecated

 Deserialize the json friendly format from to_json/1 to a hyper structure

 from_json(_, Mod)

 deprecated

 Deserialize the json friendly format from to_json/1 to a hyper structure, with Mod as backend

 generate_unique(N)

 insert(Value, Hyper)

 Insert Value inside the Hyper structure passed.

 insert_many(L, Hyper)

 insert a list of values in the Hyper structure.

 intersect_card(Left, Right)

 Provide the cardinality of the intersection of two hyper structure using the inclusion/exclusion principle. Use with caution as the precision of this methods is fairly limited.

 is_hyper(Hyper)

 return true if the structure passed is a hyper structure. false otherwise

 new(P)

 Create a new Hyperloglog structure Equivalent to hyper:new(P, hyper_binary,sha-v1')'

 new(P, Mod)

 Create a new Hyperloglog structure with the specified backend Equivalent to hyper:new(P, Mod,sha-v1')'

 new(P, Mod, Version)

 Create a new Hyperloglog structure with the specified backend and the specified version.

 precision(Hyper)

 return the precision of the hyper structure passed.

 reduce_precision(P, Hyper)

 Reduce the precision of the hyper structure to P. This is lossless in the sense that the old structure hold all the data needed to fill the reduced precision one. That said, reducing precision does grow the error in the estimator, and there is no way to get it back. Do this knowing you are losing precision.

 to_json(Hyper)

 deprecated

 Serialize the hyper structure to a json friendly format that can be decoded with from_json/2

 union(Filters)

 union(Small, Big)

 Anchor for this section

Types

 Link to this type

 filter/0

 View Source

 -type filter() :: #hyper{}.

 Link to this type

 precision/0

 View Source

 -type precision() :: 4..16.

 Link to this type

 registers/0

 View Source

 -type registers() :: any().

 Link to this type

 value/0

 View Source

 -type value() :: binary().

 Link to this type

 version/0

 View Source

 -type version() :: atom().

 Anchor for this section

Functions

 Link to this function

 bytes(Hyper)

 View Source

return the size in bytes of the hyper structure in memory

 Link to this function

 card(Hyper)

 View Source

 -spec card(filter()) -> float().

Estimate the cardinality of a hyper structure

 Link to this function

 compact(Hyper)

 View Source

compact the underlying hyper structure. Do not use, considered an implementation detail of the backend. Will be removed in the future.

 Link to this function

 from_json(Struct)

 View Source

 This function is deprecated. 0.6.0.

 -spec from_json(any()) -> filter().

Deserialize the json friendly format from to_json/1 to a hyper structure
Equivalent to from_json(Struct, hyper_binary)
Do not use, this is going to be replaced with better solution in the future

 Link to this function

 from_json(_, Mod)

 View Source

 This function is deprecated. 0.6.0.

 -spec from_json(any(), module()) -> filter().

Deserialize the json friendly format from to_json/1 to a hyper structure, with Mod as backend
Do not use, this is going to be replaced with better solution in the future

 Link to this function

 generate_unique(N)

 View Source

 Link to this function

 insert(Value, Hyper)

 View Source

 -spec insert(value(), filter()) -> filter().

Insert Value inside the Hyper structure passed.

 Link to this function

 insert_many(L, Hyper)

 View Source

 -spec insert_many([value()], filter()) -> filter().

insert a list of values in the Hyper structure.

 Link to this function

 intersect_card(Left, Right)

 View Source

 -spec intersect_card(filter(), filter()) -> float().

Provide the cardinality of the intersection of two hyper structure using the inclusion/exclusion principle. Use with caution as the precision of this methods is fairly limited.

 Link to this function

 is_hyper(Hyper)

 View Source

 -spec is_hyper(filter()) -> boolean().

return true if the structure passed is a hyper structure. false otherwise

 Link to this function

 new(P)

 View Source

 -spec new(precision()) -> filter().

Create a new Hyperloglog structure Equivalent to hyper:new(P, hyper_binary,sha-v1')'
see hyper:new/3

 Link to this function

 new(P, Mod)

 View Source

 -spec new(precision(), module()) -> filter().

Create a new Hyperloglog structure with the specified backend Equivalent to hyper:new(P, Mod,sha-v1')'
see hyper:new/3

 Link to this function

 new(P, Mod, Version)

 View Source

 -spec new(precision(), module(), version()) -> filter().

Create a new Hyperloglog structure with the specified backend and the specified version.
hyper ship with one backend: - hyper_binary
For implementing your own backend, see hyper_register
%% hyper structure with different version will work transparently for now, but will generate deprecation warning in the future if we change some of the implementation details.
You should use new/2 most of the time, so that the versionning is handled by hyper. You should only use new/3 if you need to do your own versionning for custom backends or for custom versionning problems.

 Link to this function

 precision(Hyper)

 View Source

return the precision of the hyper structure passed.

