

 Finitomata

 v0.7.2

 [image: Logo]

 Table of contents

 	Finitomata

 	Finite Automata

 	Modules

 	Finitomata

 	Finitomata.State

 	Finitomata.Transition

[image: Finitomata] Finitomata [image: Kantox ❤ OSS] [image: Test] [image: Dialyzer]

The FSM boilerplate based on callbacks

Bird View
Finitomata provides a boilerplate for FSM implementation, allowing to concentrate on the business logic rather than on the process management and transitions/events consistency tweaking.
It reads a description of the FSM from a string in PlantUML, Mermaid, or even custom format. Basically, it looks more or less like this
PlantUML
[*] --> s1 : to_s1
s1 --> s2 : to_s2
s1 --> s3 : to_s3
s2 --> [*] : ok
s3 --> [*] : ok
Mermaid
s1 --> |to_s2| s2
s1 --> |to_s3| s3
Note
mermaid does not allow to explicitly specify transitions (and hence event names)
from the starting state and to the end state(s), these states names are implicitly set to :*
and events to :__start__ and :__end__ respectively.

Finitomata validates the FSM is consistent, namely it has a single initial state, one or more final states, and no orphan states. If everything is OK, it generates a GenServer that could be used both alone, and with provided supervision tree. This GenServer requires to implement three callbacks
	on_transition/4 — mandatory
	on_failure/3 — optional
	on_enter/2 — optional
	on_exit/2 — optional
	on_terminate/1 — optional
	on_timer/2 — optional

All the callbacks do have a default implementation, that would perfectly handle transitions having a single to state and not requiring any additional business logic attached.
Upon start, it moves to the next to initial state and sits there awaiting for the transition request. Then it would call an on_transition/4 callback and move to the next state, or remain in the current one, according to the response.
Upon reaching a final state, it would terminate itself. The process keeps all the history of states it went through, and might have a payload in its state.
Special Events
If the event name is ended with a bang (e. g. idle --> |start!| started) and
this event is the only one allowed from this state (there might be several transitions though,)
it’d be considered as determined and FSM will be transitioned into the new state instantly.
If the event name is ended with a question mark (e. g. idle --> |start?| started,)
the transition is considered as expected to fail; no on_failure/2 callback would
be called on failure and no log warning will be printed.
FSM Tuning and Configuration
Recurrent Callback
If timer: non_neg_integer() option is passed to use Finitomata,
then Finitomata.on_timer/2 callback will be executed recurrently.
This might be helpful if FSM needs to update its state from the outside
world on regular basis.
Automatic FSM Termination
If auto_terminate: true() | state() | [state()] option is passed to use Finitomata,
the special __end__ event to transition to the end state will be called automatically
under the hood, if the current state is either listed explicitly, or if the value of
the parameter is true.
Ensuring State Entry
If ensure_entry: true() | [state()] option is passed to use Finitomata, the transition
attempt will be retried with {:continue, {:transition, {event(), event_payload()}}} message
until succeeded. Neither on_failure/2 callback is called nor warning message is logged.
The payload would be updated to hold __retries__: pos_integer() key. If the payload was not a map,
it will be converted to a map %{payload: payload}.
Example
Let’s define the FSM instance
defmodule MyFSM do
 @plantuml """
 [*] --> s1 : to_s1
 s1 --> s2 : to_s2
 s1 --> s3 : to_s3
 s2 --> [*] : ok
 s3 --> [*] : ok
 """

 use Finitomata, fsm: @plantuml, syntax: Finitomata.PlantUML
 ## or uncomment lines below for Mermaid syntax
 # @mermaid """
 # s1 --> |to_s2| s2
 # s1 --> |to_s3| s3
 # """
 # use Finitomata, fsm: @mermaid, syntax: Finitomata.Mermaid

 @impl Finitomata
 def on_transition(:s1, :to_s2, event_payload, state_payload),
 do: {:ok, :s2, state_payload}
end
Now we can play with it a bit.
children = [Finitomata.child_spec()]
Supervisor.start_link(children, strategy: :one_for_one)

Finitomata.start_fsm MyFSM, "My first FSM", %{foo: :bar}
Finitomata.transition "My first FSM", {:to_s2, nil}
Finitomata.state "My first FSM"
#⇒ %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}

Finitomata.allowed? "My first FSM", :* # state
#⇒ true
Finitomata.responds? "My first FSM", :to_s2 # event
#⇒ false

Finitomata.transition "My first FSM", {:ok, nil} # to final state
#⇒ [info] [◉ ⇄] [state: %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}]

Finitomata.alive? "My first FSM"
#⇒ false
Typically, one would implement all the on_transition/4 handlers, pattern matching on the state/event.

