

    

        Fly Postgres

        v0.1.7



    



  

    Table of contents

    
      



            	Fly Postgres





  	Modules
    

    	Fly.Postgres


    	Fly.Postgres.LSN


    	Fly.Postgres.LSN.Tracker


    	Fly.Repo


    

  




      

    


  

Fly Postgres
Helps take advantage of geographically distributed Elixir applications using
Ecto and PostgreSQL in a primary/replica configuration on Fly.io.
Online Documentation
Installation
If available in Hex, the package can be installed
by adding fly_postgres to your list of dependencies in mix.exs:
def deps do
  [
    {:fly_postgres, "~> 0.1.0"}
  ]
end
Note that fly_postgres depends on fly_rpc so it will be pulled in as well.
The configuration section below includes the relevant parts for fly_rpc.
Configuration
Repo
This assumes your project already has an Ecto.Repo. To start using the
Fly.Repo, here are the changes to make.
For a project named "MyApp", change it from this...
defmodule MyApp.Repo do
  use Ecto.Repo,
    otp_app: :my_app,
    adapter: Ecto.Adapters.Postgres
end
To something like this...
defmodule MyApp.Repo.Local do
  use Ecto.Repo,
    otp_app: :my_app,
    adapter: Ecto.Adapters.Postgres

  # Dynamically configure the database url based on runtime environment.
  def init(_type, config) do
    {:ok, Keyword.put(config, :url, Fly.Postgres.database_url())}
  end
end

defmodule MyApp.Repo do
  use Fly.Repo, local_repo: MyApp.Repo.Local
end
This renames your existing repo to "move it out of the way" and adds a new repo
to the same file. The new repo uses the Fly.Repo and links back to your
project's Ecto.Repo. The new repo has the same name as your original
Ecto.Repo, so your application will be referring to it now when talking to the
database.
The other change was to add the init function to your Ecto.Repo. This
dynamically configures your Ecto.Repo to connect to the primary (writable)
database when your application is running in the primary region. When your
application is not in the primary region, it is configured to connect to the
local read-only replica. The replica is like a fast local cache of all your
data. This means you Ecto.Repo is configured to talk to it's "local" database.
The Fly.Repo performs all read operations like all, one, and get_by
directly on the local replica. Other modifying functions like insert,
update, and delete are performed on the primary database through proxy
calls to a node in your Elixir cluster running in the primary region. That
ability is provided by the fly_rpc library.
Config Files
In your config/config.exs, add something like the following:
# Configure database repository
config :fly_postgres, :local_repo, MyApp.Repo.Local
This helps the library to know which repo to use when talking to the database to
ensure the needed replications have completed.
Repo References
The goal with using this repo wrapper, is to leave all of your application code
and business logic unchanged. However, there are a few places that need to be
updated to make it work smoothly.
The following examples are places in your project code that need reference your
actual Ecto.Repo. Following the above example, it should point to
MyApp.Repo.Local.
	test_helper.exs files make references like this Ecto.Adapters.SQL.Sandbox.mode(MyApp.Repo.Local, :manual)
	data_case.exs files start the repo using Ecto.Adapters.SQL.Sandbox.start_owner! calls.
	channel_case.exs need to start your local repo.
	conn_case.exs need to start your local repo.
	config/config.exs needs to identify your local repo module. Ex: ecto_repos: [MyApp.Repo.Local]
	config/dev.exs, config/test.exs, config/runtime.exs - any special repo configuration should refer to your local repo.