 Link to this function

 reduce_precision(P, Hyper)

 View Source

Reduce the precision of the hyper structure to P. This is lossless in the sense that the old structure hold all the data needed to fill the reduced precision one. That said, reducing precision does grow the error in the estimator, and there is no way to get it back. Do this knowing you are losing precision.

 Link to this function

 to_json(Hyper)

 View Source

 This function is deprecated. 0.6.0.

 -spec to_json(filter()) -> any().

Serialize the hyper structure to a json friendly format that can be decoded with from_json/2
Do not use, this is going to be replaced with better solution in the future

 Link to this function

 union(Filters)

 View Source

 -spec union([filter()]) -> filter().

 Link to this function

 union(Small, Big)

 View Source

hyper_binary

Registers stored in one large binary
This backend uses one plain Erlang binary to store registers. The cost of rebuilding the binary is amortized by keeping a buffer of inserts to perform in the future.

 Anchor for this section

 Summary

 Functions

 bytes(Dense)

 compact(Buffer)

 decode_registers(AllBytes, P)

 empty_binary(M)

 encode_registers(Buffer)

 max_merge(Rest)

 max_merge(Dense, Big)

 max_registers(Buf)

 new(P)

 precision(Dense)

 reduce_precision(NewP, Dense)

 register_histogram(Buffer)

 register_sum(B)

 set(Index, Value, Buffer)

 zero_count(B)

 Anchor for this section

Functions

 Link to this function

 bytes(Dense)

 View Source

 Link to this function

 compact(Buffer)

 View Source

 Link to this function

 decode_registers(AllBytes, P)

 View Source

 Link to this function

 empty_binary(M)

 View Source

 Link to this function

 encode_registers(Buffer)

 View Source

 Link to this function

 max_merge(Rest)

 View Source

 Link to this function

 max_merge(Dense, Big)

 View Source

 Link to this function

 max_registers(Buf)

 View Source

 Link to this function

 new(P)

 View Source

 Link to this function

 precision(Dense)

 View Source

 Link to this function

 reduce_precision(NewP, Dense)

 View Source

 Link to this function

 register_histogram(Buffer)

 View Source

 Link to this function

 register_sum(B)

 View Source

 Link to this function

 set(Index, Value, Buffer)

 View Source

 Link to this function

 zero_count(B)

 View Source

hyper_const

 Anchor for this section

 Summary

 Functions

 bias_data(_)

 estimate_data(_)

 threshold(_)

 Anchor for this section

Functions

 Link to this function

 bias_data(_)

 View Source

 Link to this function

 estimate_data(_)

 View Source

 Link to this function

 threshold(_)

 View Source

hyper_register behaviour

If you wish to implement your own backend for storing registers, your module needs to implement these interfaces. The backend modules have quite a lot of responsibility (detailed below) to allow for backend-specific optimizations.

 Anchor for this section

 Summary

 Types

 t/0

 Callbacks

 bytes/1

 compact/1

 decode_registers/2

 encode_registers/1

 max_merge/1

 max_merge/2

 new/1

 precision/1

 reduce_precision/2

 register_histogram/1

 register_sum/1

 set/3

 zero_count/1

 Functions

 bytes(RegisterImpl, Registers)

 Size in bytes used to represent the registers in memory.

 compact(RegisterImpl, Registers)

 Compact is always called before any attempt at reading (sum, zero count, etc) or merging. It is intended to give backends that buffer the writes a chance to flush the buffer before the registers are needed.

 decode_registers(RegisterImpl, Encoded, Precision)

 encode_registers(RegisterImpl, Registers)

 Encode and decode are called to convert the in-memory representation of the backend to the serialized format. Must return one binary where each register is encoded as an 8-bit integer.

 max_merge(RegisterImpl, RegisterLists)

 Merge any number of registers, used to calculate the union. For two register values at the same index, the max value must be in the resulting register.

 max_merge(RegisterImpl, Registers1, Registers2)

 Same as max_merge/1 but used when we know only two filters are merged.

 new(RegisterImpl, P)

 Creates a new instance of the backend. The return value of this function will be passed to all functions in this module.

 precision(RegisterImpl, Registers)

 reduce_precision(RegisterImpl, Precision, Registers)

 Reduce the precision of the registers. Used for mixed-precision union by first reducing the precision to the lowest of all filters.

 register_histogram(RegisterImpl, Registers)

 A map with key the values possible for the register and values the number of register with that value.

 register_sum(RegisterImpl, Registers)

 Sum of 2^-R where R is the value in each register.

 set(RegisterImpl, Index, Value, Registers)

 Set the register to the given value, *only* if the value already stored is lower than the new value. The backend needs to ensure the register value is only allowed to increase.

 zero_count(RegisterImpl, Registers)

 Count of registers set to 0.

 Anchor for this section

Types

 Link to this type

 t/0

 View Source

 -type t() :: module().

 Anchor for this section

Callbacks

 Link to this callback

 bytes/1

 View Source

 -callback bytes(hyper:registers()) -> integer().

