

 Honeybadger

 v0.20.0

 Table of contents

 	Honeybadger for Elixir

 	Changelog

 	Modules

 	Honeybadger

 	Honeybadger.ExcludeErrors

 	Honeybadger.ExcludeErrors.Default

 	Honeybadger.Filter

 	Honeybadger.Filter.Default

 	Honeybadger.Filter.Mixin

 	Honeybadger.FingerprintAdapter

 	Honeybadger.Notice

 	Honeybadger.NoticeFilter

 	Honeybadger.NoticeFilter.Default

 	Honeybadger.Plug

 	Honeybadger.Utils

 	Honeybadger.MissingEnvironmentNameError

 	HoneybadgerTestingException

 	Mix Tasks

 	mix hex_release

 	mix honeybadger.test

Honeybadger for Elixir

[image: Elixir CI]
Elixir Plug, Logger and client for the :zap: Honeybadger error notifier.
Upgrading to v0.11? See the release notes
Getting Started

Watch our screencast by Josh Adams of ElixirSips!
Version Requirements
	Erlang >= 18.0
	Elixir >= 1.10
	Plug >= 1.0
	Phoenix >= 1.0 (This is an optional dependency and the version requirement applies only if you are using Phoenix)

1. Install the package
Add the Honeybadger package to deps/0 in your
application's mix.exs file and run mix do deps.get, deps.compile
defp deps do
 [{:honeybadger, "~> 0.16"}]
end
2. Set your API key and environment name
By default the environment variable HONEYBADGER_API_KEY will be used to find
your API key to the Honeybadger API. If you would like to specify your key or
any other configuration options a different way, you can do so in config.exs:
config :honeybadger,
 api_key: "{{PROJECT_API_KEY}}"
We also need to set the name of the environment for each environment. This
ensures that we can accurately report the environment that an error occurs in.
You can add something like the following to each of your #{env}.exs files:
config :honeybadger,
 environment_name: :dev
If environment_name is not set we will fall back to the value of Mix.env().
Mix.env() uses the atomized value of the MIX_ENV environment variable and
defaults to :prod when the environment variable is not set. This should be good
for most setups. If you want to have an environment_name which is different than
the Mix.env(), you should set environment_name in your config.exs files for each
environment. This ensures that we can give you accurate environment information
even during compile time. Explicitly setting the environment_name config
takes higher precedence over the Mix.env() value.
3. Enable error reporting
The Honeybadger package can be used as a Plug alongside your Phoenix
applications, as a logger backend, or as a standalone client for sprinkling in
exception notifications where they are needed.
Phoenix and Plug
The Honeybadger Plug adds a
Plug.ErrorHandler
to your pipeline. Simply use the Honeybadger.Plug module inside of a Plug
or Phoenix.Router and any crashes will be automatically reported to
Honeybadger. It's best to use Honeybadger.Plug after the Router plugs so that
exceptions due to non-matching routes are not reported to Honeybadger.
Phoenix app
defmodule MyPhoenixApp.Router do
 use Crywolf.Web, :router
 use Honeybadger.Plug

 pipeline :browser do
 [...]
 end
end
Plug app
defmodule MyPlugApp do
 use Plug.Router
 use Honeybadger.Plug

 [... the rest of your plug ...]
end
Logger
Just set the use_logger option to true in your application's config.exs
and you're good to go! Any
SASL compliant
processes that crash will send an error report to the Honeybadger.Logger.
After the error reaches the logger we take care of notifying Honeybadger for
you!
Manual reporting
You can manually report rescued exceptions with the Honeybadger.notify function.
try do
 File.read! "this_file_really_should_exist_dang_it.txt"
rescue
 exception ->
 Honeybadger.notify(exception, metadata: %{}, stacktrace: __STACKTRACE__, fingerprint: "")
end
Breadcrumbs
Breadcrumbs allow you to record events along a processes execution path. If
an error is thrown, the set of breadcrumb events will be sent along with the
notice. These breadcrumbs can contain useful hints while debugging.
Breadcrumbs are stored in the logger context, referenced by the calling
process. If you are sending messages between processes, breadcrumbs will not
transfer automatically. Since a typical system might have many processes, it
is advised that you be conservative when storing breadcrumbs as each
breadcrumb consumes memory.
Automatic Breadcrumbs
We leverage the telemetry library to automatically create breadcrumbs from
specific events.
Phoenix
If you are using phoenix (>= v1.4.7) we add a breadcrumb from the router
start event.
Ecto
We can create breadcrumbs from Ecto SQL calls if you are using ecto_sql (>=
v3.1.0). You also must specify in the config which ecto adapters you want to
be instrumented:
config :honeybadger,
 ecto_repos: [MyApp.Repo]
Sample Application
If you'd like to see the module in action before you integrate it with your apps, check out our sample Phoenix application.
You can deploy the sample app to your Heroku account by clicking this button:
[image: Deploy]
Don't forget to destroy the Heroku app after you're done so that you aren't
charged for usage.
The code for the sample app is available on Github, in case you'd like to read through it, or run it locally.
Filtering Sensitive Data
Before data is sent to Honeybadger, it is passed through a filter to remove sensitive fields and do other processing on the data. The default configuration is equivalent to:
config :honeybadger,
 filter: Honeybadger.Filter.Default,
 filter_keys: [:password, :credit_card]
This will remove any entries in the context, session, cgi_data and params that match one of the filter keys. The filter is case insensitive and matches atoms or strings.
If Honeybadger.Filter.Default does not suit your needs, you can implement your own filter. See the Honeybadger.Filter.Mixin module doc for details on implementing your own filter.
Filtering Arguments
Honeybadger can show arguments in the stacktrace for FunctionClauseError exceptions. To enable argument reporting, set filter_args to false:
config :honeybadger, filter_args: false
Excluding Errors
By default Honeybadger will be notified when an error occurs. To override this configuration in order not to send out errors to Honeybadger, set exclude_errors option in config/config.exs.
This can be done by passing a list of errors to be excluded:
config :honeybadger,
 exclude_errors: ["RuntimeError"]
or
config :honeybadger,
 exclude_errors: [RuntimeError]
Also you can implement the Honeybadger.ExcludeErrors behaviour function exclude_error?/1, which receives the full Honeybadger.Notice and returns a boolean signalling the error exclusion or not.

