

 GraphQL Client

 v0.2.0

 Table of contents

 	README

 	Changelog

 	Code of Conduct

 	License

 	Notice

 	Modules

 	GraphQL.Client

 	GraphQL.Encoder

 	GraphQL.LocalBackend

 	GraphQL.Node

 	GraphQL.Query

 	GraphQL.QueryBuilder

 	GraphQL.QueryRegistry

 	GraphQL.Response

 	GraphQL.Variable

[image: Tests]
[image: Contributor Covenant]
Graphql Client
A client-side GraphQL library.
Installation
Add graphql_client to you list of dependencies:
def deps do
 [{:graphql_client, "~> 0.1"}]
end
Creating a backend
Now, you need to implement the GraphQL.Client behaviour:
defmodule MyClient do
 @behaviour GraphQL.Client

 def execute_query(query, variables, options) do
 # your implementation
 end
end
Configuring the client
In your configuration, set it as your backend:
config :graphql_client, backend: MyClient
Now, any call to GraphQL.Client will use the configured backend.
Usage
GraphQL as code
To build queries, you can import all functions from GraphQL.QueryBuilder.
A simple query, like this one:
query User($slug: String! = "*"){
 user(slug: $slug){
 id
 email
}
Can be built using the following snippet:
import GraphQL.QueryBuilder

user_query = query("User", %{slug: {"String!", "*"}}, [
 field(:user, %{slug: :"$slug"}, [
 field(:id),
 field(:email)
])
])
Now, the user_query variable contains a representation of this GraphQL operation. If you inspect it, you'll see this:
%GraphQL.Query{
 fields: [
 %GraphQL.Node{
 alias: nil,
 arguments: %{slug: :"$slug"},
 name: :user,
 node_type: :field,
 nodes: [
 %GraphQL.Node{
 alias: nil,
 arguments: nil,
 name: :id,
 node_type: :field,
 nodes: nil,
 type: nil
 },
 %GraphQL.Node{
 alias: nil,
 arguments: nil,
 name: :email,
 node_type: :field,
 nodes: nil,
 type: nil
 }
],
 type: nil
 }
],
 fragments: [],
 name: "User",
 operation: :query,
 variables: [
 %GraphQL.Variable{
 default_value: "*",
 name: :slug,
 type: "String!"
 }
]
}
But most of the time you'll not need to handle this directly.
Executing queries
To execute this query, you can now call the GraphQL.Client and use this query directly:
GraphQL.Client.execute(user_query, %{slug: "some-user"})
From the POV of the code that it's calling, it doesn't know if this client is using HTTP, smoke signals or magic.
All you know is that this function will always return a %GraphQL.Response{} struct.
To get the actual text body, you can use GraphQL.Encoder.encode/1 function:
iex> user_query |> GraphQL.Encoder.encode() |> IO.puts()
query User($slug: String! = "*") {
 user(slug: $slug) {
 id
 email
 }
}
:ok
The Query Registry
The end goal is to merge different queries into one operation and the query registry does exactly that.
It will accumulate queries, variables and resolvers (yes, resolvers!), merge them, and then execute resolvers with an accumulator.
user_query = query(...)
product_query = query(...)

user_resolver = fn response, acc ->
 # do something with the response and return the updated accumulator
 updated_acc
end

registry = QueryRegistry.new("BigQuery")

result =
 registry
 |> QueryRegistry.add_query(user_query, user_variables,[user_resolver])
 |> QueryRegistry.add_query(product_query, product_variables)
 |> QueryRegistry.execute(%{}, options)

A resolver function must accept two parameters: a %GraphQL.Response{} struct and the accumulator defined by the query registry.
Testing
The %GraphQL.Response{} is the only thing clients must return, and that we can configure the backend via config files.
Internally, during tests, the backend will be changed to LocalBackend, that uses an Agent process to store responses.
Call GraphQL.LocalBackend.start_link/0 on your test_helper.exs file.
Now you can use the GraphQL.LocalBackend.expect/1 function:
import GraphQL.LocalBackend, only: [expect: 1]
alias GraphQL.Response

test "my test" do
 my_registry = QueryRegistry.new(...)
 response = Response.success(%{field: "value"})
 expect(my_registry, response)
 assert 1 == 1
end
If you need to inspect and assert the query and variables, you can pass a function:
import GraphQL.LocalBackend, only: [expect: 1]
alias GraphQL.Response

test "my test" do
 my_registry = QueryRegistry.new(...)

 expect(my_registry, fn query, _variables, _options ->
 assert query == expected_query
 Response.success(%{field: "value"})
 end)
 assert 1 == 1
end
Code of Conduct
This project Contributor Covenant version 2.1. Check CODE_OF_CONDUCT.md file for more information.
License
graphql_client source code is released under Apache License 2.0.
Check NOTICE and LICENSE files for more information.