 Link to this callback

 compact/1

 View Source

 -callback compact(hyper:registers()) -> hyper:registers().

 Link to this callback

 decode_registers/2

 View Source

 -callback decode_registers(binary(), hyper:precision()) -> hyper:registers().

 Link to this callback

 encode_registers/1

 View Source

 -callback encode_registers(hyper:registers()) -> binary().

 Link to this callback

 max_merge/1

 View Source

 -callback max_merge([hyper:registers()]) -> hyper:registers().

 Link to this callback

 max_merge/2

 View Source

 -callback max_merge(hyper:registers(), hyper:registers()) -> hyper:registers().

 Link to this callback

 new/1

 View Source

 -callback new(P :: hyper:precision()) -> hyper:registers().

 Link to this callback

 precision/1

 View Source

 -callback precision(hyper:registes()) -> integer().

 Link to this callback

 reduce_precision/2

 View Source

 -callback reduce_precision(hyper:precision(), hyper:registers()) -> hyper:registers().

 Link to this callback

 register_histogram/1

 View Source

 -callback register_histogram(hyper:registers()) -> map().

 Link to this callback

 register_sum/1

 View Source

 -callback register_sum(hyper:registers()) -> float().

 Link to this callback

 set/3

 View Source

 -callback set(Index :: integer(), Value :: integer(), hyper:registers()) -> hyper:registers().

 Link to this callback

 zero_count/1

 View Source

 -callback zero_count(hyper:registers()) -> integer().

 Anchor for this section

Functions

 Link to this function

 bytes(RegisterImpl, Registers)

 View Source

 -spec bytes(t(), hyper:registers()) -> integer().

Size in bytes used to represent the registers in memory.

 Link to this function

 compact(RegisterImpl, Registers)

 View Source

 -spec compact(t(), hyper:registers()) -> hyper:registers().

Compact is always called before any attempt at reading (sum, zero count, etc) or merging. It is intended to give backends that buffer the writes a chance to flush the buffer before the registers are needed.

 Link to this function

 decode_registers(RegisterImpl, Encoded, Precision)

 View Source

 -spec decode_registers(t(), binary(), hyper:precision()) -> hyper:registers().

 Link to this function

 encode_registers(RegisterImpl, Registers)

 View Source

 -spec encode_registers(t(), hyper:registers()) -> binary().

Encode and decode are called to convert the in-memory representation of the backend to the serialized format. Must return one binary where each register is encoded as an 8-bit integer.

 Link to this function

 max_merge(RegisterImpl, RegisterLists)

 View Source

 -spec max_merge(t(), [hyper:registers()]) -> hyper:registers().

Merge any number of registers, used to calculate the union. For two register values at the same index, the max value must be in the resulting register.

 Link to this function

 max_merge(RegisterImpl, Registers1, Registers2)

 View Source

 -spec max_merge(t(), hyper:registers(), hyper:registers()) -> hyper:registers().

Same as max_merge/1 but used when we know only two filters are merged.

 Link to this function

 new(RegisterImpl, P)

 View Source

 -spec new(t(), P :: hyper:precision()) -> hyper:registers().

Creates a new instance of the backend. The return value of this function will be passed to all functions in this module.

 Link to this function

 precision(RegisterImpl, Registers)

 View Source

 -spec precision(t(), hyper:registers()) -> integer().

 Link to this function

 reduce_precision(RegisterImpl, Precision, Registers)

 View Source

 -spec reduce_precision(t(), hyper:precision(), hyper:registers()) -> hyper:registers().

Reduce the precision of the registers. Used for mixed-precision union by first reducing the precision to the lowest of all filters.

 Link to this function

 register_histogram(RegisterImpl, Registers)

 View Source

 -spec register_histogram(t(), hyper:registers()) -> map().

A map with key the values possible for the register and values the number of register with that value.

 Link to this function

 register_sum(RegisterImpl, Registers)

 View Source

 -spec register_sum(t(), hyper:registers()) -> float().

Sum of 2^-R where R is the value in each register.

 Link to this function

 set(RegisterImpl, Index, Value, Registers)

 View Source

 -spec set(t(), Index :: integer(), Value :: integer(), hyper:registers()) -> hyper:registers().

Set the register to the given value, *only* if the value already stored is lower than the new value. The backend needs to ensure the register value is only allowed to increase.

 Link to this function

 zero_count(RegisterImpl, Registers)

 View Source

 -spec zero_count(t(), hyper:registers()) -> integer().

Count of registers set to 0.

hyper_utils

 Anchor for this section

 Summary

 Functions

 changeV(List, ChangeP)

 m(P)

 run_of_zeroes(B)

 run_of_zeroes(I, B)

 Anchor for this section

Functions

 Link to this function

 changeV(List, ChangeP)

 View Source

 Link to this function

 m(P)

 View Source

 Link to this function

 run_of_zeroes(B)

 View Source

 Link to this function

 run_of_zeroes(I, B)

 View Source

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