With these project plumbing changes, you application code can stay largely untouched!
Primary Region
If your application is deployed to multiple Fly.io regions, the instances (or
nodes) must be clustered together.
Through ENV configuration, you can to tell the app which region is the "primary" region.
fly.toml
This example configuration says that the Sydney Australia region is the
"primary" region. This is where the primary postgres database is created and
where our application has fast write access to it.
[env]
  PRIMARY_REGION = "syd"
Application
There are two entries to add to your application supervision tree.
defmodule MyApp.Application do
  use Application

  def start(_type, _args) do
    # ...

    children = [
      # Start the RPC server
      {Fly.RPC, []},
      # Start the Ecto repository
      MyApp.Repo.Local,
      # Start the tracker after your DB.
      {Fly.Postgres.LSN.Tracker, []},
      #...
    ]

    # ...
  end
end
The following changes were made:
	Added the Fly.RPC GenServer
	Start your Repo
	Added Fly.Postgres.LSN.Tracker

Usage
Automatic Usage
Normal calls like MyApp.Repo.all(User) are performed on the local replica
repo. They are unchanged and work exactly as you'd expect.
Calls that modify the database like "insert, update, and delete", are
performed through an RPC (Remote Procedure Call) in your application running in
the primary region.
In order for this to work, your application must be clustered together and
configured to identify which region is the "primary" region. Additionally, your
application needs to be deployed to multiple regions. There must be a deployment
in the primary region as well.
A call to MyApp.Repo.insert(changeset) will be proxied to perform the insert
in the primary region. If the function is already running in the primary region,
it just executes normally locally. If the function is running in a non-primary
region, it makes a RPC execution to run on the primary. Additionally, it gets
the Postgres LSN (Log Sequence Number) for the database after making the change.
The calling function then blocks, waits for the async database replication
process to complete, and continues on once the data modification has replayed on
the local replica.
In this way, it becomes seamless for you and your code! You get the benefits of
being globally distributed and running closer to your users without re-designing your application!
Explicit Usage



  

    
Fly.Postgres
    



      
Help Elixir applications more easily take advantage of distributed Elixir
applications using Ecto and PostgreSQL in a primary/replica configuration on
Fly.io.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    database_url()

  


    Compute the database url to use for this app given the current configuration
and runtime environment.






  
    local_repo()

  


    Returns the Repo module used by the application that is not the wrapped
version. Used for making direct writable calls.






  
    make_connection_read_only!(conn)

  


    Function used to make the repository be read-only and error when creates,
updates, or deletes are attempted. This behaves like a read-only replica
which is helpful when modelling that setup locally in a dev environment.






  
    primary_db_url()

  


    Return the database url used for connecting to the primary database. This is
provided by the Fly.io platform when you have attached to a PostgreSQL
database. Stored as an ENV called DATABASE_URL.






  
    replica_db_url()

  


    Return a database url used for connecting to a replica database. This makes
the assumption that there is a replica running in the region where the app
instance is running.






  
    rpc_and_wait(module, func, args, opts \\ [])

  


    Execute the MFA (Module, Function, Arguments) on a node in the primary region.
This presumes the primary region has direct access to a writable primary
Postgres database. This waits for the data to be replicated to the current
node before continuing on.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    database_url()


      
       
       View Source
     


  


  

Compute the database url to use for this app given the current configuration
and runtime environment.

  



  
    
      
      Link to this function
    
    local_repo()


      
       
       View Source
     


  


  

Returns the Repo module used by the application that is not the wrapped
version. Used for making direct writable calls.

  
  Example


Requires using application to configure.
# Configure database repository
config :fly_postgres, :local_repo, MyApp.Repo.Local

  



  
    
      
      Link to this function
    
    make_connection_read_only!(conn)


      
       
       View Source
     


  


  

      Specs

      

          make_connection_read_only!(DBConnection.t()) :: :ok | no_return()


      


Function used to make the repository be read-only and error when creates,
updates, or deletes are attempted. This behaves like a read-only replica
which is helpful when modelling that setup locally in a dev environment.

  
  Example


In your config/dev.exs,
# Configure your database
config :my_app, MyApp.Repo.Local,
  username: "postgres",
  password: "postgres",
  database: "my_db_dev",
  hostname: "localhost",
  show_sensitive_data_on_connection_error: true,
  # Forcing the repo to be R/O locally for dev testing
  after_connect: {Fly, :make_connection_read_only!, []},
  pool_size: 10

  



  
    
      
      Link to this function
    
    primary_db_url()


      
       
       View Source
     


  


  

Return the database url used for connecting to the primary database. This is
provided by the Fly.io platform when you have attached to a PostgreSQL
database. Stored as an ENV called DATABASE_URL.