Installation
def deps do
 [
 {:finitomata, "~> 0.1"}
]
end
Changelog
	0.7.2 — [FIX] banged! transitions must not be determined
	0.6.3 — soft? events which do not call on_failure/2 and do not log errors
	0.6.2 — ensure_entry: option to retry a transition
	0.6.1 — code cleanup + auto_terminate: option to make :__end__ transition imminent
	0.6.0 — on_timer/2 and banged imminent transitions
	0.5.2 — state() type on generated FSMs
	0.5.1 — fixed specs [credits @egidijusz]
	0.5.0 — all callbacks but on_transition/4 are optional, accept impl_for: param to use Finitomata
	0.4.0 — allow anonymous FSM instances
	0.3.0 — en_entry/2 and on_exit/2 optional callbacks
	0.2.0 — Mermaid support

Documentation.

Finite Automata

Above and Beyound
If you have issues fully understanding Finite Automata aka FSM, here is a one-sentence explanation that might clarify everything.
FSM consists of states, transitions, and events, where the state is an adjective (or noun,) the event is a verb and the transition is an adverbial participle.

This definition, while being mathematically lax, shallow, cursory, and maybe even perfunctory, reveals the whole and allows to grasp the very core thing about FSM nature: it describes a life in the same way the human language desribes it.
Yet Another Library
I’m a big fan of Finite Automata. Always have been. Whenever we deal with a long-lived objects, they eventually have states and FSM does an enormously great job by attesting consistency, eliminating human errors and leaving the implementation with a business logic only. In a mediocre project, fifty if-then-else conditionals might perform as well as one FSM, but unless you are paid for the number of LoCs, FSM is drastically easier to carry on.
Internals
This library leverages the power of callbacks to not only completely cover the FSM implementation, but also provide a compile-time proof the FSM is valid and functional. One of the most important things this library provides is the FSM description itself, that is fault-tolerant, not error-prone, and easy to grasp. The FSM definition, which is currently supported in both PlantUML and Mermaid syntaxes, would be drawn in the generated docs of the project using this library.
The consumer of this library initiates a transition by calling somewhat like transition(object, event), then the GenServer does its magic and the callback on_transition/4 gets called. From inside this callback, the consumer implements the business logic and returns the result (the next state to move the FSM to.) There are also syntactic sugar callbacks on_enter/2, on_exit/2, on_failure/2, and on_terminate/1 to allow easy state change reactions, handling of errors, and a final cleanup respectively.
All the callbacks do have a default implementation, which would perfectly handle transitions having a single to state and not requiring any additional business logic attached. When needed, this might be turned off.
Upon start, FSM moves to its initial state and sits there awaiting for the transition request. Upon this request, it’d call on_transition/4 callback and either move to the next state, or remain in the current one, according to the response from the callback. Upon reaching a final state, it would terminate itself, that’s where on_terminate/1 callback is called from. The process also keeps all the history of states it went through, and might have a payload in its state.
Cool stuff
This library has a compilation-time guarantee the FSM is valid, e. g. has the only one begin state, has at least one end state, all states can be reached, and all the necessary callbacks are defined. That said, if we an FSM has an event initiating transitions from the same state to two different states, and there is no on_transition/4 clause covering that case, the compile-time error would be raised. On the other hande, if the transition is predermined and might lead to the only one state, the callback implementation is not mandatory, because there is no trolley problem between these two states.
The FSM definition allows event names, terminated with bangs and/or question marks. If the event name is terminated with a bang (init!,) and this event is the only one possible from this state, the event will be called automatically once FSM enters this state. This is handy for moving through initialization or through states which do not require a consumer intervention and might be done immediately after FSM reaches the respective state. If the transition failed in any way (the state has not been left either due to {:error, any()} response received from on_transition/4 or due to other unexpected issue, like if on_transition/4 raised,) the on_failure/2 callback would be called and the warning would be printed to the log. To suppress this behaviour and to allow a transition silently fail, the event should have ended with a question mark (try_call?.) The event cannot have both a bang and a question mark in its name.
Wiki Example
Wikipedia provides a turnstile as an example of FSM.
[image: Turnile State Machine]
Below is the Finitomata take on this FSM.
defmodule Turnstile do
 @fsm """
 built --> |on!| locked
 locked --> |push| locked
 locked --> |coin?| unlocked
 unlocked --> |push| locked
 unlocked --> |coin?| unlocked
 unlocked --> |off| destroyed
 """