Changelog for graphql_client

v0.2.0
Changes
	GraphQL.Query.merge/3 and GraphQL.Query.merge_many/2 now return ok/error tuples instead of structs - the new
check for duplicated variables may now invalidate a merge and return an error.

Bugfixes
	Do not allow variables to be added twice, even when declared with different key types

v0.1.2
Bugfixes
	Fix the return value of GraphQL.LocalBackend.execute_query/2

v0.1.1
New Features
	Enable recursive expression for variables
	New function GraphQL.QueryBuilder.enum/1, to declare enum values so they are rendered without quotes.

v0.1.0
First version!
New Features
	GraphQL query representation using elixir code!
	Merge queries into a single operation
	Testing suppport

Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or advances of
any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email address,
without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
engineering@therealreal.com. All complaints will be reviewed and investigated
promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series of
actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the
community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
Community Impact Guidelines were inspired by
Mozilla's code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright (c) 2021, TheRealReal.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Copyright 2022 TheRealReal

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

GraphQL.Client behaviour

Facade client for GraphQL requests
The real backend must implement the execute/4 callback and must be configured
by the :therealreal, GraphQL.Client, :backend application
config.

 Anchor for this section

 Summary

 Types

 query()

 Callbacks

 execute_query(query, variables, options)

 Callback spec for backend implementation

 Functions

 execute(query, variables, options \\ %{})

 Executes the given query, with the given variables and options.

 Anchor for this section

Types

 Link to this type

 query()

 View Source

 Specs

 query() :: GraphQL.Query.t() | {String.t(), reference()} | String.t()

 Anchor for this section

Callbacks

 Link to this callback

 execute_query(query, variables, options)

 View Source

 Specs

 execute_query(query :: GraphQL.Query.t(), variables :: map(), options :: map()) ::
 GraphQL.Response.t()

Callback spec for backend implementation

 Anchor for this section

Functions

 Link to this function

 execute(query, variables, options \\ %{})

 View Source

 Specs

 execute(GraphQL.Query.t(), map(), map()) :: GraphQL.Response.t()

Executes the given query, with the given variables and options.

GraphQL.Encoder

Functions to encode GraphQL.Query struct into a string

 Anchor for this section

 Summary

 Functions

 encode(query)

 Encodes a GraphQL.Query struct into a GraphQL query body

 encode_argument(arg)

 encode_arguments(map_or_keyword)

 Anchor for this section

Functions

 Link to this function

 encode(query)

 View Source

 Specs

 encode(GraphQL.Query.t()) :: String.t()

Encodes a GraphQL.Query struct into a GraphQL query body

 Link to this function

 encode_argument(arg)

 View Source

 Link to this function

 encode_arguments(map_or_keyword)

 View Source

GraphQL.LocalBackend

A GraphQL.Client implementation that uses an Agent to store data, useful
for tests.

 Anchor for this section

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 expect(response)

 Stores a response or a function that will be evaluated to the next call
to execute_query

 start_link()

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 expect(response)

 View Source

Stores a response or a function that will be evaluated to the next call
to execute_query

 Link to this function

 start_link()

 View Source

GraphQL.Node

Functions to create all different types of nodes of a GraphQL operation.
Usually, this module should not be used directly, since it is easier to use
the function from GraphQL.QueryBuilder.

 Anchor for this section

 Summary

 Types

 name()

 A GraphQL identifier that is not a GraphQL keyword (like mutation, query and fragment)

 name_and_alias()

 A two-element tuple where the first position is the name of the field and the
second element is the alias of the field.

 node_type()

 The GraphQL query element that this node represents.

 t()

 A struct representing a GraphQL operation node.

