

 fdb

 v7.1.5-0

 Table of contents

 	FDB

 	Modules

 	FDB

 	FDB.Coder

 	FDB.Coder.ArbitraryInteger

 	FDB.Coder.Behaviour

 	FDB.Coder.Boolean

 	FDB.Coder.ByteString

 	FDB.Coder.Dynamic

 	FDB.Coder.Float

 	FDB.Coder.Identity

 	FDB.Coder.Integer

 	FDB.Coder.LittleEndianInteger

 	FDB.Coder.NestedTuple

 	FDB.Coder.Nullable

 	FDB.Coder.SignedLittleEndianInteger

 	FDB.Coder.Subspace

 	FDB.Coder.Tuple

 	FDB.Coder.UUID

 	FDB.Coder.UnicodeString

 	FDB.Coder.Versionstamp

 	FDB.Database

 	FDB.Directory

 	FDB.Future

 	FDB.Future.Operators

 	FDB.KeyRange

 	FDB.KeySelector

 	FDB.KeySelectorRange

 	FDB.Network

 	FDB.Option

 	FDB.RangeResult

 	FDB.Transaction

 	FDB.Transaction.Coder

 	FDB.Versionstamp

 	FDB.Error

 	FDB.TimeoutError

FDB

[image: Hex Docs]
FoundationDB client for Elixir
Status
API is in alpha state and backward incompatible changes may be
introduced in subsequent versions.
Implementation Details
As there is no documented stable wire
protocol
the only practical option is to use the C
API. NIF has some
major downsides
	pre-emptive scheduling

The FoundationDB C API uses event loop architecture. Nearly all the
API functions are non blocking — blocking API functions are not used
by FDB. The event loop runs on a seperate thread and the communication
is done via callback functions. The callback function when invoked
will send a message to Process. This architecture makes sure the NIF
functions return immediatly and gives the control back to VM
	memory protection

This mostly comes down to careful coding. Currenly I am running the
tests under valgrind locally. With some effort it could be integrated
in travis. FDB also runs the bindings
tester
(used to test other language bindings) in travis CI.
	concurrency

The FoundationDB C API functions are thread safe except for the
network intialization part. NIF implementation tries to avoid
concurrency problems by not mutating the values once created.
Program testing can be used to show the presence of bugs, but never
to show their absence!
Edsger W. Dijkstra

It's still possible that there are bugs in C API or the NIF
implementation, which could lead to VM crash.
API Design
It's recommended to read the Developer
Guide and
Data
Modeling to
get a good understanding of FoundationDB. Most of the ideas apply
across all the language bindings.
Async
Most of the operations in FDB are async in nature. FDB provides two
kinds of api
	a sync api that will block the calling process till the operation is
done. In case of failure an exception will be raised.

	an async api that will return FDB.Future.t/0 immediatly. The caller can
later use FDB.Future.await/1 to resolve the value, which will
block till the operation is done or will raise an exception in case
of failure.

The async api ends with _q, for example FDB.Transaction.get/2 is
the sync version and FDB.Transaction.get_q/2 is the async version of the same function.
Error Handling
FoundationDB uses optimistic concurrency. When a transaction is
committed, it could get cancelled if there are other conflicting
transactions. The common idiom is to retry the cancelled transaction
till it succeeds. FDB.Database.transact/2 function automatically
rescues and retries if the error is retriable. For this reason, the
api is designed to raise exception instead of returning {:error, error}
Installation
FDB depends on FoundationDB client
binary
to be installed. The version of the client binary should be >= FDB
library version — patch and build part in the version can be
ignored. For example, if you want to use
{:fdb, "5.1.7-0"}
then you must have client binary >= 5.1. Only patch versions are
guaranteed to be protocol compatible.
Additional Steps on Windows
To compile the library in Windows you must have the Visual C++ Tools installed or VS 2017, if you don't use it probably you'll get a message telling you that nmake isn't installed.
	With Visual C++ Tools: search for the file vcvarsall.bat, the Tools version 2017 are commonly located at C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Auxiliary\Build and run the command vcvarsall amd64.

	With Visual Studio 2017 intalled: type Developer Command in the search box and you will get the cmd program as a result.

Then move to your project directory and run mix compile
Getting Started
Before doing anything with the library, the API version has to be set
and the network thread has to be started. FDB.start/1 is a helper function
which does all of these.
:ok = FDB.start(710)
This must be called only once. Calling it second time will result in
exception. Once started, FDB.Database.t/0 instance have to be created.
db = FDB.Database.create(cluster_file_path)
It's recommended to use a single db instance everywhere unless
multiple db with different set of options are required. There are no
performance implications with using a single db instance as none of
the method calls are serialized either via locks or GenServer et
al.
Any kind of interaction with Database requires the usage of
FDB.Transaction.t/0. There are two ways of using transaction
FDB.Database.transact(db, fn transaction ->
 value = FDB.Transaction.get(transaction, key)
 :ok = FDB.Transaction.set(transaction, key, value <> "hello")
end)
transaction = FDB.Transaction.create(db)
value = FDB.Transaction.get(transaction, key)
:ok = FDB.Transaction.set(transaction, key, value <> "hello")
:ok = Transaction.commit(transaction)
The first version is the preferred one. The transaction is
automatically committed after the callback returns. In case any
exception is raised inside the callback or in the commit function
call, the transaction will be retried if the error is retriable. Various
options like max_retry_delay, timeout, retry_limit etc can be
configured using FDB.Transaction.set_option/3
Coder
Most of the language bindings implement the tuple
layer. It
specifies how native types like integer, unicode string, bytes etc
should be encoded. The main advantage of the encoding over others is
that it preserves the natural ordering of the values, so the range
function would work as expected.
alias FDB.{Transaction, Database, KeySelectorRange}
alias FDB.Coder.{Integer, Tuple, NestedTuple, ByteString, Subspace}

coder =
 Transaction.Coder.new(
 Subspace.new(
 {"ts", ByteString.new()},
 Tuple.new({
 # date
 NestedTuple.new({
 # year, month, date
 NestedTuple.new({Integer.new(), Integer.new(), Integer.new()}),
 # hour, minute, second
 NestedTuple.new({Integer.new(), Integer.new(), Integer.new()})
 }),
 # website
 ByteString.new(),
 # page
 ByteString.new(),
 # browser
 ByteString.new()
 })
),
 Integer.new()
)
db = Database.create(%{coder: coder})