 defmodule ExcludeFunClauseErrors do
 alias Honeybadger.ExcludeErrors

 @behaviour ExcludeErrors

 @impl ExcludeErrors

 def exclude_error?(notice) do
 notice.error.class == "FunctionClauseError"
 end
 end

config :honeybadger,
 exclude_errors: ExcludeFunClauseErrors
Customizing Error Grouping
See the Error Monitoring Guide for more information about how honeybadger groups similar exception together. You can customize the grouping for each exception in Elixir by sending a custom fingerprint when the exception is reported.
To customize the fingerprint for all exceptions that are reported from your app, use the fingerprint_adapter configuration option in config.ex:
config :honeybadger, fingerprint_adapter: MyApp.CustomFingerprint
 defmodule MyApp.CustomFingerprint do
 @behaviour Honeybadger.FingerprintAdapter

 def parse(notice) do
 notice.notifier.language <> "-" <> notice.notifier.name
 end
end
You can also customize the fingerprint for individual exceptions when calling Honeybadger.notify:
Honeybadger.notify(%RuntimeError{}, fingerprint: "culprit_id-123")
Advanced Configuration
You can set configuration options in config.exs. It looks like this:
config :honeybadger,
 api_key: "{{PROJECT_API_KEY}}",
 environment_name: :prod
If you'd rather read, eg., environment_name from the OS environment, you can do like this:
config :honeybadger,
 environment_name: {:system, "HONEYBADGER_ENV"},
 revision: {:system, "HEROKU_SLUG_COMMIT"}
NOTE: This works only for the string options, and environment_name.
Here are all of the options you can pass in the keyword list:
	Name	Description	Default
	app	Name of your app's OTP Application as an atom	Mix.Project.config[:app]
	api_key	Your application's Honeybadger API key	System.get_env("HONEYBADGER_API_KEY"))
	environment_name	(required) The name of the environment your app is running in.	:prod
	exclude_errors	Filters out errors from being sent to Honeybadger	[]
	exclude_envs	Environments that you want to disable Honeybadger notifications	[:dev, :test]
	hostname	Hostname of the system your application is running on	:inet.gethostname
	origin	URL for the Honeybadger API	"https://api.honeybadger.io"
	project_root	Directory root for where your application is running	System.cwd/0
	revision	The project's git revision	nil
	filter	Module implementing Honeybadger.Filter to filter data before sending to Honeybadger.io	Honeybadger.Filter.Default
	filter_keys	A list of keywords (atoms) to filter. Only valid if filter is Honeybadger.Filter.Default	[:password, :credit_card]
	filter_args	If true, will remove function arguments in backtraces	true
	filter_disable_url	If true, will remove the request url	false
	filter_disable_session	If true, will remove the request session	false
	filter_disable_params	If true, will remove the request params	false
	fingerprint_adapter	Implementation of FingerprintAdapter behaviour	
	notice_filter	Module implementing Honeybadger.NoticeFilter. If nil, no filtering is done.	Honeybadger.NoticeFilter.Default
	sasl_logging_only	If true, will notifiy for SASL errors but not Logger calls	true
	use_logger	Enable the Honeybadger Logger for handling errors outside of web requests	true
	ignored_domains	Add domains to ignore Error events in Honeybadger.Logger.	[:cowboy]
	breadcrumbs_enabled	Enable breadcrumb event tracking	false
	ecto_repos	Modules with implemented Ecto.Repo behaviour for tracking SQL breadcrumb events	[]

Public Interface
Honeybadger.notify: Send an exception to Honeybadger.
Use the Honeybadger.notify/2 function to send exception information to the
collector API. The first parameter is the exception and the second parameter
is the context/metadata/fingerprint. There is also a Honeybadger.notify/1 which doesn't require the second parameter.
Examples:
try do
 File.read! "this_file_really_should_exist_dang_it.txt"
rescue
 exception ->
 context = %{user_id: 5, account_name: "Foo"}
 Honeybadger.notify(exception, metadata: context, stacktrace: __STACKTRACE__)
end

Honeybadger.context/1: Set metadata to be sent if an error occurs
Honeybadger.context/1 is provided for adding extra data to the notification
that gets sent to Honeybadger. You can make use of this in places such as a Plug
in your Phoenix Router or Controller to ensure useful debugging data is sent along.
Examples:
def MyPhoenixApp.Controller
 use MyPhoenixApp.Web, :controller

 plug :set_honeybadger_context

 def set_honeybadger_context(conn, _opts) do
 user = get_user(conn)
 Honeybadger.context(user_id: user.id, account: user.account.name)
 conn
 end
end
Honeybadger.context/1 stores the context data in the process dictionary, so
it will be sent with errors/notifications on the same process. The following
Honeybadger.notify/1 call will not see the context data set in the previous line.
Honeybadger.context(user_id: 5)
Task.start(fn ->
 # this notify does not see the context set earlier
 # as this runs in a different elixir/erlang process.
 Honeybadger.notify(%RuntimeError{message: "critical error"})
end)