 Functions

 field(name_spec)

 Creates a simple field, with no arguments or sub nodes.

 field(name_spec, arguments, nodes, directives \\ nil)

 Creates a field with arguments and sub nodes.

 fragment(name)

 Creates a reference to a fragment.

 fragment(name, type, fields)

 Creates a fragment.

 inline_fragment(type, fields)

 Creates an inline fragment.

 Anchor for this section

Types

 Link to this type

 name()

 View Source

 Specs

 name() :: String.t() | atom()

A GraphQL identifier that is not a GraphQL keyword (like mutation, query and fragment)
Used to identify fields, aliases and fragments.

 Link to this type

 name_and_alias()

 View Source

 Specs

 name_and_alias() :: {name(), name()}

A two-element tuple where the first position is the name of the field and the
second element is the alias of the field.

 Link to this type

 node_type()

 View Source

 Specs

 node_type() :: :field | :fragment_ref | :fragment | :inline_fragment

The GraphQL query element that this node represents.
The four node types are:
	field: a single field of a GraphQL schema, may have arguments and other nodes
	fragment_ref: a reference to a fragment, used inside fields to import fragment fields
	fragment: a fragment definition, with name, type and fields
	inline_fragment: much like a fragment, but being inline, it does not need a name

 Link to this type

 t()

 View Source

 Specs

 t() :: %GraphQL.Node{
 alias: name(),
 arguments: map() | Keyword.t(),
 directives: map() | Keyword.t(),
 name: name(),
 node_type: node_type(),
 nodes: [t()],
 type: String.t()
}

A struct representing a GraphQL operation node.
A %Node{} struct can be represent a field, a fragment, an inline fragment or a
fragment reference, identified by the :node_type field.
The name represents how this node is identified within the GraphQL operation.
The alias is only used when the :node_type is :field, and as the name
suggests, represents the alias of the field's name.
The arguments is a map with all the arguments used by a node, and it's only
valid when thew :node_type is :field.
The type is only used when :node_type is :fragment or :inline_fragment,
and represents the GraphQL type of the fragment.
The nodes is a list of child nodes, that can used to query for complex
objects.
The directives field is an enum with all the graphQL directives to be
applied on a node node.

 Anchor for this section

Functions

 Link to this function

 field(name_spec)

 View Source

 Specs

 field(name() | name_and_alias()) :: t()

Creates a simple field, with no arguments or sub nodes.
The name parameter can be an atom or string, or a two-element tuple with
atoms or strings, where the first element is the actual name of the field and
the second element is the alias of the field.

 GraphQL example

A query with a simple field inside another field:
query {
 user {
 id <---- Simple field
 }
}
A query with a simple field with an alias:
query {
 user {
 theId: id <---- Simple field with alias
 }
}

 Examples

iex> field(:my_field)
%GraphQL.Node{node_type: :field, name: :my_field}

iex> field({:my_field, "field_alias"})
%GraphQL.Node{node_type: :field, name: :my_field, alias: "field_alias"}

 Link to this function

 field(name_spec, arguments, nodes, directives \\ nil)

 View Source

 Specs

 field(name() | name_and_alias(), map(), [t()], [any()]) :: t()

Creates a field with arguments and sub nodes.
The name parameter can be an atom or string, or a two-element tuple with
atoms or strings, where the first element is the actual name of the field and
the second element is the alias of the field.
The arguments parameter is a map.
The nodes argument is a list of %GraphQL.Node{} structs.

 GraphQL Example

A query with a field that has arguments, an alias and subfields
query {
 someObject: object(slug: "the-object") { <----- Field with an alias and arguments
 field <----- Sub field
 anotherField <----- Sub field
 }
}

 Examples

iex> field(:my_field, %{id: "id"}, [field(:subfield)])
%GraphQL.Node{node_type: :field, name: :my_field, arguments: %{id: "id"}, nodes: [%GraphQL.Node{node_type: :field, name: :subfield}]}

iex> field({:my_field, "field_alias"}, %{id: "id"}, [field(:subfield)])
%GraphQL.Node{node_type: :field, name: :my_field, alias: "field_alias", arguments: %{id: "id"}, nodes: [%GraphQL.Node{node_type: :field, name: :subfield}]}

 Link to this function

 fragment(name)

 View Source

 Specs

 fragment(name()) :: t()

Creates a reference to a fragment.
A fragment reference is used inside a field to import the fields of a fragment.