Database.transact(db, fn t ->
 m = Transaction.get(t, {{{2018, 03, 01}, {1, 0, 0}}, "www.github.com", "/fdb", "mozilla"})
 c = Transaction.get(t, {{{2018, 03, 01}, {1, 0, 0}}, "www.github.com", "/fdb", "chrome"})
end)

range = KeySelectorRange.starts_with({{{2018, 03, 01}}})
result =
 Database.get_range_stream(db, range)
 |> Enum.to_list()

A FDB.Transaction.Coder.t/0 specifies how the key and value should
be encoded. The coder could be set at database or transaction
level. The transaction automatically inherits the coder from database
if not set explicitly. Under the hood all the functions use the coder
transparently to encode and decode the values. Refer
FDB.Database.set_defaults/2 if you want to use multiple coders.
See the documentation for more
information.
Benchmark
A simple, unreliable and non-scientific benchmark can be found here

FDB

This module provides functions to initialize the library. Note that
the functions in this module should be called only once.

 Anchor for this section

 Summary

 Functions

 select_api_version(version \\ 710)

 Sets the API
version. The
maximum supported value is 710.

 start(version \\ 710)

 Sets the API
version
and starts the network thread. One should use FDB.Network directly
if any of the network options need to be customized.

 Anchor for this section

Functions

 Link to this function

 select_api_version(version \\ 710)

 View Source

 Specs

 select_api_version(integer()) :: :ok

Sets the API
version. The
maximum supported value is 710.

 Link to this function

 start(version \\ 710)

 View Source

 Specs

 start(integer()) :: :ok

Sets the API
version
and starts the network thread. One should use FDB.Network directly
if any of the network options need to be customized.

FDB.Coder

A FDB.Coder.t/0 specifies how any value should be encoded before
storing it in server and how it should be decoded when it's
retrieved from the server. A custom coder can be created by
implementing the FDB.Coder.Behaviour behaviour.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.Coder{module: module(), opts: any()}

FDB.Coder.ArbitraryInteger

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.Behaviour behaviour

Refer modules named FDB.Coder.* for sample implementation.

 Anchor for this section

 Summary

 Callbacks

 decode(binary, opts)

 encode(any, opts)

 range(any, opts)

 Anchor for this section

Callbacks

 Link to this callback

 decode(binary, opts)

 View Source

 Specs

 decode(binary(), opts :: any()) :: {any(), binary()}

 Link to this callback

 encode(any, opts)

 View Source

 Specs

 encode(any(), opts :: any()) :: binary()

 Link to this callback

 range(any, opts)

 View Source

 Specs

 range(any(), opts :: any()) :: {binary(), binary()}

FDB.Coder.Boolean

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.ByteString

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.Dynamic

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.Float

Values that can't be represented by erlang float will be returned as
a two element tuple. {:inf | :"-inf" | :NaN, binary}

 Anchor for this section

 Summary

 Functions

 decode_float_32(f)

 decode_float_64(f)

 encode_float_32(n)

 encode_float_64(n)

 new(bits \\ 32)

 Anchor for this section

Functions

 Link to this function

 decode_float_32(f)

 View Source

 Link to this function

 decode_float_64(f)

 View Source

 Link to this function

 encode_float_32(n)

 View Source

 Link to this function

 encode_float_64(n)

 View Source

 Link to this function

 new(bits \\ 32)

 View Source

 Specs

 new(32 | 64) :: FDB.Coder.t()

FDB.Coder.Identity

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.Integer

Supports integer in the range
-0xFFFFFFFFFFFFFFFF..0xFFFFFFFFFFFFFFFF (8 bytes). Consider using
FDB.Coder.ArbitraryInteger for arbitrary precision numbers.

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.LittleEndianInteger

 Anchor for this section

 Summary

 Functions

 new(bits \\ 128)

 Anchor for this section

Functions

 Link to this function

 new(bits \\ 128)

 View Source

 Specs

 new(pos_integer()) :: FDB.Coder.t()

FDB.Coder.NestedTuple

 Anchor for this section

 Summary

 Functions

 new(coders)

 Anchor for this section

Functions

 Link to this function

 new(coders)

 View Source

 Specs

 new(tuple()) :: FDB.Coder.t()

FDB.Coder.Nullable

 Anchor for this section

 Summary

 Functions

 new(coder)

 Anchor for this section

Functions

 Link to this function

 new(coder)

 View Source

 Specs

 new(FDB.Coder.t()) :: FDB.Coder.t()

FDB.Coder.SignedLittleEndianInteger

 Anchor for this section

 Summary

 Functions

 new(bits \\ 128)

 Anchor for this section

Functions

 Link to this function

 new(bits \\ 128)

 View Source

 Specs

 new(pos_integer()) :: FDB.Coder.t()

FDB.Coder.Subspace

 Anchor for this section

 Summary

 Functions

 concat(a, b)

 Concats two subspaces. The coder associated with a will be discarded.

 new(prefix, coder \\ FDB.Coder.Identity.new())

 Creates a new subspace.
The prefix can be provided in three ways

 Anchor for this section

Functions

 Link to this function

 concat(a, b)

 View Source

 Specs

 concat(FDB.Coder.t(), FDB.Coder.t()) :: FDB.Coder.t()

Concats two subspaces. The coder associated with a will be discarded.