Honeybadger.add_breadcrumb/2: Store breadcrumb within process
Appends a breadcrumb to the notice. Use this when you want to add some custom
data to your breadcrumb trace in effort to help debugging. If a notice is
reported to Honeybadger, all breadcrumbs within the execution path will be
appended to the notice. You will be able to view the breadcrumb trace in the
Honeybadger interface to see what events led up to the notice.
Examples:
Honeybadger.add_breadcrumb("Email sent", metadata: %{
 user: user.id,
 message: message
})

Proxy configuration
If your server needs a proxy to access Honeybadger, add the following to your config
config :honeybadger,
 proxy: "url",
 proxy_auth: {"username", "password"}
Excluded environments
Honeybadger won't report errors from :dev and :test environments by default. To enable error reporting in dev:
	Set the HONEYBADGER_API_KEY as documented above
	Remove :dev from the exclude_envs by adding this to your config/dev.exsconfig :honeybadger,
 exclude_envs: [:test]

	Run the mix honeybadger.test mix task task to simulate an error

Changelog
See https://github.com/honeybadger-io/honeybadger-elixir/blob/master/CHANGELOG.md
Contributing
If you're adding a new feature, please submit an
issue as a
preliminary step; that way you can be (moderately) sure that your pull request
will be accepted.
To contribute your code:
	Fork it.
	Create a topic branch git checkout -b my_branch
	Commit your changes git commit -am "Boom"
	Update the
Changelog
	Push to your branch git push origin my_branch
	Send a pull request

Publishing a release on hex.pm
Make sure you have the following dependencies, and tests pass locally and in CI:
mix deps.get
mix archive.install hex shipit
mix test

	Update the version property in mix.exs
	Create a git commit with all the changes so that your working directory is clean
	Run mix shipit BRANCH VERSION from your terminal, which will do the following:	Upload the new version of honeybadger to hex.pm
	Create a git tag with the version number and push it to GitHub

License
This library is MIT licensed. See the
LICENSE
file in this repository for details.

Changelog

All notable changes to this project will be documented in this file. See Keep a
CHANGELOG for how to update this file. This project
adheres to Semantic Versioning.
0.20.0 - 2023-05-05
	stop using logger metadata for breadcrumbs\n- publish using github actions

[v0.19.0] - 2022-10-27
Added
	Add config option exclude_errors that excludes errors from being sent to the Honeybadger servers.(#443)

[v0.18.1] - 2021-11-16
Fixed
	Avoid local function captures in Telemetry.attrach_many/4 (#400)

[v0.18.0] - 2021-09-28
Changed
	Update the minimum Elixir version to 1.10 (#390). Phoenix v1.5.11 causes a compilation error due to the new mime dependency, which requires Elixir 1.10+.

Fixed
	Support latest telemetry dependency. (#397)

NB: Due to the upgrade of phoenix from v1.5.10 to v1.5.11 you must be on Elixir 1.10+
[v0.17.0] - 2021-08-16
Fixed
	fix callback spec arg type mismatch for handle_errors/2 from plugs (#384)

Changed
	Default filter_args to false (#375)

Added
	Make notification for Logger.error configurable (#380, @yukster)

[v0.16.4] - 2021-07-13
Fixed
	Show arguments in stacktrace for FunctionClauseError when filter_args = false (#123, #373)

[v0.16.3] - 2021-07-05
Fixed
	Handle extra_info with error_info in Honeybadger.Backtrace.format_line (#369, @abstractcoder)
	Prevent infinite loop with use_logger: true when logging internal errors (#370)

[v0.16.2] - 2021-04-27
Fixed
	Encode notice message iodata before json serialize (#361)

[v0.16.1] - 2021-04-12
Fixed
	Call custom filter_cgi_data/1 in NoticeFilter (#353)

[v0.16.0] - 2021-02-22
Changed
	Send notifications on error-level logs
	Added ignored_domain config with [:cowboy] as default

[v0.15.0] - 2020-09-24
Added
	New fingerprint option and config for Honeybadger.notify/2. Thanks @brunozrk! (#305)

[v0.14.1] - 2020-07-06
Fixed
	Implement Jason.Encoder for RingBuffer (#294)

[v0.14.0] - 2020-03-12
Changed
	Breadcrumbs on by default

[v0.13.1] - 2020-02-06
Fixed
	Safely sanitize invalid binaries when encoding JSON for notices.
	Fixes for Elixir 1.10 release (#259)

[v0.13.0] - 2019-10-02
Added
	Introducing Breadcrumbs (#235)! After enabling in the config with
breadcrumbs_enabled: true, just call Honeybadger.add_breadcrumb/2
anywhere in your code and if an error is reported in that process, the
breadcrumb event will be passed along with the Notice.