 GraphQL Example

query {
 object {
 ...fieldsFromFragment <----- Fragment Reference
 }
}

 Examples

iex> fragment("myFields")
%GraphQL.Node{node_type: :fragment_ref, name: "myFields"}

 Link to this function

 fragment(name, type, fields)

 View Source

 Specs

 fragment(name(), name(), [t()]) :: t()

Creates a fragment.
A fragment is used to share fields between other fields

 GraphQL Example

query {
 object {
 ...fieldsFromFragment
 }
}

fragment fieldsFromFragment on Type { <------ Fragment
 field1
 field2
}

 Examples

iex> fragment("myFields", "SomeType", [field(:field)])
%GraphQL.Node{node_type: :fragment, name: "myFields", type: "SomeType", nodes: [%GraphQL.Node{node_type: :field, name: :field}]}

 Link to this function

 inline_fragment(type, fields)

 View Source

 Specs

 inline_fragment(name(), [t()]) :: t()

Creates an inline fragment.
An inline fragment is used to conditionally add fields on another field depending
on its type

 GraphQL Example

query {
 object {
 ... on Type { <------ Inline Fragment
 field1
 field2
 }
 }
}

 Examples

iex> inline_fragment("SomeType", [field(:field)])
%GraphQL.Node{node_type: :inline_fragment, type: "SomeType", nodes: [%GraphQL.Node{node_type: :field, name: :field}]}

GraphQL.Query

Functions to create and modify query representations.

 Anchor for this section

 Summary

 Types

 t()

 A struct that represents a GraphQL query or mutation.

 Functions

 add_field(query, field)

 Adds a field to a query.

 add_fragment(query, fragment)

 Adds a fragment to a query.

 add_variable(query, variable)

 Add a new variable to an existing query

 merge(query_a, query_b, name)

 Combine two queries into one query, merging fields, variables and fragments.

 merge_many(queries, name \\ nil)

 Combines a list of queries into one query, merging fields, variables and fragments.

 mutation(options)

 Creates a new query struct for a 'mutation' operation from a keyword list.

 query(options)

 Creates a new query struct for a 'query' operation from a keyword list.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %GraphQL.Query{
 fields: [GraphQL.Node.t()],
 fragments: [GraphQL.Node.t()] | nil,
 name: String.t(),
 operation: :query | :mutation,
 variables: [GraphQL.Variable.t()] | nil
}

A struct that represents a GraphQL query or mutation.
The :operation field can be :query, for a query operation, or :mutation,
for a mutation operation.
The :name field is the name of the query or mutation. GraphQL does not
require a name for operations, but this struct will enforce its presence in
order to enrich trace and logging information.
The :fields field is a list of GraphQL.Node structs. This the
list of roof fields of a query or mutation.
The :fragments field is also a list of GraphQL.Node structs,
but intended to only keep fragment nodes, as they are usually placed after
the root fields in a typical GraphQL query/mutation.
The :variables fields is a list of GraphQL.Variable structs,
that represents the expected variables during the request. Note that this list
is the definition of variables, not the values of them.

 Anchor for this section

Functions

 Link to this function

 add_field(query, field)

 View Source

 Specs

 add_field(t(), GraphQL.Node.t()) :: t()

Adds a field to a query.
The field argument must be a GraphQL.Node struct and its
:node_type must be :field.

 Examples

iex> f1 = GraphQL.Node.field(:field)
%GraphQL.Node{node_type: :field, name: :field}
iex> f2 = GraphQL.Node.field(:other_field)
%GraphQL.Node{node_type: :field, name: :other_field}
iex> q = %GraphQL.Query{operation: :query, name: "MyQuery", fields: [f1]}
%GraphQL.Query{operation: :query, name: "MyQuery", fields: [f1]}
iex> add_field(q, f2)
%GraphQL.Query{name: "MyQuery", operation: :query, fields: [f2, f1]}

 Link to this function

 add_fragment(query, fragment)

 View Source

 Specs

 add_fragment(t(), GraphQL.Node.t()) :: t()

Adds a fragment to a query.
The field argument must be a GraphQL.Node struct and its
:node_type must be :field.

