

 Fountainedge

 v1.0.4

 Table of contents

 	Fountainedge

 	Example: Simple

 	Modules

 	Fountainedge

 	Fountainedge.Edge

 	Fountainedge.Graph

 	Fountainedge.Node

 	Fountainedge.Schema

 	Fountainedge.State

 	Fountainedge.Token

 	Fountainedge.Workflow

Fountainedge

NOTICE: VERSION 0.1 to VERSION 1.0 UPGRADE HAS BREAKING API CHANGES

Fountainedge is a simple workflow engine written in Elixir that roughly models forks and joins as described in the paper, Process Modeling Notations and
Workflow Patterns by Stephen A. White, IBM Corporation.
Uses Graphviz for graphical representations as UML Activity Diagrams.
	Hex Package
	Documentation

The workflow is modelled as graphs consisting of nodes and edges. Parallel forks and joins are tracked using tokens.
Example
[image: test6]
Define a schema:
schema = %Fountainedge.Schema{
 nodes: [
	%Fountainedge.Node{id: 1, label: "Initial", type: :initial},
	%Fountainedge.Node{id: 2, label: "Choice 1"},
	%Fountainedge.Node{id: 3, label: "Choice 2"},
	%Fountainedge.Node{id: 4, label: "Before Forking"},
	%Fountainedge.Node{id: 5, type: :fork, join: 9},
	%Fountainedge.Node{id: 6, label: "Parallel 1.1"},
	%Fountainedge.Node{id: 7, label: "Parallel 1.2"},
	%Fountainedge.Node{id: 8, label: "Parallel 2"},
	%Fountainedge.Node{id: 9, type: :join},
	%Fountainedge.Node{id: 10, label: "After Joining"},
	%Fountainedge.Node{id: 11, label: "Final", type: :final},
],
 edges: [
	%Fountainedge.Edge{id: 1, next: 2},
	%Fountainedge.Edge{id: 1, next: 3},
	%Fountainedge.Edge{id: 2, next: 4},
	%Fountainedge.Edge{id: 3, next: 4},
	%Fountainedge.Edge{id: 4, next: 5},
	%Fountainedge.Edge{id: 5, next: 6},
	%Fountainedge.Edge{id: 5, next: 8},
	%Fountainedge.Edge{id: 6, next: 7},
	%Fountainedge.Edge{id: 7, next: 6},
	%Fountainedge.Edge{id: 7, next: 9},
	%Fountainedge.Edge{id: 8, next: 9},
	%Fountainedge.Edge{id: 9, next: 10},
	%Fountainedge.Edge{id: 10, next: 11},
],
}
Initialise the workflow:
workflow = Fountainedge.Workflow.initialize(schema)
Get a list of valid out edges:
Fountainedge.out_edges(workflow)
[%Fountainedge.Edge{id: 1, next: 2}]
Transition along an out edge:
workflow = Fountainedge.transition(workflow, %Fountainedge.Edge{id: 1, next: 2})
Graphing:
Fountainedge.Graph.graph(workflow)
|> Graphvix.Graph.compile(filename, :svg)
Installation
This package can be installed by adding fountainedge to your list of dependencies in mix.exs:
def deps do
 [
 {:fountainedge, "~> 1.0.0"}
]
end
Author
2019 (c) Damien Bezborodov

Example: Simple

Fountainedge

Workflow engine.
A basic understanding of graph theory
would elucidate an intuitive grasp of this package.

 Anchor for this section

 Summary

 Functions

 out_edge_nodes(workflow)

 Returns a list of out edge nodes that are valid transitions.

 out_edges(workflow)

 Returns a list of out edges that are valid transitions.

 transition(workflow, edge)

 Transition between nodes along an edge.

 Anchor for this section

Functions

 Link to this function

 out_edge_nodes(workflow)

 View Source

Returns a list of out edge nodes that are valid transitions.
Same as out_edges/1, but with the nodes also for convenience.

 Link to this function

 out_edges(workflow)

 View Source

Returns a list of out edges that are valid transitions.
The out edge is an edge leading out of a current node.
Then pass the chosen edge into Fountainedge.transition/2.

 Link to this function

 transition(workflow, edge)

 View Source

Transition between nodes along an edge.
The current nodes are tracked as a state, and parallel
processess are tracked using tokens.
A valid out edge must be given.

Fountainedge.Edge

A graph edge directionally links two nodes together.
Edges are fundamental to the concept of transitioning between
nodes.
Graphviz
is used for presentation and ranking of graph nodes.
See Graphvix.Graph.add_edge/4.

 Anchor for this section

 Summary

 Types

 t()

 Edge structure.

 Functions

 find(edges, edge)

 Find a matching edge in a list (used internally.)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Fountainedge.Edge{attributes: list(), id: integer(), next: integer()}

Edge structure.
	:id - Identifier of the Fountainedge.Node where the edge is leaving (out from.)
	:next - Identifier of the Fountainedge.Node where the edge is pointing (in to.)
	:attributes Optional list of edge attributes
passed to Graphvix.Graph.add_edge/4.

 Anchor for this section

Functions

 Link to this function

 find(edges, edge)

 View Source

 @spec find([t()], t()) :: t() | nil

Find a matching edge in a list (used internally.)

Fountainedge.Graph

Graphing functions.

 Anchor for this section

 Summary

 Functions

 graph(workflow)

 Graphs a schema as a UML
Activity Diagram using Graphviz.

 rank(schema, filename)

 Ranks all nodes in a given schema.