 Link to this function

 new(prefix, coder \\ FDB.Coder.Identity.new())

 View Source

 Specs

 new(binary() | {any(), FDB.Coder.t()} | FDB.Directory.t(), FDB.Coder.t()) ::
 FDB.Coder.t()

Creates a new subspace.
The prefix can be provided in three ways
	raw binary
	{prefix_value, prefix_coder} - a value and a coder to encode the value
	a directory

FDB.Coder.Tuple

This should be only used at the top level. For nested tuple
FDB.Coder.NestedTuple should be used

 Anchor for this section

 Summary

 Functions

 new(coders)

 Anchor for this section

Functions

 Link to this function

 new(coders)

 View Source

 Specs

 new(tuple()) :: FDB.Coder.t()

FDB.Coder.UUID

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.UnicodeString

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Coder.Versionstamp

 Anchor for this section

 Summary

 Functions

 new()

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Specs

 new() :: FDB.Coder.t()

FDB.Database

This module provides functions to create and configure database and
functions to do transactions on database.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 create(cluster_file_path \\ nil, defaults \\ %{})

 Creates a new database. If the cluster_file_path is not set then
default cluster
file
will be used.

 get_range_stream(database, key_range, options \\ %{})

 Refer FDB.Transaction.get_range/3. The only difference is the
consistency guarantee. This function uses multiple transactions to
fetch the data. This is advantageous if you want to fetch large
amount of data and are ok with the fact that the data might change
when doing the iteration.

 set_defaults(db, defaults)

 Changes the defaults options associated with the database.

 set_option(database, option)

 Refer FDB.Option for the list of options. Any option that starts with database_option_ is allowed.

 set_option(database, option, value)

 Refer FDB.Option for the list of options. Any option that starts with database_option_ is allowed.

 transact(database, callback)

 The given callback will be called with a
FDB.Transaction.t/0.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.Database{coder: term(), resource: term()}

 Anchor for this section

Functions

 Link to this function

 create(cluster_file_path \\ nil, defaults \\ %{})

 View Source

 Specs

 create(String.t() | nil, map()) :: t()

Creates a new database. If the cluster_file_path is not set then
default cluster
file
will be used.

 Link to this function

 get_range_stream(database, key_range, options \\ %{})

 View Source

 Specs

 get_range_stream(t(), FDB.KeySelectorRange.t(), map()) :: Enumerable.t()

Refer FDB.Transaction.get_range/3. The only difference is the
consistency guarantee. This function uses multiple transactions to
fetch the data. This is advantageous if you want to fetch large
amount of data and are ok with the fact that the data might change
when doing the iteration.

 Link to this function

 set_defaults(db, defaults)

 View Source

 Specs

 set_defaults(t(), map()) :: t()

Changes the defaults options associated with the database.
This doesn't create a new database resource, the same database
resource is shared. This is the recommended way if one needs to use
multiple coders.
db = FDB.Database.create(cluster_file_path)
user_db = FDB.Database.set_defaults(db, %{coder: user_coder})
comments_db = FDB.Database.set_defaults(db, %{coder: comment_coder})

 Link to this function

 set_option(database, option)

 View Source

 Specs

 set_option(t(), FDB.Option.key()) :: :ok

Refer FDB.Option for the list of options. Any option that starts with database_option_ is allowed.

 Link to this function

 set_option(database, option, value)

 View Source

 Specs

 set_option(t(), FDB.Option.key(), FDB.Option.value()) :: :ok

Refer FDB.Option for the list of options. Any option that starts with database_option_ is allowed.

 Link to this function

 transact(database, callback)

 View Source

 Specs

 transact(t(), (FDB.Transaction.t() -> any())) :: any()

The given callback will be called with a
FDB.Transaction.t/0.
The transaction is automatically committed after the callback
returns. The value returned by the callback is retuned. In case any
exception is raised inside the callback or in the commit function
call, the transaction will be retried if the error is retriable. It
also implements an exponential backoff strategy to avoid swamping
the database cluster with excessive retries when there is a high
level of conflict between transactions.
Avoid doing any IO or any action that will cause side effect inside
the callback, as the callback might get called multiple times in
case of errors.
Various options like
FDB.Option.transaction_option_max_retry_delay/0,
FDB.Option.transaction_option_timeout/0,
FDB.Option.transaction_option_retry_limit/0 etc which control the
retry behaviour can be configured using
FDB.Transaction.set_option/3

FDB.Directory

Directory is one of the ways to manage
namespaces.
root = FDB.Directory.new()
dir = FDB.Database.transact(db, fn tr ->
 FDB.Directory.create_or_open(root, tr, ["users", "inactive"])
end)
inactive_subspace = FDB.Coder.Subspace.new(dir)

 Anchor for this section

 Summary

 Types

 path()

 t()

 Functions

 create(directory, tr, path, options \\ %{})

 Creates a directory with given path. Parent directories are
created if necessary. The method will raise an exception if the
given directory already exists.

 create_or_open(directory, tr, path, options \\ %{})

 Opens the directory with the given path. If the directory does not
exist, it is created (creating parent directories if necessary).

 exists?(directory, tr, path \\ [])

 Returns true if the directory at path exists and false otherwise.

 layer(directory)

 Gets the directory layer

 list(directory, tr, path \\ [])

 Returns an list of names of the immediate subdirectories of the
directory at path. Each name represents the last component of a
subdirectory’s path.

 move(directory, tr, old_path, new_path)

 Moves the directory at old_path to new_path. There is no effect on
the prefix of the given directory or on clients that already have
the directory open. The function will raise an exception if a
directory does not exist at old_path, a directory already exists at
new_path, or the parent directory of new_path does not exist.

 move_to(directory, tr, new_absolute_path)

 Moves this directory to new_path, interpreting new_path
absolutely. There is no effect on the prefix of the given directory
or on clients that already have the directory open. The function
will raise an exception if a directory already exists at new_path or
the parent directory of new_path does not exist.

 new(options \\ %{})

 Creates root directory

 open(directory, tr, path, options \\ %{})

 Opens the directory with given path. The function will raise an
exception if the directory does not exist.

 path(directory)

 Gets the directory path

 prefix(directory)

 Gets the directory prefix

 remove(directory, tr, path \\ [])

 Removes the directory at path, its contents, and all
subdirectories. The function will raise an exception if the
directory does not exist.

 remove_if_exists(directory, tr, path \\ [])

 Checks if the directory at path exists and, if so, removes the
directory, its contents, and all subdirectories. Returns true if
the directory existed and false otherwise.