Changed
	Renamed Notifier to honeybadger-elixir and added language

[v0.12.1] - 2019-06-12
Fixed
	Call Exception.blame/3 after normalizing string errors, which prevents
reporint all string messages as Erlang errors. (#225)

[v0.12.0] - 2019-05-30
Added
	Added :revision configuration option
	Automatically call Exception.blame/3 to record additional information in the exception

[v0.11.0] - 2019-02-28
When upgrading to v0.11, users should be aware of a few important changes:
	You must be on Elixir 1.7+ and Erlang/OTP 21+
	Due to the deprecation of System.stacktrace/0 and the introduction of __STACKTRACE__, manually calling Honeybadger.notify/3 will no longer include a stacktrace by default. See the issue discussion for more details
	A stacktrace can be manually provided from within a rescue/catch block via the STACKTRACE macro, e.g. Honeybadger.notify(SomeError, %{my: :context}, __STACKTRACE__)

Changed
	Switch from Erlang's :error_logger to an Elixir 1.7 and Erlang/OTP 21+
Logger backend. This provides more consistent error reporting and enhanced
integration with Logger metadata.
	Stop automatically extracting stacktraces for calls to Honeybadger.notice/3.
The generated stacktrace was unreliably and frequently listed the Honeybadger
reporter's internals, rather than application code. Manual calls to notice/3
should happen within a rescue/catch block and use the __STACKTRACE__
macro.

Added
	Use Logger.metadata as the basis for Honeybadger context in all logger
generated notices

Fixed
	Fix Map.t() isn't a valid dialyzer type (#198)
	Try to convert remote IP to string in case of parsing failure

[v0.10.3] - 2018-07-02
Fixed
	Prevent crashes reporting :badmatch when fetching the current stacktrace
from a dead process.
	Updated dependencies.

[v0.10.2] - 2018-07-02
Fixed
	Fix crashes caused by presence of structs in the context.

[v0.10.1] - 2018-06-27
Changed
	Handle fetching peer info when using Plug 1.6. This is implemented in a
backward compatible manner, so versions < 1.6 will continue to work.

Fixed
	Fetch peer information for multiple plug versions
	Bump phoenix from 1.3.2 to 1.3.3
	Bump hackney from 1.12.1 to 1.13.0

[v0.10.0] - 2018-05-29
Changed
	Replace Poison with Jason for JSON encoding.
	Reduce the log level used for dev mode warning.
	Update dependenices.

Fixed
 JSON encoding error.
	Send notifications even when the stacktrace isn't a list. Errors reported from
the error logger can occasionally have a malformed stacktrace, which would
raise another exception and prevent the notification from being sent.

[v0.9.0] - 2018-03-21
Changed
	Use lazy logging within Honeybadger.Client, this allows compile time purging
when the log level is set higher.

Fixed
	Fix a regression which was causing Not Found (404) errors to be reported.
	Fix an issue caused by hackney because of unread response bodies.

[v0.8.0] - 2018-01-17
Added
	Include function arity in notice backtraces. For example, the reported method
would be notify/3 instead of notify.
	Include function arguments in notice backtraces. This is disabled by default,
and can be enabled by setting filter_args to false in configuration.

Changed
	Allow handle_errors from Honeybadger.Plug to be overridden.

Fixed
	Safely convert binary :environment_name values to an atom. If the
environment was specified via {:system, "HONEYBADGER_ENV"} and the
HONEYBADGER_ENV value didn't already exist as an atom the app would fail to
boot.
	Ignore the absence of HONEYBADGER_API_KEY when running in an excluded env

[v0.7.0] - 2017-11-07
Added
	Increases the logging around client activity
(honeybadger-io/honeybadger-elixir#20).
	Explicitly allow sending notices with strings and maps. For example, it is now
possible to send a RuntimeError by calling Honeybadger.notify("oops!").
	Added Honeybadger test mix task which can be invoked using mix honeybadger.test

Changed
	Switch from GenEvent to implementing gen_event behaviour.
	Remove error_logger backend on application stop.
	Use the latest exception's stacktrace whenever notify is called from a
try expression.
	Namespace modules related to Filter and NoticeFilter. This is largely an
internal restructuring, but any custom filters that used the
Honeybadger.FilterMixin will need to specify Honeybadger.Filter.Mixin
instead.
	Drops HTTPoison in favor of directly using Hackney, which gives us access to
a connection pool.
	Drops Meck and stubbing in favor of a local cowboy server
(honeybadger-io/honeybadger-elixir#7).
	Starts a supervision tree with the client as a child.
	Report the controller and action name as component and action for phoenix apps

Fixed
	Filtering CGI data now respects the filter_disable_url setting. All path
related fields (ORIGINAL_FULLPATH, QUERY_STRING, PATH_INFO) are filtered
now.
	Get the environment directly from Mix.env and always compare the environment
names as atoms (honeybadger-io/honeybadger-elixir#94).
	Changes notify from a macro to a function.
	Stops spawning new tasks for every error, instead relying on async handling in
the client (honeybadger-io/honeybadger-elixir#88).

[0.6.3] - 2017-05-04
Changed
	Removes metrics reporting.

Fixed
	Loosens httpoison dependency.
	Misc. bug fixes.

[0.6.2] - 2016-10-24
Added
	ability to customize error names/messages,

Fixed
	stops plug error notifications from being sent twice
	minor typo fixes
	dependency updates

[0.6.1] - 2016-08-02
Fixed
	Reformatting the plug environment data sent to Honeybadger.

[0.6.0] - 2016-07-22
Fixed
	This release removes warnings for Elixir 1.3.0 and covers v1.4.0-dev as of
2016-07-22. There was also a switch to using :native FromUnits to match
the Plug.Logger usage of :erlang.convert_time_unit. This maintains
consistency between Honeybadger.Logger and Plug.Logger.

[0.5.0] - 2016-04-26
Added
	Honeybadger now collects successful response times, aggregates them and sends
them to the Honeybadger API! You can see request metric data from the metrics
tab on Honeybadger.io!