 use Finitomata, @fsm, auto_terminate: true

 def on_transition(state, :push, _event_payload, state_payload) do
 if state == :locked, do: electrocute!()
 {:ok, :locked, state_payload}
 end

 def on_transition(:locked, :coin?, _event_payload, state_payload) do
 {:ok, :unlocked, state_payload}
 end

 def on_transition(:unlocked, :coin, _event_payload, state_payload) do
 Logger.info("Thanks, this coin will be donated to the animal shelter!")
 {:error, :unexpected_coin}
 end

 def on_transition(_, :off, _, state_payload),
 do: {:ok, :destroyed, state_payload}

 # def on_failure(…), do: …

 # def on_terminate(…), do: …
end
The docs for this module would have the following diagram contained (see the ex_doc for how to enable Mermaid.)
graph TD
 built --> |on!| locked
 locked --> |push| locked
 locked --> |coin?| unlocked
 unlocked --> |push| locked
 unlocked --> |coin?| unlocked
 unlocked --> |off| destroyed

Finitomata behaviour

Bird View
Finitomata provides a boilerplate for FSM implementation, allowing to concentrate on the business logic rather than on the process management and transitions/events consistency tweaking.
It reads a description of the FSM from a string in PlantUML, Mermaid, or even custom format. Basically, it looks more or less like this
PlantUML
[*] --> s1 : to_s1
s1 --> s2 : to_s2
s1 --> s3 : to_s3
s2 --> [*] : ok
s3 --> [*] : ok
Mermaid
s1 --> |to_s2| s2
s1 --> |to_s3| s3
Note
mermaid does not allow to explicitly specify transitions (and hence event names)
from the starting state and to the end state(s), these states names are implicitly set to :*
and events to :__start__ and :__end__ respectively.

Finitomata validates the FSM is consistent, namely it has a single initial state, one or more final states, and no orphan states. If everything is OK, it generates a GenServer that could be used both alone, and with provided supervision tree. This GenServer requires to implement three callbacks
	on_transition/4 — mandatory
	on_failure/3 — optional
	on_enter/2 — optional
	on_exit/2 — optional
	on_terminate/1 — optional
	on_timer/2 — optional

All the callbacks do have a default implementation, that would perfectly handle transitions having a single to state and not requiring any additional business logic attached.
Upon start, it moves to the next to initial state and sits there awaiting for the transition request. Then it would call an on_transition/4 callback and move to the next state, or remain in the current one, according to the response.
Upon reaching a final state, it would terminate itself. The process keeps all the history of states it went through, and might have a payload in its state.
Special Events
If the event name is ended with a bang (e. g. idle --> |start!| started) and
this transition is the only one allowed from this state, it’d be considered as
determined and FSM will be transitioned into the new state instantly.
If the event name is ended with a question mark (e. g. idle --> |start?| started,)
the transition is considered as expected to fail; no on_failure/2 callback would
be called on failure and no log warning will be printed.
FSM Tuning and Configuration
Recurrent Callback
If timer: non_neg_integer() option is passed to use Finitomata,
then Finitomata.on_timer/2 callback will be executed recurrently.
This might be helpful if FSM needs to update its state from the outside
world on regular basis.
Automatic FSM Termination
If auto_terminate: true() | state() | [state()] option is passed to use Finitomata,
the special __end__ event to transition to the end state will be called automatically
under the hood, if the current state is either listed explicitly, or if the value of
the parameter is true.
Ensuring State Entry
If ensure_entry: true() | [state()] option is passed to use Finitomata, the transition
attempt will be retried with {:continue, {:transition, {event(), event_payload()}}} message
until succeeded. Neither on_failure/2 callback is called nor warning message is logged.
The payload would be updated to hold __retries__: pos_integer() key. If the payload was not a map,
it will be converted to a map %{payload: payload}.
Example
Let’s define the FSM instance
defmodule MyFSM do
 @plantuml """
 [*] --> s1 : to_s1
 s1 --> s2 : to_s2
 s1 --> s3 : to_s3
 s2 --> [*] : ok
 s3 --> [*] : ok
 """

 use Finitomata, fsm: @plantuml, syntax: Finitomata.PlantUML
 ## or uncomment lines below for Mermaid syntax
 # @mermaid """
 # s1 --> |to_s2| s2
 # s1 --> |to_s3| s3
 # """
 # use Finitomata, fsm: @mermaid, syntax: Finitomata.Mermaid