 Examples

iex> f1 = GraphQL.Node.fragment("personFields", "Person", [GraphQL.Node.field(:field)])
%GraphQL.Node{node_type: :fragment, name: "personFields", type: "Person", nodes: [%GraphQL.Node{node_type: :field, name: :field}]}
iex> f2 = GraphQL.Node.fragment("userFields", "User", [GraphQL.Node.field(:another_field)])
%GraphQL.Node{node_type: :fragment, name: "userFields", type: "User", nodes: [%GraphQL.Node{node_type: :field, name: :another_field}]}
iex> q = %GraphQL.Query{operation: :query, name: "MyQuery", fields: [], fragments: [f1]}
%GraphQL.Query{operation: :query, name: "MyQuery", fields: [], fragments: [f1]}
iex> add_fragment(q, f2)
%GraphQL.Query{name: "MyQuery", operation: :query, fields: [], fragments: [f2, f1]}

 Link to this function

 add_variable(query, variable)

 View Source

 Specs

 add_variable(t(), GraphQL.Variable.t()) :: t()

Add a new variable to an existing query

 Examples

iex> v1 = %GraphQL.Variable{name: "id", type: "Integer"}
%GraphQL.Variable{name: "id", type: "Integer"}
iex> v2 = %GraphQL.Variable{name: "slug", type: "String"}
%GraphQL.Variable{name: "slug", type: "String"}
iex> q = %GraphQL.Query{operation: :query, name: "MyQuery", fields: [], variables: [v1]}
%GraphQL.Query{operation: :query, name: "MyQuery", fields: [], variables: [v1]}
iex> add_variable(q, v2)
%GraphQL.Query{operation: :query, name: "MyQuery", fields: [], variables: [v2, v1]}

 Link to this function

 merge(query_a, query_b, name)

 View Source

 Specs

 merge(t(), t(), String.t()) :: {:ok, t()} | {:error, any()}

Combine two queries into one query, merging fields, variables and fragments.
The two queries must have the same operation.

 Link to this function

 merge_many(queries, name \\ nil)

 View Source

 Specs

 merge_many([t()], String.t()) :: {:ok, t()} | {:error, any()}

Combines a list of queries into one query, merging fields, variables and fragments.
All queries must have the same operation.

 Link to this function

 mutation(options)

 View Source

 Specs

 mutation(Keyword.t()) :: t()

Creates a new query struct for a 'mutation' operation from a keyword list.

 Link to this function

 query(options)

 View Source

 Specs

 query(Keyword.t()) :: t()

Creates a new query struct for a 'query' operation from a keyword list.

GraphQL.QueryBuilder

Functions to simplify the creation of GraphQL queries.
The easiest way to use these functions is to import this module directly,
this way you'll have all you need to build a query.
Helper functions
	query/4 - creates a new "query" operation
	mutation/4 - creates a new "mutation" operation
	field/3 - creates a new field (optionals: variables and subfields)
	fragment/1 - creates a reference to a fragment
	fragment/3- creates a fragment
	inline_fragment/2 - creates an inline fragment

Writing queries and mutations
As an example, consider the following GraphQL request:
query UserQuery($id: Integer = 1) {
 user (id: $id) {
 id
 email
 ...personFields
 }
}

fragment personField on Person {
 firstName
 lastName
}
Using the functions in this module, you can create a representation of this
query in this way:
q = query("UserQuery", %{id: {"Integer", 1}}, [
 field(:user, %{}, [
 field(:id)
 field(:email),
 fragment("personFields")
])
], [
 fragment("personFields", "Person", [
 field("firstName"),
 field("lastName")
])
])

 Anchor for this section

 Summary

 Functions

 enum(name)

 field(name, args \\ nil, fields \\ nil, directives \\ nil)

 Creates a field.

 fragment(name)

 Creates a reference to a fragment. Use it inside a field.

 fragment(name, type, fields)

 Creates a fragment. Use it on the query level.

 inline_fragment(type, fields)

 Creates an inline fragment. Use it inside a field.

 mutation(name, variables, fields, fragments \\ [])

 Creates a new GraphQL.Query struct, for a :mutation operation

 query(name, variables, fields, fragments \\ [])

 Creates a new GraphQL.Query struct, for a :query operation.

 var(name, type, value \\ nil)

 Creates a GraphQL.Variable struct.

