google_api_big_query v0.16.0 GoogleApi.BigQuery.V2.Model.TrainingOptions View Source

Attributes

  • dataSplitColumn (type: String.t, default: nil) - The column to split data with. This column won't be used as a feature.

    1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
    2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type-properties
  • dataSplitEvalFraction (type: float(), default: nil) - The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
  • dataSplitMethod (type: String.t, default: nil) - The data split type for training and evaluation, e.g. RANDOM.
  • distanceType (type: String.t, default: nil) - [Beta] Distance type for clustering models.
  • earlyStop (type: boolean(), default: nil) - Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms.
  • initialLearnRate (type: float(), default: nil) - Specifies the initial learning rate for the line search learn rate strategy.
  • inputLabelColumns (type: list(String.t), default: nil) - Name of input label columns in training data.
  • l1Regularization (type: float(), default: nil) - L1 regularization coefficient.
  • l2Regularization (type: float(), default: nil) - L2 regularization coefficient.
  • labelClassWeights (type: map(), default: nil) - Weights associated with each label class, for rebalancing the training data. Only applicable for classification models.
  • learnRate (type: float(), default: nil) - Learning rate in training. Used only for iterative training algorithms.
  • learnRateStrategy (type: String.t, default: nil) - The strategy to determine learn rate for the current iteration.
  • lossType (type: String.t, default: nil) - Type of loss function used during training run.
  • maxIterations (type: String.t, default: nil) - The maximum number of iterations in training. Used only for iterative training algorithms.
  • minRelativeProgress (type: float(), default: nil) - When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms.
  • modelUri (type: String.t, default: nil) - [Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models.
  • numClusters (type: String.t, default: nil) - [Beta] Number of clusters for clustering models.
  • optimizationStrategy (type: String.t, default: nil) - Optimization strategy for training linear regression models.
  • warmStart (type: boolean(), default: nil) - Whether to train a model from the last checkpoint.

Link to this section Summary

Functions

Unwrap a decoded JSON object into its complex fields.

Link to this section Types

Link to this type

t() View Source
t() :: %GoogleApi.BigQuery.V2.Model.TrainingOptions{
  dataSplitColumn: String.t(),
  dataSplitEvalFraction: float(),
  dataSplitMethod: String.t(),
  distanceType: String.t(),
  earlyStop: boolean(),
  initialLearnRate: float(),
  inputLabelColumns: [String.t()],
  l1Regularization: float(),
  l2Regularization: float(),
  labelClassWeights: map(),
  learnRate: float(),
  learnRateStrategy: String.t(),
  lossType: String.t(),
  maxIterations: String.t(),
  minRelativeProgress: float(),
  modelUri: String.t(),
  numClusters: String.t(),
  optimizationStrategy: String.t(),
  warmStart: boolean()
}

Link to this section Functions

Link to this function

decode(value, options) View Source
decode(struct(), keyword()) :: struct()

Unwrap a decoded JSON object into its complex fields.