 Anchor for this section

Types

 Link to this type

 path()

 View Source

 Specs

 path() :: [String.t()]

 Link to this type

 t()

 View Source

 Specs

 t() :: FDB.Directory.Protocol.t()

 Anchor for this section

Functions

 Link to this function

 create(directory, tr, path, options \\ %{})

 View Source

 Specs

 create(t(), FDB.Transaction.t(), path(), map()) :: t()

Creates a directory with given path. Parent directories are
created if necessary. The method will raise an exception if the
given directory already exists.

 Options

layer - (binary) if the layer is specified, it is recorded with the
directory and will be checked by future calls to open.
prefix - (binary) if prefix is specified, the directory is created
with the given prefix; otherwise a prefix is allocated
automatically.

 Link to this function

 create_or_open(directory, tr, path, options \\ %{})

 View Source

 Specs

 create_or_open(t(), FDB.Transaction.t(), path(), map()) :: t()

Opens the directory with the given path. If the directory does not
exist, it is created (creating parent directories if necessary).

 Options

layer - (binary) if the layer is specified and the directory is new,
it is recorded as the layer; if layer is specified and the directory
already exists, it is compared against the layer specified when the
directory was created, and the method will raise an exception if
they differ.

 Link to this function

 exists?(directory, tr, path \\ [])

 View Source

 Specs

 exists?(t(), FDB.Transaction.t(), path()) :: t()

Returns true if the directory at path exists and false otherwise.

 Link to this function

 layer(directory)

 View Source

 Specs

 layer(t()) :: String.t()

Gets the directory layer

 Link to this function

 list(directory, tr, path \\ [])

 View Source

 Specs

 list(t(), FDB.Transaction.t(), path()) :: t()

Returns an list of names of the immediate subdirectories of the
directory at path. Each name represents the last component of a
subdirectory’s path.

 Link to this function

 move(directory, tr, old_path, new_path)

 View Source

 Specs

 move(t(), FDB.Transaction.t(), path(), path()) :: t()

Moves the directory at old_path to new_path. There is no effect on
the prefix of the given directory or on clients that already have
the directory open. The function will raise an exception if a
directory does not exist at old_path, a directory already exists at
new_path, or the parent directory of new_path does not exist.
Returns the directory at its new location.

 Link to this function

 move_to(directory, tr, new_absolute_path)

 View Source

 Specs

 move_to(t(), FDB.Transaction.t(), path()) :: t()

Moves this directory to new_path, interpreting new_path
absolutely. There is no effect on the prefix of the given directory
or on clients that already have the directory open. The function
will raise an exception if a directory already exists at new_path or
the parent directory of new_path does not exist.
Returns the directory at its new location.

 Link to this function

 new(options \\ %{})

 View Source

 Specs

 new(map()) :: t()

Creates root directory

 Options

	node_subspace - (FDB.Coder.t/0) where the directory metadata should be stored. Defaults to Subspace.new(<<0xFE>>)
	content_subspace - (FDB.Coder.t/0) where contents are stored. Defaults to Subspace.new("")
	allow_manual_prefixes - (boolean) whether manual prefixes should be allowed for directories. Defaults to false

 Link to this function

 open(directory, tr, path, options \\ %{})

 View Source

 Specs

 open(t(), FDB.Transaction.t(), path(), map()) :: t()

Opens the directory with given path. The function will raise an
exception if the directory does not exist.

 Options

layer - (binary) if the layer is specified, it is compared against
the layer specified when the directory was created, and the function
will raise an exception if they differ.

 Link to this function

 path(directory)

 View Source

 Specs

 path(t()) :: path()

Gets the directory path

 Link to this function

 prefix(directory)

 View Source

 Specs

 prefix(t()) :: binary()

Gets the directory prefix

 Link to this function

 remove(directory, tr, path \\ [])

 View Source

 Specs

 remove(t(), FDB.Transaction.t(), path()) :: t()

Removes the directory at path, its contents, and all
subdirectories. The function will raise an exception if the
directory does not exist.
Clients that have already opened the directory might still insert
data into its contents after removal.

 Link to this function

 remove_if_exists(directory, tr, path \\ [])

 View Source

 Specs

 remove_if_exists(t(), FDB.Transaction.t(), path()) :: t()

Checks if the directory at path exists and, if so, removes the
directory, its contents, and all subdirectories. Returns true if
the directory existed and false otherwise.
Clients that have already opened the directory might still insert
data into its contents after removal.

FDB.Future

A FDB.Future.t/0 represents the result of an async operation.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 all(list)

 await(future, timeout \\ 5000)

 Waits for the async operation associated with the future to
complete.

 constant(value)

 map(future, callback)

 Maps the future's result.

 ready?(future)

 Checks whether the async operation is completed.

 then(future, callback)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.Future{
 constant: boolean(),
 on_resolve: [(any() -> any())],
 resource: identifier() | nil,
 value: any(),
 waiting_for: [identifier()]
}

 Anchor for this section

Functions

 Link to this function

 all(list)

 View Source

 Specs

 all([t()]) :: t()

 Link to this function

 await(future, timeout \\ 5000)

 View Source

 Specs

 await(t(), timeout()) :: any()

Waits for the async operation associated with the future to
complete.
The result of the operations is returned or FDB.Error is raised if
the operation failed. In case of timeout FDB.TimeoutError is
raised.

 Link to this function

 constant(value)

 View Source

 Specs

 constant(any()) :: t()

 Link to this function

 map(future, callback)

 View Source

 Specs

 map(t(), (any() -> any())) :: t()

Maps the future's result.
Returns a new future. The callback function will be applied on the
result of the given future.