 Anchor for this section

Functions

 Link to this function

 enum(name)

 View Source

 Specs

 enum(String.t()) :: {:enum, String.t()}

 Link to this function

 field(name, args \\ nil, fields \\ nil, directives \\ nil)

 View Source

Creates a field.
When rendered, it will have the following body:
	A simple field, no arguments or sub fields
fieldName

	A field with an alias
fieldAlias: fieldName

	A field with arguments
fieldName(arg: value)

	A field with sub fields
fieldName {
 subField
}

	A field an alias, arguments and sub fields
fieldAlias: fieldName (arg: value) {
 subField
}

 Examples

iex> field(:some_field)
%GraphQL.Node{node_type: :field, name: :some_field}

iex> field({:some_field, "fieldAlias"})
%GraphQL.Node{node_type: :field, name: :some_field, alias: "fieldAlias"}

iex> field("anotherField", %{}, [field(:id)])
%GraphQL.Node{node_type: :field, name: "anotherField", nodes: [%GraphQL.Node{node_type: :field, name: :id}]}

 Link to this function

 fragment(name)

 View Source

 Specs

 fragment(String.t()) :: GraphQL.Node.t()

Creates a reference to a fragment. Use it inside a field.
When rendered, it will generate the following body:
...fragmentName

 Examples

iex> fragment(:fields)
%GraphQL.Node{node_type: :fragment_ref, name: :fields}

 Link to this function

 fragment(name, type, fields)

 View Source

 Specs

 fragment(String.t(), String.t(), list()) :: GraphQL.Node.t()

Creates a fragment. Use it on the query level.
When rendered, it will generate the following body:
... fragmentName on Type {
 field1
 field2
}

 Examples

iex> fragment("personFields", "Person", [field(:name)])
%GraphQL.Node{node_type: :fragment, name: "personFields", type: "Person", nodes: [%GraphQL.Node{node_type: :field, name: :name}]}

 Link to this function

 inline_fragment(type, fields)

 View Source

 Specs

 inline_fragment(String.t(), list()) :: GraphQL.Node.t()

Creates an inline fragment. Use it inside a field.
When rendered, it will generate the following body:
... on Type {
 field1
 field2
}

 Examples

iex> inline_fragment("Person", [field(:name)])
%GraphQL.Node{node_type: :inline_fragment, type: "Person", nodes: [%GraphQL.Node{node_type: :field, name: :name}]}

 Link to this function

 mutation(name, variables, fields, fragments \\ [])

 View Source

 Specs

 mutation(String.t(), map(), list(), list()) :: GraphQL.Query.t()

Creates a new GraphQL.Query struct, for a :mutation operation

 Link to this function

 query(name, variables, fields, fragments \\ [])

 View Source

 Specs

 query(String.t(), map(), list(), list()) :: GraphQL.Query.t()

Creates a new GraphQL.Query struct, for a :query operation.

 Link to this function

 var(name, type, value \\ nil)

 View Source

 Specs

 var(any(), any(), any()) :: GraphQL.Variable.t()

Creates a GraphQL.Variable struct.

GraphQL.QueryRegistry

Functions to handle query registries.
A query registry stores several GraphQL.Query structs, so they
can be combined into a single query before the execution.

 Anchor for this section

 Summary

 Types

 resolver()

 A resolver is a function that must accept two arguments

 t()

 A struct that keeps the information about several queries, variables and
resolvers.

 Functions

 add_query(registry, query, variables \\ nil)

 Add a query to the a query registry

 add_resolver(registry, function)

 Add a new resolver into a query registry

 add_resolvers(registry, resolvers)

 Add a list of resolvers into a query registry

 execute(registry, acc, options \\ [])

 Executes the given query registry, using the given accumulator acc and the given options

 new(name)

 Creates a new QueryRegistry struct with the given name.

 Anchor for this section

Types

 Link to this type

 resolver()

 View Source

 Specs

 resolver() :: (Response.t(), any() -> any())

A resolver is a function that must accept two arguments:
	a GraphQL.Response struct
	an accumulator, that can be of any type

It also must return the updated value of the accumulator.