  



  
    
      
      Link to this function
    
    replica_db_url()


      
       
       View Source
     


  


  

Return a database url used for connecting to a replica database. This makes
the assumption that there is a replica running in the region where the app
instance is running.

  



    

  
    
      
      Link to this function
    
    rpc_and_wait(module, func, args, opts \\ [])


      
       
       View Source
     


  


  

Execute the MFA (Module, Function, Arguments) on a node in the primary region.
This presumes the primary region has direct access to a writable primary
Postgres database. This waits for the data to be replicated to the current
node before continuing on.

  


        

      



  

    
Fly.Postgres.LSN
    



      
Data structure that represents a PostgreSQL LSN or Log Sequence Number.
Two LSN values can be compared using the replicated?/2 function. An LSN
associated with the DB modification has a source of :insert. On a replica
instance, that can be used to see when the insert has been replicated locally.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


  
    t()

  





  


  
    
      Functions
    


  
    current_wal_insert(repo)

  


    After performing a database modification, calling current_wal_insert/1
returns a value that can be used to compare against a WAL value from the
replica database to determine when the changes have been replayed on the
replica.






  
    last_wal_replay(repo)

  


    When talking to a replica database, this returns a value for what changes have
been replayed on the replica from the primary.






  
    new(lsn, source)

  


    Create a new Fly.Postgres.LSN struct from the a queried WAL value.






  
    replicated?(replay_lsn, insert_lsn)

  


    Compare two Fly.Postgres.LSN structs to determine if the transaction representing a
data change on the primary has been replayed locally.






  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %Fly.Postgres.LSN{
  fpart: nil | integer(),
  offset: nil | integer(),
  source: :not_replicating | :insert | :replay
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    current_wal_insert(repo)


      
       
       View Source
     


  


  

After performing a database modification, calling current_wal_insert/1
returns a value that can be used to compare against a WAL value from the
replica database to determine when the changes have been replayed on the
replica.

  



  
    
      
      Link to this function
    
    last_wal_replay(repo)


      
       
       View Source
     


  


  

When talking to a replica database, this returns a value for what changes have
been replayed on the replica from the primary.

  



  
    
      
      Link to this function
    
    new(lsn, source)


      
       
       View Source
     


  


  

Create a new Fly.Postgres.LSN struct from the a queried WAL value.

  



  
    
      
      Link to this function
    
    replicated?(replay_lsn, insert_lsn)


      
       
       View Source
     


  


  

Compare two Fly.Postgres.LSN structs to determine if the transaction representing a
data change on the primary has been replayed locally.
They are compared where the replay/replica value is in argument 1 and the
insert value is in arguemnt two.

  
  Examples


repo |> last_wal_replay() |> replicated?(primary_lsn)

  


        

      



  

    
Fly.Postgres.LSN.Tracker
    



      
Track the current PostgreSQL LSN or Log Sequence Number.
This is used to determine which portions of the database log have been
replicated locally. This lets us determine if a specific transaction chunk has
been replicated to know that some expected data is present.
The client process doesn't interact directly with the Tracker GenServer. The
client can request_notification or request_and_await_notification and the
Tracker will notify the process when the data replication has been seen.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


  
    await_notification(lsn, timeout \\ 3000)

  


    Blocking function that waits for a request_notification/2 response message
to be received. The timeout defaults to 3s after which time it stops waiting
and returns an {:error, :timeout} response.






  
    child_spec(init_arg)

  


    Returns a specification to start this module under a supervisor.






  
    get_last_replay(tab \\ :lsn_tracker_ets_cache)

  


    Get the latest cached LSN replay value.






  
    init(opts)

  


    Callback implementation for GenServer.init/1.