[0.4.0] - 2016-02-23
Changed
	Due to the Mix.env/0 function always being set to prod for dependencies and
Mix being compiled out of applications by exrm, we now require you to
explicitly declare your environment_name for every environment in your
config.exs files.
Example:
 # config/dev.exs
 config :honeybager, environment_name: :dev
Doing this will ensure you get accurate environment information for exceptions
that happen at runtime as well as compile time. You can also set the
environment_name setting a MIX_ENV environment variable.
Example:
$ MIX_ENV=prod mix phoenix.server
Note: setting environment_name in your config files takes higher
precedence than the MIX_ENV environment variable.

[0.3.1] - 2016-02-04
Fixed
	Fix a bug where notifications reported by the error_logger were not
sending the the context

Honeybadger

This module contains the notify macro and context function you can use in
your applications.
Configuring
By default the HONEYBADGER_API_KEY environment variable is used to find
your API key for Honeybadger. You can also manually set your API key by
configuring the :honeybadger application. You can see the default
configuration in the default_config/0 private function at the bottom of
this file.
config :honeybadger,
 api_key: "mysupersecretkey",
 environment_name: :prod,
 app: :my_app_name,
 exclude_envs: [:dev, :test],
 breadcrumbs_enabled: true,
 ecto_repos: [MyAppName.Ecto.Repo],
 hostname: "myserver.domain.com",
 origin: "https://api.honeybadger.io",
 sasl_logging_only: false,
 proxy: "http://proxy.net:PORT",
 proxy_auth: {"Username", "Password"},
 project_root: "/home/skynet",
 revision: System.get_env("GIT_REVISION"),
 use_logger: true,
 notice_filter: Honeybadger.NoticeFilter.Default,
 filter: Honeybadger.Filter.Default,
 filter_keys: [:password, :credit_card],
 exclude_errors: []
Notifying
If you use Honeybadger.Plug and Honeybadger.Logger included in this
library you won't need to use Honeybadger.notify/2 for manual reporting
very often. However, if you need to send custom notifications you can do so:
try do
 raise RunTimeError, message: "Oops"
rescue
 exception ->
 context = %{user_id: 1, account: "A Very Important Customer"}

 Honeybadger.notify(
 exception,
 metadata: context,
 stacktrace: __STACKTRACE__,
 fingerprint: "user-1"
)
end
Note that notify may be used outside of try, but it will use a different
mechanism for getting the current stacktrace. The resulting stacktrace may be
noisier and less accurate.
Setting Context
You can add an arbitrary map of context that will get sent to the Honeybadger
API when/if an exception occurs in that process. Do keep in mind the process
dictionary is used for retrieving this context so try not to put large data
structures in the context.
Honeybadger.context(user_id: 1, account: "My Favorite Customer")
Honeybadger.context(%{user_id: 2, account: "That Needy Customer")
Using the Plug
If you're using Phoenix, or any Plug-based Elixir web framework, you can
use the Honeybadger.Plug module in your Router and all exceptions in web
requests will automatically be reported to Honeybadger.
defmodule MoneyPrinter.Router do
 use MoneyPrinter.Web, :router
 use Honeybadger.Plug
end
You can also automatically set useful context on every request by defining
a Plug compatible function:
defmodule MoneyPrinter.Router do
 use MoneyPrinter.Web, :router
 use Honeybadger.Plug

 plug :set_honeybadger_context

 # your routes

 defp set_honeybadger_context(conn, _opts) do
 user = get_user(conn)
 Honeybadger.context(user_id: user.id, account: user.account)
 conn
 end
end
Using the Error Logger
By default the logger is enabled. The logger will automatically receive any
error reports for SASL compliant processes such as GenServers, GenEvents,
Agents, Tasks and any process spawned using proc_lib. You can disable the
logger by setting use_logger to false in your Honeybadger config.
Using a Notification Filter
Before data is sent to Honeybadger, it is run through a filter which can
remove sensitive fields or do other processing on the data. For basic
filtering the default configuration is equivalent to:
config :honeybadger,
 filter: Honeybadger.Filter.Default,
 filter_keys: [:password, :credit_card]
This will remove any entries in the context, session, cgi_data and
params that match one of the filter keys. The check is case insensitive
and matches atoms or strings.
If the Filter.Default does not suit your needs, you can implement your
own filter. A simple filter looks like:
defmodule MyApp.MyFilter do
 use Honeybadger.Filter.Mixin

 # drop password fields out of the context Map
 def filter_context(context), do: Map.drop(context, [:password])

 # remove secrets from an error message
 def filter_error_message(message),
 do: Regex.replace(~r/Secret: w+/, message, "Secret: ***")
end
See Honeybadger.Filter for details on implementing your own filter.
Breadcrumbs
Breadcrumbs allow you to record events along a processes execution path. If
an error is thrown, the set of breadcrumb events will be sent along with the
notice. These breadcrumbs can contain useful hints while debugging.
Breadcrumbs are stored in the logger context, referenced by the calling
process. If you are sending messages between processes, breadcrumbs will not
transfer automatically. Since a typical system might have many processes, it
is advised that you be conservative when storing breadcrumbs as each
breadcrumb consumes memory.
See Honeybadger.add_breadcrumb for info on how to add custom breadcrumbs.
Automatic Breadcrumbs
We leverage the telemetry library to automatically create breadcrumbs from
specific events.
Phoenix
If you are using phoenix (>= v1.4.7) we add a breadcrumb from the router
start event.
Ecto
We can create breadcrumbs from Ecto SQL calls if you are using ecto_sql (>=
v3.1.0). You also must specify in the config which ecto adapters you want to
be instrumented:
config :honeybadger,
 ecto_repos: [MyApp.Repo]