 Link to this function

 ready?(future)

 View Source

 Specs

 ready?(t()) :: boolean()

Checks whether the async operation is completed.
If the future is constructed via Future.then/3, then only the root
future is checked for completion.

 Link to this function

 then(future, callback)

 View Source

 Specs

 then(t(), (any() -> t())) :: t()

FDB.Future.Operators

 Anchor for this section

 Summary

 Functions

 @future

 Anchor for this section

Functions

 Link to this function

 @future

 View Source

FDB.KeyRange

 Anchor for this section

 Summary

 Types

 t()

 Functions

 range(begin_key, end_key, opts \\ %{})

 starts_with(prefix)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.KeyRange{begin: FDB.KeySelector.t(), end: FDB.KeySelector.t()}

 Anchor for this section

Functions

 Link to this function

 range(begin_key, end_key, opts \\ %{})

 View Source

 Specs

 range(any(), any(), map()) :: t()

 Link to this function

 starts_with(prefix)

 View Source

 Specs

 starts_with(any()) :: t()

FDB.KeySelector

Refer
KeySelector
section for the semantics. A partial or prefix key could refer to
multiple keys in the database. The prefix option controls whether it
should be resolved to the first or last key with the given prefix.
Supported Options
All the functions in this module support the following options
	:or_equal - (boolean) the default value differs for each function.
	:offset - (integer) could be either positive or negative. Defaults to 0.
	:prefix - (atom)	:first - the first key with the given prefix
	:last - the last key with the given prefix
	:none - specifies this is not a prefix key. Default value.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 first_greater_or_equal(key, options \\ %{})

 first_greater_than(key, options \\ %{})

 last_less_or_equal(key, options \\ %{})

 last_less_than(key, options \\ %{})

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.KeySelector{
 key: any(),
 offset: integer(),
 or_equal: boolean() | integer(),
 prefix: :none | :first | :last
}

 Anchor for this section

Functions

 Link to this function

 first_greater_or_equal(key, options \\ %{})

 View Source

 Specs

 first_greater_or_equal(any(), map()) :: t()

 Link to this function

 first_greater_than(key, options \\ %{})

 View Source

 Specs

 first_greater_than(any(), map()) :: t()

 Link to this function

 last_less_or_equal(key, options \\ %{})

 View Source

 Specs

 last_less_or_equal(any(), map()) :: t()

 Link to this function

 last_less_than(key, options \\ %{})

 View Source

 Specs

 last_less_than(any(), map()) :: t()

FDB.KeySelectorRange

 Anchor for this section

 Summary

 Types

 t()

 Functions

 range(start_key_selector, end_key_selector)

 starts_with(prefix)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.KeySelectorRange{
 begin: FDB.KeySelector.t(),
 end: FDB.KeySelector.t()
}

 Anchor for this section

Functions

 Link to this function

 range(start_key_selector, end_key_selector)

 View Source

 Specs

 range(FDB.KeySelector.t(), FDB.KeySelector.t()) :: t()

 Link to this function

 starts_with(prefix)

 View Source

 Specs

 starts_with(any()) :: t()

FDB.Network

FoundationDB C API uses event loop architecture. All the network io
operations are handled by a singleton network thread. This module
provides functions to configure, start and stop the network
thread. The functions should be called in the order given below
:ok = FDB.select_api_version()
zero or more calls to set network options
:ok = FDB.Network.set_option(FDB.Option.network_option_trace_enable())
:ok = FDB.Network.setup()
:ok = FDB.Network.run()

 Anchor for this section

 Summary

 Functions

 run()

 Should be called after FDB.Network.setup/0. This function should
be called only once.

 set_option(option)

 Refer FDB.Option for the list of options. Any option that starts with network_option_ is allowed.

 set_option(option, value)

 Refer FDB.Option for the list of options. Any option that starts with network_option_ is allowed.

 setup()

 Should be called after FDB.select_api_version/1 and zero or more
calls to FDB.Network.set_option/1 or
FDB.Network.set_option/2. This function should be called only
once.

 stop()

 Stops the network thread. Once stopped the network thread cannot be
restarted again.

 Anchor for this section

Functions

 Link to this function

 run()

 View Source

 Specs

 run() :: :ok

Should be called after FDB.Network.setup/0. This function should
be called only once.

 Link to this function

 set_option(option)

 View Source

 Specs

 set_option(FDB.Option.key()) :: :ok

Refer FDB.Option for the list of options. Any option that starts with network_option_ is allowed.

 Link to this function

 set_option(option, value)

 View Source

 Specs

 set_option(FDB.Option.key(), FDB.Option.value()) :: :ok

Refer FDB.Option for the list of options. Any option that starts with network_option_ is allowed.

 Link to this function

 setup()

 View Source

 Specs

 setup() :: :ok

Should be called after FDB.select_api_version/1 and zero or more
calls to FDB.Network.set_option/1 or
FDB.Network.set_option/2. This function should be called only
once.

 Link to this function

 stop()

 View Source

 Specs

 stop() :: :ok

Stops the network thread. Once stopped the network thread cannot be
restarted again.

FDB.Option

This module contains all the options that are accepted by various
functions. These options are autogenerated from xml file.