 Anchor for this section

Functions

 Link to this function

 graph(workflow)

 View Source

 @spec graph(Fountainedge.Workflow.t() | Fountainedge.Schema.t()) :: Graphvix.Graph.t()

Graphs a schema as a UML
Activity Diagram using Graphviz.
If given a workflow, the graph will be decorated with stateful
information such as the current node (or nodes.)
The graph can then be compiled by Graphviz:
Fountainedge.Graph.graph(workflow)
|> Graphvix.Graph.compile("workflow_graph", :svg)

 Link to this function

 rank(schema, filename)

 View Source

 @spec rank(Fountainedge.Schema.t() | Fountainedge.Workflow.t(), String.t()) ::
 Fountainedge.Schema.t()

Ranks all nodes in a given schema.
Will set the rank field on each Fountainedge.Node within the schema.
Requires the filename of the dot file given to Graphvix.Graph.compile/3.
Useful for determining backward and forward directions between two nodes.
If the rank of the out edge node is less than the current node, then the
direction is backwards. Otherwise, if greater, then the direction is forwards.
dot creates hierarchical
or layered drawings of directed graphs. A ranking algorithmn is used
to determine this heirarchy. It may be useful to use these ranks
when determining direction in a workflow. Call this function to
calculate ranks per each node.

Fountainedge.Node

A graph node (also known as a vertex.)
Graphviz
is used for presentation and ranking of graph nodes.
See Graphvix.Graph.add_vertex/3.
Forking and Synchronisation
To create a paralell process, create a node of type :fork.
The fork node must be associated with a node of type :join.
The forking node will create tokens for each out edge.
The join node will synchronise the parallel processes by preventing the workflow
from proceeding beyond until all of these tokens are collected.
Here is an example where a fork creates three tokens for each separate
branch.
Nodes:
[
 ...
 %Node{id: 5, type: :fork, join: 9},
 %Node{id: 6, label: "Parallel 1"},
 %Node{id: 7, label: "Parallel 2"},
 %Node{id: 8, label: "Parallel 3"},
 %Node{id: 9, type: :join},
 ...
]
Edges:
[
 ...
 %Edge{id: 5, next: 6},
 %Edge{id: 5, next: 7},
 %Edge{id: 5, next: 8},
 %Edge{id: 6, next: 9},
 %Edge{id: 7, next: 9},
 %Edge{id: 8, next: 9},
 ...
]

 Anchor for this section

 Summary

 Types

 t()

 Node structure.

 Functions

 find(nodes, id)

 Find a matching node in a list (used internally.)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Fountainedge.Node{
 attributes: list(),
 id: integer(),
 join: integer() | nil,
 label: String.t() | nil,
 rank: integer() | nil,
 type: :normal | :initial | :final | :fork | :join
}

Node structure.
	:id - Identifier of the node.
	:type - Node type, one of:
	:normal - Normal node (default.)	:initial - Start node.
	:final - End node.
	:fork - Fork into a parallel process. The joining node must be specified.
	:join - Synchronise (join) a parallel process. The workflow will stop here until all tokens
(Fountainedge.Token) generated by the fork are collected.

	:join - Used when forking with type :fork. Specifies the node identifier of the associated
joining node where the parallel workflow will eventually synchronise. The joining node must be of
type :join.
	:label - Optional label.
	:rank - Hierarchical rank of the node. The rank is used for determining backward and forward directions
from the initial to final node when navigating through the workflow.
The rankings are defined by calling Fountainedge.Graph.rank/2 on the schema.
	:attributes Optional list of node attributes
passed to Graphvix.Graph.add_vertex/3.

 Anchor for this section

Functions

 Link to this function

 find(nodes, id)

 View Source

 @spec find([t()], integer()) :: t() | nil

Find a matching node in a list (used internally.)

Fountainedge.Schema

The schema models the underlying stateless structure of
a workflow as a graph consisting of nodes and edges.

 Anchor for this section

 Summary

 Types

 t()

 Schema structure.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Fountainedge.Schema{
 edges: [Fountainedge.Edge.t()],
 nodes: [Fountainedge.Node.t()]
}

Schema structure.
	:nodes - List of nodes.
	:edges - List of edges.

Fountainedge.State

Tracks the current progression of the workflow (stateful.)
Fountainedge.Workflow saves its status in a state list.
Each active node receives a token. In linear mode, only one state is in the state list.
Upon leaving a forking node, a state is created with a unique token for each out edge.
Nested forks will result in multiple tokens being carried.

 Anchor for this section

 Summary

 Types

 t()

 Workflow status structure.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Fountainedge.State{id: integer(), tokens: [Fountainedge.Token.t()]}

Workflow status structure.
	:id - Identifier of the active Fountainedge.Node.
	:tokens - List of tokens carried by the active node.

Fountainedge.Token

Tokens track parallel progression from a fork to a join.

 Anchor for this section

 Summary

 Types

 t()

 Token structure.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Fountainedge.Token{id: integer(), token: integer()}

Token structure.
	:id - Identifier of the Fountainedge.Node from where the fork originated (type :fork.)
	:token - Identifier of the Fountainedge.Node where the out edge points to.
Thereby, this is unique; one token is created per each out edge from the fork.

Fountainedge.Workflow

Models a workflow (stateful.)
The workflow is based on a Fountainedge.Schema
Current nodes of the flowchart are tracked in a list of Fountainedge.State.

 Anchor for this section

 Summary

 Types

 t()

 Workflow structure.

 Functions

 initialize(schema)

 Initialises a workflow.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Fountainedge.Workflow{
 schema: Fountainedge.Schema.t(),
 states: [Fountainedge.State.t()] | []
}

Workflow structure.
	:schema - The Fountainedge.Schema.
	:states - Workflow status.

 Anchor for this section

Functions

 Link to this function

 initialize(schema)

 View Source

 @spec initialize(Fountainedge.Schema.t()) :: t()

Initialises a workflow.
Will set the current state to the initial node specified in the schema.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