 @impl Finitomata
 def on_transition(:s1, :to_s2, event_payload, state_payload),
 do: {:ok, :s2, state_payload}
end
Now we can play with it a bit.
children = [Finitomata.child_spec()]
Supervisor.start_link(children, strategy: :one_for_one)

Finitomata.start_fsm MyFSM, "My first FSM", %{foo: :bar}
Finitomata.transition "My first FSM", {:to_s2, nil}
Finitomata.state "My first FSM"
#⇒ %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}

Finitomata.allowed? "My first FSM", :* # state
#⇒ true
Finitomata.responds? "My first FSM", :to_s2 # event
#⇒ false

Finitomata.transition "My first FSM", {:ok, nil} # to final state
#⇒ [info] [◉ ⇄] [state: %Finitomata.State{current: :s2, history: [:s1], payload: %{foo: :bar}}]

Finitomata.alive? "My first FSM"
#⇒ false
Typically, one would implement all the on_transition/4 handlers, pattern matching on the state/event.

 Anchor for this section

 Summary

 Types

 event_payload()

 The payload that can be passed to each call to transition/3

 fsm_name()

 The name of the FSM (might be any term, but it must be unique)

 validation_error()

 Error types of FSM validation

 Callbacks

 on_enter(state, t)

 This callback will be called on entering the state.

 on_exit(state, t)

 This callback will be called on exiting the state.

 on_failure(event, event_payload, t)

 This callback will be called if the transition failed to complete to allow
the consumer to take an action upon failure.

 on_terminate(t)

 This callback will be called on transition to the final state to allow
the consumer to perform some cleanup, or like.

 on_timer(state, t)

 This callback will be called recurrently if timer: pos_integer()
 option has been given to use Finitomata.

 on_transition(state, event, event_payload, payload)

 This callback will be called from each transition processor.

 Functions

 alive?()

 Returns true if the supervision tree is alive, false otherwise.

 alive?(target)

 Returns true if the FSM specified is alive, false otherwise.

 allowed?(target, state)

 Returns true if the transition to the state state is possible, false otherwise.

 responds?(target, event)

 Returns true if the transition by the event event is possible, false otherwise.

 start_fsm(impl, name, payload)

 Starts the FSM instance.

 state(target)

 The state of the FSM.

 transition(target, event_payload, delay \\ 0)

 Initiates the transition.

 Anchor for this section

Types

 Link to this type

 event_payload()

 View Source

 @type event_payload() :: any()

The payload that can be passed to each call to transition/3

 Link to this type

 fsm_name()

 View Source

 @type fsm_name() :: any()

The name of the FSM (might be any term, but it must be unique)

 Link to this type

 validation_error()

 View Source

 @type validation_error() ::
 :initial_state | :final_state | :orphan_from_state | :orphan_to_state

Error types of FSM validation

 Anchor for this section

Callbacks

 Link to this callback

 on_enter(state, t)

 View Source

 (optional)

 @callback on_enter(Finitomata.Transition.state(), Finitomata.State.t()) :: :ok

This callback will be called on entering the state.

 Link to this callback

 on_exit(state, t)

 View Source

 (optional)

 @callback on_exit(Finitomata.Transition.state(), Finitomata.State.t()) :: :ok

This callback will be called on exiting the state.

 Link to this callback

 on_failure(event, event_payload, t)

 View Source

 (optional)

 @callback on_failure(Finitomata.Transition.event(), event_payload(), Finitomata.State.t()) ::
 :ok

This callback will be called if the transition failed to complete to allow
the consumer to take an action upon failure.

 Link to this callback

 on_terminate(t)

 View Source

 (optional)

 @callback on_terminate(Finitomata.State.t()) :: :ok

This callback will be called on transition to the final state to allow
the consumer to perform some cleanup, or like.