 Anchor for this section

 Summary

 Types

 notify_options()

 Functions

 add_breadcrumb(message, opts \\ [])

 Stores a breadcrumb item.

 clear_context()

 Clears the context.

 context()

 Retrieves the context that will be sent to the Honeybadger API when an exception occurs in the
current process.

 context(map)

 Store additional context in the process metadata.

 get_all_env()

 Fetch all configuration specific to the :honeybadger application.

 get_env(key)

 Fetch configuration specific to the :honeybadger application.

 notify(exception)

 Send an exception notification, if reporting is enabled.

 notify(exception, metadata)

 notify(exception, metadata, stacktrace)

 deprecated

 Anchor for this section

Types

 Link to this type

 notify_options()

 View Source

 @type notify_options() ::
 {:metadata, map()}
 | {:stacktrace, Exception.stacktrace()}
 | {:fingerprint, String.t()}

 Anchor for this section

Functions

 Link to this function

 add_breadcrumb(message, opts \\ [])

 View Source

 @spec add_breadcrumb(String.t(), Honeybadger.Breadcrumbs.Breadcrumb.opts()) :: :ok

Stores a breadcrumb item.
Appends a breadcrumb to the notice. Use this when you want to add some custom
data to your breadcrumb trace in effort to help debugging. If a notice is
reported to Honeybadger, all breadcrumbs within the execution path will be
appended to the notice. You will be able to view the breadcrumb trace in the
Honeybadger interface to see what events led up to the notice.

 breadcrumb-with-metadata

 Breadcrumb with metadata

Honeybadger.add_breadcrumb("email sent", metadata: %{
 user: user.id, message: message
})
=> :ok

 breadcrumb-with-specified-category-this-will-display-a-query-icon-in-the-interface

 Breadcrumb with specified category. This will display a query icon in the interface

Honeybadger.add_breadcrumb("ETS Lookup", category: "query", metadata: %{
 key: key,
 value: value
})
=> :ok

 Link to this function

 clear_context()

 View Source

 @spec clear_context() :: :ok

Clears the context.
Note that because context is stored as logger metadata, clearing the context will clear all
metadata.

 Link to this function

 context()

 View Source

 @spec context() :: map()

Retrieves the context that will be sent to the Honeybadger API when an exception occurs in the
current process.
Context is stored as Logger metadata, and is in fact an alias for Logger.metadata/0.

 Link to this function

 context(map)

 View Source

 @spec context(map() | keyword()) :: map()

Store additional context in the process metadata.
This function will merge the given map or keyword list into the existing metadata, with the
exception of setting a key to nil, which will remove that key from the metadata.
Context is stored as Logger metadata.

 Link to this function

 get_all_env()

 View Source

 @spec get_all_env() :: [{atom(), any()}]

Fetch all configuration specific to the :honeybadger application.
This resolves values the same way that get_env/1 does, so it resolves
:system tuple variables correctly.

 example

 Example

Honeybadger.get_all_env()
#=> [api_key: "12345", environment_name: "dev", ...]

 Link to this function

 get_env(key)

 View Source

 @spec get_env(atom()) :: any() | no_return()

Fetch configuration specific to the :honeybadger application.

 example

 Example

Honeybadger.get_env(:exclude_envs)
#=> [:dev, :test]

 Link to this function

 notify(exception)

 View Source

 @spec notify(Honeybadger.Notice.noticeable()) :: :ok

Send an exception notification, if reporting is enabled.
This is the primary way to do manual error reporting and it is also used
internally to deliver logged errors.

 stacktrace

 Stacktrace

Accessing the stacktrace outside of a rescue/catch is deprecated. Notifications should happen
inside of a rescue/catch block so that the stacktrace can be provided with __STACKTRACE__.
Stacktraces must be provided and won't be automatically extracted from the current process.

 example

 Example

try do
 do_something_risky()
rescue
 exception ->
 Honeybadger.notify(exception, metadata: %{}, stacktrace: __STACKTRACE__)
end
Send a notification directly from a string, which will be sent as a
RuntimeError:
iex> Honeybadger.notify("custom error message")
:ok
Send a notification as a class and message:
iex> Honeybadger.notify(%{class: "SpecialError", message: "custom message"})
:ok
Send a notification as a badarg atom:
iex> Honeybadger.notify(:badarg)
:ok
If desired additional metadata can be provided as well:
iex> Honeybadger.notify(%RuntimeError{}, metadata: %{culprit_id: 123})
:ok
If desired fingerprint can be provided as well:
iex> Honeybadger.notify(%RuntimeError{}, fingerprint: "culprit_id-123")
:ok

 Link to this function

 notify(exception, metadata)

 View Source

 @spec notify(Honeybadger.Notice.noticeable(), [notify_options()] | map()) :: :ok

 Link to this function

 notify(exception, metadata, stacktrace)

 View Source

 This function is deprecated. Use Honeybadger.notify/2 instead.

 @spec notify(Honeybadger.Notice.noticeable(), map(), Exception.stacktrace()) :: :ok

Honeybadger.ExcludeErrors behaviour

Specification of user overrideable exclude_errors function.

 Anchor for this section

 Summary

 Callbacks

 exclude_error?(t)

 Takes in a notice struct and supposed to return true or false depending with the user Specification

 Anchor for this section

Callbacks

 Link to this callback

 exclude_error?(t)

 View Source

 @callback exclude_error?(Honeybadger.Notice.t()) :: boolean()

Takes in a notice struct and supposed to return true or false depending with the user Specification

Honeybadger.ExcludeErrors.Default

The default implementation for the exclude_errors configuration. Doesn't
exclude any error.