 Anchor for this section

 Summary

 Types

 key()

 value()

 Functions

 conflict_range_type_read()

 Used to add a read conflict range

 conflict_range_type_write()

 Used to add a write conflict range

 database_option_datacenter_id()

 Hexadecimal ID

 database_option_location_cache_size()

 Max location cache entries

 database_option_machine_id()

 Hexadecimal ID

 database_option_max_watches()

 Max outstanding watches

 database_option_snapshot_ryw_disable()

 Snapshot read operations will not see the results of writes done in the same transaction. This was the default behavior prior to API version 300.

 database_option_snapshot_ryw_enable()

 Snapshot read operations will see the results of writes done in the same transaction. This is the default behavior.

 database_option_test_causal_read_risky()

 An integer between 0 and 100 (default is 0) expressing the probability that a client will verify it can't read stale data whenever it detects a recovery.

 database_option_transaction_bypass_unreadable()

 Allows get operations to read from sections of keyspace that have become unreadable because of versionstamp operations. This sets the bypass_unreadable option of each transaction created by this database. See the transaction option description for more information.

 database_option_transaction_causal_read_risky()

 The read version will be committed, and usually will be the latest committed, but might not be the latest committed in the event of a simultaneous fault and misbehaving clock.

 database_option_transaction_include_port_in_address()

 Deprecated. Addresses returned by get_addresses_for_key include the port when enabled. As of api version 630, this option is enabled by default and setting this has no effect.

 database_option_transaction_logging_max_field_length()

 Maximum length of escaped key and value fields.

 database_option_transaction_max_retry_delay()

 value in milliseconds of maximum delay

 database_option_transaction_retry_limit()

 number of times to retry

 database_option_transaction_size_limit()

 value in bytes

 database_option_transaction_timeout()

 value in milliseconds of timeout

 database_option_use_config_database()

 Use configuration database.

 error_predicate_maybe_committed()

 Returns true if the error indicates the transaction may have succeeded, though not in a way the system can verify.

 error_predicate_retryable()

 Returns true if the error indicates the operations in the transactions should be retried because of transient error.

 error_predicate_retryable_not_committed()

 Returns true if the error indicates the transaction has not committed, though in a way that can be retried.

 mutation_type_add()

 addend

 mutation_type_and()

 value with which to perform bitwise and

 mutation_type_append_if_fits()

 value to append to the database value

 mutation_type_bit_and()

 value with which to perform bitwise and

 mutation_type_bit_or()

 value with which to perform bitwise or

 mutation_type_bit_xor()

 value with which to perform bitwise xor

 mutation_type_byte_max()

 value to check against database value

 mutation_type_byte_min()

 value to check against database value

 mutation_type_compare_and_clear()

 Value to compare with

 mutation_type_max()

 value to check against database value

 mutation_type_min()

 value to check against database value

 mutation_type_or()

 value with which to perform bitwise or

 mutation_type_set_versionstamped_key()

 value to which to set the transformed key

 mutation_type_set_versionstamped_value()

 value to versionstamp and set

 mutation_type_xor()

 value with which to perform bitwise xor

 network_option_buggify_disable()

 network_option_buggify_enable()

 network_option_buggify_section_activated_probability()

 probability expressed as a percentage between 0 and 100

 network_option_buggify_section_fired_probability()

 probability expressed as a percentage between 0 and 100

 network_option_callbacks_on_external_threads()

 If set, callbacks from external client libraries can be called from threads created by the FoundationDB client library. Otherwise, callbacks will be called from either the thread used to add the callback or the network thread. Setting this option can improve performance when connected using an external client, but may not be safe to use in all environments. Must be set before setting up the network. WARNING: This feature is considered experimental at this time.

 network_option_client_buggify_disable()

 Disable client buggify

 network_option_client_buggify_enable()

 Enable client buggify - will make requests randomly fail (intended for client testing)

 network_option_client_buggify_section_activated_probability()

 probability expressed as a percentage between 0 and 100

 network_option_client_buggify_section_fired_probability()

 probability expressed as a percentage between 0 and 100

 network_option_client_threads_per_version()

 Number of client threads to be spawned. Each cluster will be serviced by a single client thread.

 network_option_cluster_file()

 path to cluster file

 network_option_disable_client_statistics_logging()

 Disables logging of client statistics, such as sampled transaction activity.

 network_option_disable_local_client()

 Prevents connections through the local client, allowing only connections through externally loaded client libraries.

 network_option_disable_multi_version_client_api()

 Disables the multi-version client API and instead uses the local client directly. Must be set before setting up the network.

 network_option_distributed_client_tracer()

 Distributed tracer type. Choose from none, log_file, or network_lossy

 network_option_enable_run_loop_profiling()

 Enables debugging feature to perform run loop profiling. Requires trace logging to be enabled. WARNING: this feature is not recommended for use in production.

 network_option_enable_slow_task_profiling()

 Deprecated

 network_option_external_client()

 This option is set automatically on all clients loaded externally using the multi-version API.

 network_option_external_client_directory()

 path to directory containing client libraries

 network_option_external_client_library()

 path to client library

 network_option_external_client_transport_id()

 Transport ID for the child connection

 network_option_knob()

 knob_name=knob_value

 network_option_local_address()

 IP:PORT

 network_option_supported_client_versions()

 [release version],[source version],[protocol version];...

 network_option_tls_ca_bytes()

 ca bundle

 network_option_tls_ca_path()

 file path

 network_option_tls_cert_bytes()

 certificates

 network_option_tls_cert_path()

 file path

 network_option_tls_key_bytes()

 key

 network_option_tls_key_path()

 file path

 network_option_tls_password()

 key passphrase

 network_option_tls_plugin()

 file path or linker-resolved name

 network_option_tls_verify_peers()

 verification pattern

 network_option_trace_clock_source()

 Trace clock source

 network_option_trace_enable()

 path to output directory (or NULL for current working directory)

 network_option_trace_file_identifier()

 The identifier that will be part of all trace file names

 network_option_trace_format()

 Format of trace files

 network_option_trace_log_group()

 value of the LogGroup attribute

 network_option_trace_max_logs_size()

 max total size of trace files

 network_option_trace_partial_file_suffix()

 Append this suffix to partially written log files. When a log file is complete, it is renamed to remove the suffix. No separator is added between the file and the suffix. If you want to add a file extension, you should include the separator - e.g. '.tmp' instead of 'tmp' to add the 'tmp' extension.

 network_option_trace_roll_size()

 max size of a single trace output file

 streaming_mode_exact()

