

 Finch

 v0.8.0

 [image: Logo]

 Table of contents

 	Modules

 	Finch

 	Finch.Request

 	Finch.Response

 	Finch.Telemetry

 	Finch.Error

 	Exceptions

 	Finch.Error

Finch

An HTTP client with a focus on performance, built on top of
Mint and NimblePool.
Usage
In order to use Finch, you must start it and provide a :name. Often in your
supervision tree:
children = [
 {Finch, name: MyFinch}
]
Or, in rare cases, dynamically:
Finch.start_link(name: MyFinch)
Once you have started your instance of Finch, you are ready to start making requests:
Finch.build(:get, "https://hex.pm") |> Finch.request(MyFinch)
When using HTTP/1, Finch will parse the passed in URL into a {scheme, host, port}
tuple, and maintain one or more connection pools for each {scheme, host, port} you
interact with.
You can also configure a pool size and count to be used for specific URLs that are
known before starting Finch. The passed URLs will be parsed into {scheme, host, port},
and the corresponding pools will be started. See Finch.start_link/1 for configuration
options.
children = [
 {Finch,
 name: MyConfiguredFinch,
 pools: %{
 :default => [size: 10],
 "https://hex.pm" => [size: 32, count: 8]
 }}
]
Pools will be started for each configured {scheme, host, port} when Finch is started.
For any unconfigured {scheme, host, port}, the pool will be started the first time
it is requested. Note pools are not automatically terminated if they are unused, so
Finch is best suited when you are requesting a known list of static hosts.
Telemetry
Finch uses Telemetry to provide instrumentation. See the Finch.Telemetry
module for details on specific events.
Logging TLS Secrets
Finch supports logging TLS secrets to a file. These can be later used in a tool such as
Wireshark to decrypt HTTPS sessions. To use this feature you must specify the file to
which the secrets should be written. If you are using TLSv1.3 you must also add
keep_secrets: true to your pool :transport_opts. For example:
{Finch,
 name: MyFinch,
 pools: %{
 default: [conn_opts: [transport_opts: [keep_secrets: true]]]
 }}
There are two different ways to specify this file:
	The :ssl_key_log_file connection option in your pool configuration. For example:

{Finch,
 name: MyFinch,
 pools: %{
 default: [
 conn_opts: [
 ssl_key_log_file: "/writable/path/to/the/sslkey.log"
]
]
 }}
	Alternatively, you could also set the SSLKEYLOGFILE environment variable.

 Anchor for this section

 Summary

 Types

 name()

 The :name provided to Finch in start_link/1.

 stream(acc)

 The stream function given to stream/5.

 Functions

 build(method, url, headers \\ [], body \\ nil)

 Builds an HTTP request to be sent with request/3 or stream/4.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 request(req, name, opts \\ [])

 Sends an HTTP request and returns a Finch.Response struct.

 request(name, method, url, headers, body \\ nil, opts \\ [])

 start_link(opts)

 Start an instance of Finch.

 stream(req, name, acc, fun, opts \\ [])

 Streams an HTTP request and returns the accumulator.

 Anchor for this section

Types

 Link to this type

 name()

 View Source

 Specs

 name() :: atom()

The :name provided to Finch in start_link/1.

 Link to this type

 stream(acc)

 View Source

 Specs

 stream(acc) ::
 ({:status, integer()}
 | {:headers, Mint.Types.headers()}
 | {:data, binary()},
 acc ->
 acc)

The stream function given to stream/5.

 Anchor for this section

Functions

 Link to this function

 build(method, url, headers \\ [], body \\ nil)

 View Source

 Specs

 build(
 Finch.Request.method(),
 Finch.Request.url(),
 Finch.Request.headers(),
 Finch.Request.body()
) :: Finch.Request.t()

Builds an HTTP request to be sent with request/3 or stream/4.
When making HTTP/1.x requests, it is possible to send the request body in a streaming fashion.
In order to do so, the body parameter needs to take form of a tuple {:stream, body_stream},
where body_stream is a Stream. This feature is not yet supported for HTTP/2 requests.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 request(req, name, opts \\ [])

 View Source

 Specs

 request(Finch.Request.t(), name(), keyword()) ::
 {:ok, Finch.Response.t()} | {:error, Exception.t()}

Sends an HTTP request and returns a Finch.Response struct.

 Options

	:pool_timeout - This timeout is applied when we check out a connection from the pool.
Default value is 5_000.

	:receive_timeout - The maximum time to wait for a response before returning an error.
Default value is 15_000.

 Link to this function

 request(name, method, url, headers, body \\ nil, opts \\ [])

 View Source

 Link to this function

 start_link(opts)

 View Source

Start an instance of Finch.

 Options

	:name - The name of your Finch instance. This field is required.

	:pools - A map specifying the configuration for your pools. The keys should be URLs
provided as binaries, or the atom :default to provide a catch-all configuration to be used
for any unspecified URLs. See "Pool Configuration Options" below for details on the possible
map values. Default value is %{default: [size: 50, count: 1]}.

 Pool Configuration Options

	:protocol - The type of connection and pool to use. The default value is :http1.

	:size - Number of connections to maintain in each pool. Used only by HTTP1 pools since HTTP2 is able to multiplex requests through a single connection. In other words, for HTTP2, the size is always 1 and the :count should be configured in order to increase capacity. The default value is 50.

	:count - Number of pools to start. HTTP1 pools are able to re-use connections in the same pool and establish new ones only when necessary. However, if there is a high pool count and few requests are made, these requests will be scattered across pools, reducing connection reuse. It is recommended to increase the pool count for HTTP1 only if you are experiencing high checkout times. The default value is 1.