  
    replicated?(tab \\ :lsn_tracker_ets_cache, lsn)

  


    Return if the LSN value was replicated.






  
    request_and_await_notification(lsn, timeout \\ 5000)

  


    Request to be notified when the desired level of data replication has
completed and wait for it to complete. Optionally it may timeout if it takes
too long.






  
    request_notification(tab \\ :lsn_tracker_requests, lsn)

  


    Request notification for when the database replication includes the LSN the
process cares about. This allows a process to block and await their data to be
replicated and be notified as soon as it's detected.






  
    start_link(opts \\ [])

  


    Start the Tracker that receives work requests.






  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    await_notification(lsn, timeout \\ 3000)


      
       
       View Source
     


  


  

      Specs

      

          await_notification(Fly.Postgres.LSN.t(), timeout :: integer()) ::
  :ready | {:error, :timeout}


      


Blocking function that waits for a request_notification/2 response message
to be received. The timeout defaults to 3s after which time it stops waiting
and returns an {:error, :timeout} response.

  



  
    
      
      Link to this function
    
    child_spec(init_arg)


      
       
       View Source
     


  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



    

  
    
      
      Link to this function
    
    get_last_replay(tab \\ :lsn_tracker_ets_cache)


      
       
       View Source
     


  


  

      Specs

      

          get_last_replay(tab :: atom()) :: nil | Fly.Postgres.LSN.t()


      


Get the latest cached LSN replay value.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for GenServer.init/1.

  



    

  
    
      
      Link to this function
    
    replicated?(tab \\ :lsn_tracker_ets_cache, lsn)


      
       
       View Source
     


  


  

Return if the LSN value was replicated.

  



    

  
    
      
      Link to this function
    
    request_and_await_notification(lsn, timeout \\ 5000)


      
       
       View Source
     


  


  

      Specs

      

          request_and_await_notification(Fly.Postgres.LSN.t(), timeout :: integer()) ::
  :ready | {:error, :timeout}


      


Request to be notified when the desired level of data replication has
completed and wait for it to complete. Optionally it may timeout if it takes
too long.

  



    

  
    
      
      Link to this function
    
    request_notification(tab \\ :lsn_tracker_requests, lsn)


      
       
       View Source
     


  


  

      Specs

      

          request_notification(tab :: atom(), Fly.Postgres.LSN.t()) :: :ok


      


Request notification for when the database replication includes the LSN the
process cares about. This allows a process to block and await their data to be
replicated and be notified as soon as it's detected.

  



    

  
    
      
      Link to this function
    
    start_link(opts \\ [])


      
       
       View Source
     


  


  

Start the Tracker that receives work requests.

  


        

      



  

    
Fly.Repo
    



      
This wraps the built-in Ecto.Repo functions to proxy writable functions like
insert, update and delete to be performed on the an Elixir node in the primary
region.
To use it, rename your existing repo module and add a new module with the same
name as your original repo like this.
Original code:
defmodule MyApp.Repo do
  use Ecto.Repo,
    otp_app: :my_app,
    adapter: Ecto.Adapters.Postgres
end
Changes to:
defmodule MyApp.Repo.Local do
  use Ecto.Repo,
    otp_app: :my_app,
    adapter: Ecto.Adapters.Postgres

  # Dynamically configure the database url based for runtime environment.
  def init(_type, config) do
    {:ok, Keyword.put(config, :url, Fly.Postgres.database_url())}
  end
end

defmodule Core.Repo do
  use Fly.Repo, local_repo: MyApp.Repo.Local
end
Using the same name allows your existing code to seamlessly work with the new
repo.
When explicitly managing database transactions like using Multi or
start_transaction, when used to modify data, those functions should be
called by an RPC so they run in the primary region.
Fly.RPC.rpc_region(:primary, MyModule, :my_function_that_uses_multi, [my,
args], opts)

      





  !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&amp;").replace(/</g,"&lt;").replace(/>/g,"&gt;").replace(/"/g,"&quot;")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});