 Infrequently used. The client has passed a specific row limit and wants that many rows delivered in a single batch. Because of iterator operation in client drivers make request batches transparent to the user, consider WANT_ALL StreamingMode instead. A row limit must be specified if this mode is used.

 streaming_mode_iterator()

 The default. The client doesn't know how much of the range it is likely to used and wants different performance concerns to be balanced. Only a small portion of data is transferred to the client initially (in order to minimize costs if the client doesn't read the entire range), and as the caller iterates over more items in the range larger batches will be transferred in order to minimize latency. After enough iterations, the iterator mode will eventually reach the same byte limit as WANT_ALL

 streaming_mode_large()

 Infrequently used. Transfer data in batches large enough to be, in a high-concurrency environment, nearly as efficient as possible. If the client stops iteration early, some disk and network bandwidth may be wasted. The batch size may still be too small to allow a single client to get high throughput from the database, so if that is what you need consider the SERIAL StreamingMode.

 streaming_mode_medium()

 Infrequently used. Transfer data in batches sized in between small and large.

 streaming_mode_serial()

 Transfer data in batches large enough that an individual client can get reasonable read bandwidth from the database. If the client stops iteration early, considerable disk and network bandwidth may be wasted.

 streaming_mode_small()

 Infrequently used. Transfer data in batches small enough to not be much more expensive than reading individual rows, to minimize cost if iteration stops early.

 streaming_mode_want_all()

 Client intends to consume the entire range and would like it all transferred as early as possible.

 transaction_option_access_system_keys()

 Allows this transaction to read and modify system keys (those that start with the byte 0xFF). Implies raw_access.

 transaction_option_auto_throttle_tag()

 String identifier used to associated this transaction with a throttling group. Must not exceed 16 characters.

 transaction_option_bypass_unreadable()

 Allows get operations to read from sections of keyspace that have become unreadable because of versionstamp operations. These reads will view versionstamp operations as if they were set operations that did not fill in the versionstamp.

 transaction_option_causal_read_disable()

 transaction_option_causal_read_risky()

 The read version will be committed, and usually will be the latest committed, but might not be the latest committed in the event of a simultaneous fault and misbehaving clock.

 transaction_option_causal_write_risky()

 The transaction, if not self-conflicting, may be committed a second time after commit succeeds, in the event of a fault

 transaction_option_check_writes_enable()

 transaction_option_commit_on_first_proxy()

 Committing this transaction will bypass the normal load balancing across commit proxies and go directly to the specifically nominated 'first commit proxy'.

 transaction_option_debug_dump()

 transaction_option_debug_retry_logging()

 Optional transaction name

 transaction_option_debug_transaction_identifier()

 String identifier to be used when tracing or profiling this transaction. The identifier must not exceed 100 characters.

 transaction_option_durability_datacenter()

 transaction_option_durability_dev_null_is_web_scale()

 Deprecated

 transaction_option_durability_risky()

 transaction_option_expensive_clear_cost_estimation_enable()

 Asks storage servers for how many bytes a clear key range contains. Otherwise uses the location cache to roughly estimate this.

 transaction_option_first_in_batch()

 No other transactions will be applied before this transaction within the same commit version.

 transaction_option_include_port_in_address()

 Addresses returned by get_addresses_for_key include the port when enabled. As of api version 630, this option is enabled by default and setting this has no effect.

 transaction_option_initialize_new_database()

 This is a write-only transaction which sets the initial configuration. This option is designed for use by database system tools only.

 transaction_option_lock_aware()

 The transaction can read and write to locked databases, and is responsible for checking that it took the lock.

 transaction_option_log_transaction()

 Enables tracing for this transaction and logs results to the client trace logs. The DEBUG_TRANSACTION_IDENTIFIER option must be set before using this option, and client trace logging must be enabled to get log output.

 transaction_option_max_retry_delay()

 value in milliseconds of maximum delay

 transaction_option_next_write_no_write_conflict_range()

 The next write performed on this transaction will not generate a write conflict range. As a result, other transactions which read the key(s) being modified by the next write will not conflict with this transaction. Care needs to be taken when using this option on a transaction that is shared between multiple threads. When setting this option, write conflict ranges will be disabled on the next write operation, regardless of what thread it is on.

 transaction_option_priority_batch()

 Specifies that this transaction should be treated as low priority and that default priority transactions will be processed first. Batch priority transactions will also be throttled at load levels smaller than for other types of transactions and may be fully cut off in the event of machine failures. Useful for doing batch work simultaneously with latency-sensitive work

 transaction_option_priority_system_immediate()

 Specifies that this transaction should be treated as highest priority and that lower priority transactions should block behind this one. Use is discouraged outside of low-level tools

 transaction_option_raw_access()

 Allows this transaction to access the raw key-space when tenant mode is on.

 transaction_option_read_ahead_disable()

 Deprecated

 transaction_option_read_lock_aware()

 The transaction can read from locked databases.

 transaction_option_read_system_keys()

 Allows this transaction to read system keys (those that start with the byte 0xFF). Implies raw_access.

 transaction_option_read_your_writes_disable()

 Reads performed by a transaction will not see any prior mutations that occured in that transaction, instead seeing the value which was in the database at the transaction's read version. This option may provide a small performance benefit for the client, but also disables a number of client-side optimizations which are beneficial for transactions which tend to read and write the same keys within a single transaction. It is an error to set this option after performing any reads or writes on the transaction.

 transaction_option_report_conflicting_keys()

 The transaction can retrieve keys that are conflicting with other transactions.

 transaction_option_retry_limit()

 number of times to retry

 transaction_option_server_request_tracing()

 Sets an identifier for server tracing of this transaction. When committed, this identifier triggers logging when each part of the transaction authority encounters it, which is helpful in diagnosing slowness in misbehaving clusters. The identifier is randomly generated. When there is also a debug_transaction_identifier, both IDs are logged together.

 transaction_option_size_limit()

 value in bytes

 transaction_option_skip_grv_cache()