 Link to this callback

 on_timer(state, t)

 View Source

 (optional)

 @callback on_timer(Finitomata.Transition.state(), Finitomata.State.t()) ::
 :ok
 | {:transition, {Finitomata.Transition.event(), event_payload()},
 Finitomata.State.payload()}
 | {:transition, Finitomata.Transition.event(), Finitomata.State.payload()}
 | {:reschedule, non_neg_integer()}

This callback will be called recurrently if timer: pos_integer()
 option has been given to use Finitomata.

 Link to this callback

 on_transition(state, event, event_payload, payload)

 View Source

 @callback on_transition(
 Finitomata.Transition.state(),
 Finitomata.Transition.event(),
 event_payload(),
 Finitomata.State.payload()
) ::
 {:ok, Finitomata.Transition.state(), Finitomata.State.payload()}
 | {:error, any()}

This callback will be called from each transition processor.

 Anchor for this section

Functions

 Link to this function

 alive?()

 View Source

 @spec alive?() :: boolean()

Returns true if the supervision tree is alive, false otherwise.

 Link to this function

 alive?(target)

 View Source

 @spec alive?(fsm_name()) :: boolean()

Returns true if the FSM specified is alive, false otherwise.

 Link to this function

 allowed?(target, state)

 View Source

 @spec allowed?(fsm_name(), Finitomata.Transition.state()) :: boolean()

Returns true if the transition to the state state is possible, false otherwise.

 Link to this function

 responds?(target, event)

 View Source

 @spec responds?(fsm_name(), Finitomata.Transition.event()) :: boolean()

Returns true if the transition by the event event is possible, false otherwise.

 Link to this function

 start_fsm(impl, name, payload)

 View Source

 @spec start_fsm(module(), any(), any()) :: DynamicSupervisor.on_start_child()

Starts the FSM instance.
The arguments are
	the implementation of FSM (the module, having use Finitomata)
	the name of the FSM (might be any term, but it must be unique)
	the payload to be carried in the FSM state during the lifecycle

The FSM is started supervised.

 Link to this function

 state(target)

 View Source

 @spec state(fsm_name()) :: Finitomata.State.t()

The state of the FSM.

 Link to this function

 transition(target, event_payload, delay \\ 0)

 View Source

 @spec transition(
 fsm_name(),
 {Finitomata.Transition.event(), Finitomata.State.payload()},
 non_neg_integer()
) :: :ok

Initiates the transition.
The arguments are
	the name of the FSM
	{event, event_payload} tuple; the payload will be passed to the respective
on_transition/4 call
	delay (optional) the interval in milliseconds to apply transition after

Finitomata.State

Carries the state of the FSM.

 Anchor for this section

 Summary

 Types

 payload()

 The payload that has been passed to the FSM instance on startup

 t()

 The internal representation of the FSM state

 Anchor for this section

Types

 Link to this type

 payload()

 View Source

 @type payload() :: any()

The payload that has been passed to the FSM instance on startup

 Link to this type

 t()

 View Source

 @type t() :: %Finitomata.State{
 current: Finitomata.Transition.state(),
 payload: payload(),
 timer: non_neg_integer(),
 history: [Finitomata.Transition.state()]
}

The internal representation of the FSM state

Finitomata.Transition

The internal representation of Transition.
It includes from and to states, and the event, all represented as atoms.

 Anchor for this section

 Summary

 Types

 event()

 The event in FSM

 state()

 The state of FSM

 t()

 The transition is represented by from and to states and the event.

 Functions

 allowed(transitions, options \\ [])

 Returns the list of all the transitions, matching the options.

 allowed(transitions, from, event)

 Returns the list of all the transitions, matching the from state and the event.

 allowed?(transitions, from, to)

 Returns true if the transition from → to is allowed, false otherwise.

 determined(transitions)

 Returns Finitomata.Transition.event() if there is a determined transition
 from the current state.

 determined(transitions, state)

 Returns {:ok, {event(), state()}} tuple if there is a determined transition
 from the current state, :error otherwise.

 entry(transitions)

 Returns the state after starting one, so-called entry state.

 responds?(transitions, from, event)

 Returns true if the state from hsa an outgoing transition with event, false otherwise.

 states(transitions)

 Returns the not ordered list of states, excluding the starting and ending states :*.

 Anchor for this section

Types

 Link to this type

 event()

 View Source

 @type event() :: atom()

The event in FSM

 Link to this type

 state()

 View Source

 @type state() :: atom()

The state of FSM

 Link to this type

 t()

 View Source

 @type t() :: %Finitomata.Transition{from: state(), to: state(), event: event()}

The transition is represented by from and to states and the event.