Honeybadger.Filter behaviour

Specification of user overrideable filter functions.
See moduledoc for Honeybadger.Filter.Mixin for details on implementing
your own filter.

 Anchor for this section

 Summary

 Callbacks

 filter_breadcrumbs(list)

 Filter breadcrumbs. This filter function receives a list of Breadcrumb
structs. You could use any Enum function to constrain the set. Let's say you
want to remove any breadcrumb that have metadata that contain SSN

 filter_cgi_data(map)

 For applications that use Honeybadger.Plug, filter the cgi_data.

 filter_context(map)

 Filter the context Map. The context is a map of application supplied data.

 filter_error_message(t)

 Filter the error message string. This is the message from the most
recently thrown error.

 filter_params(map)

 For applications that use Honeybadger.Plug, filters the query parameters.
The parameters is a map of String.t to String.t, e.g.

 filter_session(map)

 For applications that use Honeybadger.Plug, filter the session.

 Anchor for this section

Callbacks

 Link to this callback

 filter_breadcrumbs(list)

 View Source

 @callback filter_breadcrumbs([Honeybadger.Breadcrumbs.Breadcrumb.t()]) :: [
 Honeybadger.Breadcrumbs.Breadcrumb.t()
]

Filter breadcrumbs. This filter function receives a list of Breadcrumb
structs. You could use any Enum function to constrain the set. Let's say you
want to remove any breadcrumb that have metadata that contain SSN:
def filter_breadcrumbs(breadcrumbs) do
 Enum.reject(breadcrumbs, fn breadcrumb -> do
Map.has_key?(breadcrumb.metadata, :ssn)
 end)
end

 Link to this callback

 filter_cgi_data(map)

 View Source

 @callback filter_cgi_data(map()) :: map()

For applications that use Honeybadger.Plug, filter the cgi_data.
cgi_data is a map of String.t to String.t which includes HTTP headers
and other pre-defined request data (including PATH_INFO, QUERY_STRING,
SERVER_PORT etc.).

 Link to this callback

 filter_context(map)

 View Source

 @callback filter_context(map()) :: map()

Filter the context Map. The context is a map of application supplied data.

 Link to this callback

 filter_error_message(t)

 View Source

 @callback filter_error_message(String.t()) :: String.t()

Filter the error message string. This is the message from the most
recently thrown error.

 Link to this callback

 filter_params(map)

 View Source

 @callback filter_params(map()) :: map()

For applications that use Honeybadger.Plug, filters the query parameters.
The parameters is a map of String.t to String.t, e.g.:
%{"user_name" => "fred", "password" => "12345"}

 Link to this callback

 filter_session(map)

 View Source

 @callback filter_session(map()) :: map()

For applications that use Honeybadger.Plug, filter the session.

Honeybadger.Filter.Default

The default implementation for the filter configuration. Removes
keys listed in filter_keys from maps and respects the
filter_disable_* configuration values.

 Anchor for this section

 Summary

 Functions

 filter_breadcrumbs(breadcrumbs)

 Callback implementation for Honeybadger.Filter.filter_breadcrumbs/1.

 filter_cgi_data(cgi_data)

 Callback implementation for Honeybadger.Filter.filter_cgi_data/1.

 filter_context(context)

 Callback implementation for Honeybadger.Filter.filter_context/1.

 filter_error_message(message)

 Callback implementation for Honeybadger.Filter.filter_error_message/1.

 filter_map(map, keys)

 filter_params(params)

 Callback implementation for Honeybadger.Filter.filter_params/1.

 filter_session(session)

 Callback implementation for Honeybadger.Filter.filter_session/1.

 Anchor for this section

Functions

 Link to this function

 filter_breadcrumbs(breadcrumbs)

 View Source

Callback implementation for Honeybadger.Filter.filter_breadcrumbs/1.

 Link to this function

 filter_cgi_data(cgi_data)

 View Source

Callback implementation for Honeybadger.Filter.filter_cgi_data/1.

 Link to this function

 filter_context(context)

 View Source

Callback implementation for Honeybadger.Filter.filter_context/1.

 Link to this function

 filter_error_message(message)

 View Source

Callback implementation for Honeybadger.Filter.filter_error_message/1.

 Link to this function

 filter_map(map, keys)

 View Source

 Link to this function

 filter_params(params)

 View Source

Callback implementation for Honeybadger.Filter.filter_params/1.

 Link to this function

 filter_session(session)

 View Source

Callback implementation for Honeybadger.Filter.filter_session/1.

Honeybadger.Filter.Mixin

A default implementation of Honeybadger.Filter.
If you need to implement custom filtering for one or more of the elements in
a Honeybadger.Notice, you can define your own filter module and register it
in the config. E.g., if you wanted to filter the error message string, but
keep all of the other default filtering, you could do:
defmodule MyApp.MyFilter do
 use Honeybadger.Filter.Mixin

 def filter_error_message(message) do
 # replace passwords in error message with `"xxx"`
 Regex.replace(~r/(password: *)"([^"]+)"/, message, ~s(\1"xxx"))
 end
end
And set the configuration to:
config :honeybadger,
 filter: MyApp.MyFilter
See the documentation for Honeybadger.Filter for a list of functions that
may be overridden. The default implementations for all of the functions that
take a map are to remove any keys from the map that match a key in
filter_keys. The check matches atoms and strings in a case insensitive
manner.