 Link to this type

 t()

 View Source

 Specs

 t() :: %GraphQL.QueryRegistry{
 name: String.t(),
 queries: [GraphQL.Query.t()],
 resolvers: list(),
 variables: [map()]
}

A struct that keeps the information about several queries, variables and
resolvers.
The name field will be used as the name of the final query or mutation.
The queries field is a list of GraphQL.Query structs, that
will be merged before execution.
The variables is a map with all values of variables that will be sent
to the server along with the GraphQL body.
The resolver is a list of t:resolver() functions that can be used to
produce the side effects in an accumulator.

 Anchor for this section

Functions

 Link to this function

 add_query(registry, query, variables \\ nil)

 View Source

 Specs

 add_query(t(), GraphQL.Query.t(), map()) :: t()

Add a query to the a query registry

 Link to this function

 add_resolver(registry, function)

 View Source

 Specs

 add_resolver(t(), resolver()) :: t()

Add a new resolver into a query registry

 Link to this function

 add_resolvers(registry, resolvers)

 View Source

 Specs

 add_resolvers(t(), [resolver()]) :: t()

Add a list of resolvers into a query registry

 Link to this function

 execute(registry, acc, options \\ [])

 View Source

 Specs

 execute(t(), any(), Keyword.t()) :: any()

Executes the given query registry, using the given accumulator acc and the given options

 Link to this function

 new(name)

 View Source

 Specs

 new(String.t()) :: t()

Creates a new QueryRegistry struct with the given name.

GraphQL.Response

Functions to handle GraphQL responses

 Anchor for this section

 Summary

 Types

 t()

 A struct that contains the GraphQL response data.

 Functions

 failure(errors)

 Creates a new failure response with the given errors

 partial_success(data, errors)

 Create a new partial success response with the given data and errors

 success(data)

 Creates a succes response with the given data

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %GraphQL.Response{
 data: any(),
 errors: any(),
 success?: true | false | :partial
}

A struct that contains the GraphQL response data.

 Anchor for this section

Functions

 Link to this function

 failure(errors)

 View Source

 Specs

 failure(map()) :: t()

Creates a new failure response with the given errors

 Examples

iex> failure([%{message: "some error", locations: [%{line: 2, column: 5}]}])
%GraphQL.Response{success?: false, errors: [%{message: "some error", locations: [%{line: 2, column: 5}]}]}

 Link to this function

 partial_success(data, errors)

 View Source

 Specs

 partial_success(map(), list()) :: t()

Create a new partial success response with the given data and errors

 Examples

iex> data = %{field: "value"}
%{field: "value"}
iex> errors = [%{message: "some error", locations: [%{line: 2, column: 5}]}]
[%{message: "some error", locations: [%{line: 2, column: 5}]}]
iex> partial_success(data, errors)
%GraphQL.Response{success?: :partial, data: %{field: "value"}, errors: [%{message: "some error", locations: [%{line: 2, column: 5}]}]}

 Link to this function

 success(data)

 View Source

 Specs

 success(map()) :: t()

Creates a succes response with the given data

 Examples

iex> success(%{field: "value"})
%GraphQL.Response{success?: true, data: %{field: "value"}}

GraphQL.Variable

A struct to represent GraphQL variables

 Anchor for this section

 Summary

 Types

 name()

 A GraphQL generic name

 t()

 A struct that represents the definition of a GraphQL variable.

 Functions

 same?(a, b)

 Check if two variables represent the same variable

 Anchor for this section

Types

 Link to this type

 name()

 View Source

 Specs

 name() :: String.t() | atom()

A GraphQL generic name

 Link to this type

 t()

 View Source

 Specs

 t() :: %GraphQL.Variable{default_value: any(), name: name(), type: name()}

A struct that represents the definition of a GraphQL variable.
A variable definition exists within a query or mutation, and then can be
referenced by the arguments of fields.

 Anchor for this section

Functions

 Link to this function

 same?(a, b)

 View Source

 Specs

 same?(t(), t()) :: boolean()

Check if two variables represent the same variable

 OEBPS/dist/app-79dd8c5f31bc273f4a64.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=25)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},25:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

