google_api_machine_learning v0.8.0 GoogleApi.MachineLearning.V1.Model.GoogleCloudMlV1Model View Source

Represents a machine learning solution. A model can have multiple versions, each of which is a deployed, trained model ready to receive prediction requests. The model itself is just a container.

Attributes

  • defaultVersion (GoogleCloudMlV1Version): Output only. The default version of the model. This version will be used to handle prediction requests that do not specify a version. You can change the default version by calling projects.methods.versions.setDefault. Defaults to: null.
  • description (String.t): Optional. The description specified for the model when it was created. Defaults to: null.
  • etag (binary()): `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a model from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform model updates in order to avoid race conditions: An `etag` is returned in the response to `GetModel`, and systems are expected to put that etag in the request to `UpdateModel` to ensure that their change will be applied to the model as intended. Defaults to: null.
  • labels (%{optional(String.t) => String.t}): Optional. One or more labels that you can add, to organize your models. Each label is a key-value pair, where both the key and the value are arbitrary strings that you supply. For more information, see the documentation on <a href="/ml-engine/docs/tensorflow/resource-labels">using labels</a>. Defaults to: null.
  • name (String.t): Required. The name specified for the model when it was created. The model name must be unique within the project it is created in. Defaults to: null.
  • onlinePredictionConsoleLogging (boolean()): Optional. If true, online prediction nodes send `stderr` and `stdout` streams to Stackdriver Logging. These can be more verbose than the standard access logs (see `onlinePredictionLogging`) and can incur higher cost. However, they are helpful for debugging. Note that Stackdriver logs may incur a cost, especially if your project receives prediction requests at a high QPS. Estimate your costs before enabling this option. Default is false. Defaults to: null.
  • onlinePredictionLogging (boolean()): Optional. If true, online prediction access logs are sent to StackDriver Logging. These logs are like standard server access logs, containing information like timestamp and latency for each request. Note that Stackdriver logs may incur a cost, especially if your project receives prediction requests at a high queries per second rate (QPS). Estimate your costs before enabling this option. Default is false. Defaults to: null.
  • regions ([String.t]): Optional. The list of regions where the model is going to be deployed. Currently only one region per model is supported. Defaults to 'us-central1' if nothing is set. See the <a href="/ml-engine/docs/tensorflow/regions">available regions</a> for AI Platform services. Note: No matter where a model is deployed, it can always be accessed by users from anywhere, both for online and batch prediction. The region for a batch prediction job is set by the region field when submitting the batch prediction job and does not take its value from this field. Defaults to: null.

Link to this section Summary

Functions

Unwrap a decoded JSON object into its complex fields.

Link to this section Types

Link to this type

t() View Source
t() :: %GoogleApi.MachineLearning.V1.Model.GoogleCloudMlV1Model{
  defaultVersion: GoogleApi.MachineLearning.V1.Model.GoogleCloudMlV1Version.t(),
  description: any(),
  etag: any(),
  labels: map(),
  name: any(),
  onlinePredictionConsoleLogging: any(),
  onlinePredictionLogging: any(),
  regions: [any()]
}

Link to this section Functions

Link to this function

decode(value, options) View Source
decode(struct(), keyword()) :: struct()

Unwrap a decoded JSON object into its complex fields.