	:max_idle_time - The maxiumum number of milliseconds an HTTP1 connection is allowed to be idle before being closed during a checkout attempt. The default value is :infinity.

	:conn_opts - These options are passed to Mint.HTTP.connect/4 whenever a new connection is established. :mode is not configurable as Finch must control this setting. Typically these options are used to configure proxying, https settings, or connect timeouts. The default value is [].

 Link to this function

 stream(req, name, acc, fun, opts \\ [])

 View Source

 Specs

 stream(Finch.Request.t(), name(), acc, stream(acc), keyword()) ::
 {:ok, acc} | {:error, Exception.t()}
when acc: term()

Streams an HTTP request and returns the accumulator.
A function of arity 2 is expected as argument. The first argument
is a tuple, as listed below, and the second argument is the
accumulator. The function must return a potentially updated
accumulator.

 Stream commands

	{:status, status} - the status of the http response
	{:headers, headers} - the headers of the http response
	{:data, data} - a streaming section of the http body

 Options

	:pool_timeout - This timeout is applied when we check out a connection from the pool.
Default value is 5_000.

	:receive_timeout - The maximum time to wait for a response before returning an error.
Default value is 15_000.

Finch.Request

A request struct.

 Anchor for this section

 Summary

 Types

 body()

 Optional request body.

 headers()

 Request headers.

 method()

 An HTTP request method represented as an atom() or a String.t().

 t()

 url()

 A Uniform Resource Locator, the address of a resource on the Web.

 Anchor for this section

Types

 Link to this type

 body()

 View Source

 Specs

 body() :: iodata() | {:stream, Enumerable.t()} | nil

Optional request body.

 Link to this type

 headers()

 View Source

 Specs

 headers() :: Mint.Types.headers()

Request headers.

 Link to this type

 method()

 View Source

 Specs

 method() ::
 :get | :post | :head | :patch | :delete | :options | :put | String.t()

An HTTP request method represented as an atom() or a String.t().
The following atom methods are supported: :get, :post, :put, :patch, :delete, :head, :options.
You can use any arbitrary method by providing it as a String.t().

 Link to this type

 t()

 View Source

 Specs

 t() :: %Finch.Request{
 body: term(),
 headers: term(),
 host: term(),
 method: term(),
 path: term(),
 port: term(),
 query: term(),
 scheme: term()
}

 Link to this type

 url()

 View Source

 Specs

 url() :: String.t() | URI.t()

A Uniform Resource Locator, the address of a resource on the Web.

Finch.Response

A response to a request.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Finch.Response{
 body: binary(),
 headers: Mint.Types.headers(),
 status: Mint.Types.status()
}

Finch.Telemetry

Telemetry integration.
Unless specified, all time's are in :native units.
Finch executes the following events:
	[:finch, :queue, :start] - Executed before checking out a connection from the pool.
Measurements
	:system_time - The system timeMetadata:

	:pool - The pool's pid
	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.

	[:finch, :queue, :stop] - Executed after a connection is retrieved from the pool.
Measurements
	:duration - Duration to check out a pool connection.
	:idle_time - Elapsed time since the connection was last checked in or initialized.Metadata

	:pool - The pool's pid
	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.

	[:finch, :queue, :exception] - Executed if checking out a connection throws an exception.
Measurements
	:duration - The time it took before raising an exceptionMetadata

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.
	:kind - The type of exception.
	:error - Error description or error data.
	:stacktrace - The stacktrace

	[:finch, :connect, :start] - Executed before opening a new connection.
If a connection is being re-used this event will not be executed.
Measurements
	:system_time - The system timeMetadata

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.

	[:finch, :connect, :stop] - Executed after a connection is opened.
Measurements
	:duration - Duration to connect to the host.Metadata:

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.
	:error - This value is optional. It includes any errors that occured while opening the connection.

	[:finch, :request, :start] - Executed before sending a request.
Measurements:
	:system_time - The system time
	:idle_time - Elapsed time since the connection was last checked in or initialized.Metadata:

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.
	:path - The request path.
	:method - The request method.

	[:finch, :request, :stop] - Executed after a request is finished.
Measurements:
	:duration - Duration to make the request.
	:idle_time - Elapsed time since the connection was last checked in or initialized.Metadata:

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.
	:path - The request path.
	:method - The request method.
	:error - This value is optional. It includes any errors that occured while making the request.

	[:finch, :response, :start] - Executed before receiving the response.
Measurements:
	:system_time - The system time
	:idle_time - Elapsed time since the connection was last checked in or initialized.Metadata:

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.
	:path - The request path.
	:method - The request method.

	[:finch, :response, :stop] - Executed after a response has been fully received.
Measurements:
	:duration - Duration to receive the response.
	:idle_time - Elapsed time since the connection was last checked in or initialized.Metadata:

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.
	:path - The request path.
	:method - The request method.
	:error - This value is optional. It includes any errors that occured while receiving the response.

	[:finch, :reused_connection] - Executed if an existing connection is reused. There are no measurements provided with this event.
Metadata:
	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.

	[:finch, :max_idle_time_exceeded] - Executed if a connection was discarded because the max_idle_time had been reached.
Measurements:
	:idle_time - Elapsed time since the connection was last checked in or initialized.Metadata

	:scheme - The scheme used in the connection. either http or https
	:host - The host address
	:port - the port to connect on.

Finch.Error exception

An HTTP error.
This exception struct is used to represent errors of all sorts for the HTTP/2 protocol.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Finch.Error{__exception__: term(), reason: atom()}

Finch.Error exception

An HTTP error.
This exception struct is used to represent errors of all sorts for the HTTP/2 protocol.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Finch.Error{__exception__: term(), reason: atom()}

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