Honeybadger.FingerprintAdapter behaviour

The callbacks required to implement the FingerprintAdapter behaviour

 Anchor for this section

 Summary

 Callbacks

 parse(t)

 This function receives a Honeybadger.Notice.t/0 and must return a string that will be used
as a fingerprint for the request

 Anchor for this section

Callbacks

 Link to this callback

 parse(t)

 View Source

 @callback parse(Honeybadger.Notice.t()) :: String.t()

This function receives a Honeybadger.Notice.t/0 and must return a string that will be used
as a fingerprint for the request:
def parse(notice) do
 notice.notifier.language <> "_" <> notice.notifier.name
end

Honeybadger.Notice

 Anchor for this section

 Summary

 Types

 error()

 noticeable()

 notifier()

 server()

 t()

 Functions

 new(error, metadata, stacktrace, fingerprint \\ "")

 Anchor for this section

Types

 Link to this type

 error()

 View Source

 @type error() :: %{
 backtrace: list(),
 class: atom() | iodata(),
 fingerprint: String.t(),
 message: iodata(),
 tags: list()
}

 Link to this type

 noticeable()

 View Source

 @type noticeable() :: Exception.t() | String.t() | map() | atom()

 Link to this type

 notifier()

 View Source

 @type notifier() :: %{name: String.t(), url: String.t(), version: String.t()}

 Link to this type

 server()

 View Source

 @type server() :: %{
 environment_name: atom(),
 hostname: String.t(),
 project_root: Path.t(),
 revision: String.t()
}

 Link to this type

 t()

 View Source

 @type t() :: %Honeybadger.Notice{
 breadcrumbs: Honeybadger.Breadcrumbs.Collector.t(),
 error: error(),
 notifier: notifier(),
 request: map(),
 server: server()
}

 Anchor for this section

Functions

 Link to this function

 new(error, metadata, stacktrace, fingerprint \\ "")

 View Source

 @spec new(noticeable(), map(), list(), String.t()) :: t()

Honeybadger.NoticeFilter behaviour

Specification for a top level Honeybadger.Notice filter.
Most users won't need this, but if you need complete control over
filtering, implement this behaviour and configure like:
config :honeybadger,
 notice_filter: MyApp.MyNoticeFilter

 Anchor for this section

 Summary

 Callbacks

 filter(t)

 Anchor for this section

Callbacks

 Link to this callback

 filter(t)

 View Source

 @callback filter(Honeybadger.Notice.t()) :: Honeybadger.Notice.t()

Honeybadger.NoticeFilter.Default

 Anchor for this section

 Summary

 Functions

 filter(notice)

 Callback implementation for Honeybadger.NoticeFilter.filter/1.

 Anchor for this section

Functions

 Link to this function

 filter(notice)

 View Source

Callback implementation for Honeybadger.NoticeFilter.filter/1.

Honeybadger.Plug

The Honeybadger.Plug adds automatic error handling to a plug pipeline.
Within a Plug.Router or Phoenix.Router use the module and crashes will
be reported to Honeybadger. It's best to use Honeybadger.Plug after
the Router plugs so that exceptions due to non-matching routes are not
reported to Honeybadger.
Example
defmodule MyPhoenixApp.Router do
 use Crywolf.Web, :router
 use Honeybadger.Plug

 pipeline :browser do
 [...]
 end
end
Customizing
Data reporting may be customized by passing an alternate :plug_data
module. This is useful when working with alternate frameworks, such as
Absinthe for GraphQL APIs.
Any module with a metadata/2 function that accepts a Plug.Conn and a
module name can be used to generate metadata.
Example
defmodule MyPhoenixApp.Router do
 use Crywolf.Web, :router
 use Honeybadger.Plug, plug_data: MyAbsinthePlugData
end

Honeybadger.Utils

Assorted helper functions used through out the Honeybadger package.

 Anchor for this section

 Summary

 Functions

 canonicalize(val)

 Transform value into a consistently cased string representation

 module_to_string(module)

 Internally all modules are prefixed with Elixir. This function removes the
Elixir prefix from the module when it is converted to a string.

 sanitize(value, opts \\ [])

 Configurable data sanitization. This currently

 Anchor for this section

Functions

 Link to this function

 canonicalize(val)

 View Source

Transform value into a consistently cased string representation
Example
iex> Honeybadger.Utils.canonicalize(:User_SSN)
"user_ssn"

 Link to this function

 module_to_string(module)

 View Source

Internally all modules are prefixed with Elixir. This function removes the
Elixir prefix from the module when it is converted to a string.
Example
iex> Honeybadger.Utils.module_to_string(Honeybadger.Utils)
"Honeybadger.Utils"

 Link to this function

 sanitize(value, opts \\ [])

 View Source

Configurable data sanitization. This currently:
	recursively truncates deep structures (to a depth of 20)
	constrains large string values (to 64k)
	filters out any map keys that might contain sensitive information.

Honeybadger.MissingEnvironmentNameError exception

HoneybadgerTestingException exception

mix hex_release

release uses shipit.
It performs many sanity checks before pushing the hex package.
Check out https://github.com/wojtekmach/shipit for more details

 Anchor for this section

 Summary

 Functions

 run(arg1)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(arg1)

 View Source

Callback implementation for Mix.Task.run/1.

mix honeybadger.test

 Anchor for this section

 Summary

 Functions

 run(_)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(_)

 View Source

Callback implementation for Mix.Task.run/1.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