 Anchor for this section

Functions

 Link to this function

 allowed(transitions, options \\ [])

 View Source

 @spec allowed([t()], from: state(), to: state(), with: event()) :: [
 {state(), state(), event()}
]

Returns the list of all the transitions, matching the options.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "idle --> |to_s1| s1\n" <>
...> "s1 --> |to_s2| s2\n" <>
...> "s1 --> |to_s3| s3\n" <>
...> "s2 --> |to_s3| s3")
...> Finitomata.Transition.allowed(transitions, to: [:idle, :*])
[{:*, :idle, :__start__}, {:s3, :*, :__end__}]
iex> Finitomata.Transition.allowed(transitions, from: :s1)
[{:s1, :s2, :to_s2}, {:s1, :s3, :to_s3}]
iex> Finitomata.Transition.allowed(transitions, from: :s1, to: :s3)
[{:s1, :s3, :to_s3}]
iex> Finitomata.Transition.allowed(transitions, from: :s1, with: :to_s3)
[{:s1, :s3, :to_s3}]
iex> Finitomata.Transition.allowed(transitions, from: :s2, with: :to_s2)
[]

 Link to this function

 allowed(transitions, from, event)

 View Source

 @spec allowed([t()], state(), event()) :: [state()]

Returns the list of all the transitions, matching the from state and the event.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.allowed(transitions, :s1, :foo)
[:s2]
...> Finitomata.Transition.allowed(transitions, :s1, :*)
[]

 Link to this function

 allowed?(transitions, from, to)

 View Source

 @spec allowed?([t()], state(), state()) :: boolean()

Returns true if the transition from → to is allowed, false otherwise.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.allowed?(transitions, :s1, :s2)
true
...> Finitomata.Transition.allowed?(transitions, :s1, :*)
false

 Link to this function

 determined(transitions)

 View Source

 @spec determined([t()]) :: [{state(), {event(), state()}}]

Returns Finitomata.Transition.event() if there is a determined transition
 from the current state.
The transition is determined, if it is the only transition allowed from the state.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "idle --> |to_s1| s1\n" <>
...> "s1 --> |to_s2| s2\n" <>
...> "s1 --> |to_s3| s3\n" <>
...> "s2 --> |determined| s3\n" <>
...> "s2 --> |determined| s4")
...> Finitomata.Transition.determined(transitions)
[s4: :__end__, s3: :__end__, s2: :determined, idle: :to_s1]

 Link to this function

 determined(transitions, state)

 View Source

 @spec determined([t()], state()) :: {:ok, {event(), state()}} | :error

Returns {:ok, {event(), state()}} tuple if there is a determined transition
 from the current state, :error otherwise.
The transition is determined, if it is the only transition allowed from the state.
Used internally for the validations.
iex> {:ok, transitions} =
...> Finitomata.Mermaid.parse(
...> "idle --> |to_s1| s1\n" <>
...> "s1 --> |to_s2| s2\n" <>
...> "s1 --> |to_s3| s3\n" <>
...> "s2 --> |to_s3| s3")
...> Finitomata.Transition.determined(transitions, :s1)
:error
iex> Finitomata.Transition.determined(transitions, :s2)
{:ok, {:to_s3, :s3}}
iex> Finitomata.Transition.determined(transitions, :s3)
{:ok, {:__end__, :*}}

 Link to this function

 entry(transitions)

 View Source

 @spec entry([t()]) :: state()

Returns the state after starting one, so-called entry state.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.entry(transitions)
:s1

 Link to this function

 responds?(transitions, from, event)

 View Source

 @spec responds?([t()], state(), event()) :: boolean()

Returns true if the state from hsa an outgoing transition with event, false otherwise.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.responds?(transitions, :s1, :ok)
true
...> Finitomata.Transition.responds?(transitions, :s1, :ko)
false

 Link to this function

 states(transitions)

 View Source

 @spec states([t()]) :: [state()]

Returns the not ordered list of states, excluding the starting and ending states :*.
iex> {:ok, transitions} =
...> Finitomata.PlantUML.parse("[*] --> s1 : foo\ns1 --> s2 : ok\ns2 --> [*] : ko")
...> Finitomata.Transition.states(transitions)
[:s1, :s2]

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