 Specifically instruct this transaction to NOT use cached GRV. Primarily used for the read version cache's background updater to avoid attempting to read a cached entry in specific situations.

 transaction_option_snapshot_ryw_disable()

 Snapshot read operations will not see the results of writes done in the same transaction. This was the default behavior prior to API version 300.

 transaction_option_snapshot_ryw_enable()

 Snapshot read operations will see the results of writes done in the same transaction. This is the default behavior.

 transaction_option_span_parent()

 A byte string of length 16 used to associate the span of this transaction with a parent

 transaction_option_special_key_space_enable_writes()

 By default, users are not allowed to write to special keys. Enable this option will implicitly enable all options required to achieve the configuration change.

 transaction_option_special_key_space_relaxed()

 By default, the special key space will only allow users to read from exactly one module (a subspace in the special key space). Use this option to allow reading from zero or more modules. Users who set this option should be prepared for new modules, which may have different behaviors than the modules they're currently reading. For example, a new module might block or return an error.

 transaction_option_tag()

 String identifier used to associated this transaction with a throttling group. Must not exceed 16 characters.

 transaction_option_timeout()

 value in milliseconds of timeout

 transaction_option_transaction_logging_enable()

 String identifier to be used in the logs when tracing this transaction. The identifier must not exceed 100 characters.

 transaction_option_transaction_logging_max_field_length()

 Maximum length of escaped key and value fields.

 transaction_option_use_grv_cache()

 Allows this transaction to use cached GRV from the database context. Defaults to off. Upon first usage, starts a background updater to periodically update the cache to avoid stale read versions.

 transaction_option_use_provisional_proxies()

 This option should only be used by tools which change the database configuration.

 transaction_option_used_during_commit_protection_disable()

 By default, operations that are performed on a transaction while it is being committed will not only fail themselves, but they will attempt to fail other in-flight operations (such as the commit) as well. This behavior is intended to help developers discover situations where operations could be unintentionally executed after the transaction has been reset. Setting this option removes that protection, causing only the offending operation to fail.

 Anchor for this section

Types

 Link to this type

 key()

 View Source

 Specs

 key() :: integer()

 Link to this type

 value()

 View Source

 Specs

 value() :: integer() | binary()

 Anchor for this section

Functions

 Link to this function

 conflict_range_type_read()

 View Source

 Specs

 conflict_range_type_read() :: key()

Used to add a read conflict range

 Link to this function

 conflict_range_type_write()

 View Source

 Specs

 conflict_range_type_write() :: key()

Used to add a write conflict range

 Link to this function

 database_option_datacenter_id()

 View Source

 Specs

 database_option_datacenter_id() :: key()

Hexadecimal ID
Type: String.t/0
Specify the datacenter ID that was passed to fdbserver processes running in the same datacenter as this client, for better location-aware load balancing.

 Link to this function

 database_option_location_cache_size()

 View Source

 Specs

 database_option_location_cache_size() :: key()

Max location cache entries
Type: integer/0
Set the size of the client location cache. Raising this value can boost performance in very large databases where clients access data in a near-random pattern. Defaults to 100000.

 Link to this function

 database_option_machine_id()

 View Source

 Specs

 database_option_machine_id() :: key()

Hexadecimal ID
Type: String.t/0
Specify the machine ID that was passed to fdbserver processes running on the same machine as this client, for better location-aware load balancing.

 Link to this function

 database_option_max_watches()

 View Source

 Specs

 database_option_max_watches() :: key()

Max outstanding watches
Type: integer/0
Set the maximum number of watches allowed to be outstanding on a database connection. Increasing this number could result in increased resource usage. Reducing this number will not cancel any outstanding watches. Defaults to 10000 and cannot be larger than 1000000.

 Link to this function

 database_option_snapshot_ryw_disable()

 View Source

 Specs

 database_option_snapshot_ryw_disable() :: key()

Snapshot read operations will not see the results of writes done in the same transaction. This was the default behavior prior to API version 300.

 Link to this function

 database_option_snapshot_ryw_enable()

 View Source

 Specs

 database_option_snapshot_ryw_enable() :: key()

Snapshot read operations will see the results of writes done in the same transaction. This is the default behavior.

 Link to this function

 database_option_test_causal_read_risky()

 View Source

 Specs

 database_option_test_causal_read_risky() :: key()

An integer between 0 and 100 (default is 0) expressing the probability that a client will verify it can't read stale data whenever it detects a recovery.

 Link to this function

 database_option_transaction_bypass_unreadable()

 View Source

 Specs

 database_option_transaction_bypass_unreadable() :: key()

Allows get operations to read from sections of keyspace that have become unreadable because of versionstamp operations. This sets the bypass_unreadable option of each transaction created by this database. See the transaction option description for more information.

 Link to this function

 database_option_transaction_causal_read_risky()

 View Source

 Specs

 database_option_transaction_causal_read_risky() :: key()

The read version will be committed, and usually will be the latest committed, but might not be the latest committed in the event of a simultaneous fault and misbehaving clock.

 Link to this function

 database_option_transaction_include_port_in_address()

 View Source

 Specs

 database_option_transaction_include_port_in_address() :: key()

Deprecated. Addresses returned by get_addresses_for_key include the port when enabled. As of api version 630, this option is enabled by default and setting this has no effect.

 Link to this function

 database_option_transaction_logging_max_field_length()

 View Source

 Specs

 database_option_transaction_logging_max_field_length() :: key()

Maximum length of escaped key and value fields.
Type: integer/0
Sets the maximum escaped length of key and value fields to be logged to the trace file via the LOG_TRANSACTION option. This sets the transaction_logging_max_field_length option of each transaction created by this database. See the transaction option description for more information.

 Link to this function

 database_option_transaction_max_retry_delay()

 View Source

 Specs

 database_option_transaction_max_retry_delay() :: key()

value in milliseconds of maximum delay
Type: integer/0
Set the maximum amount of backoff delay incurred in the call to onError if the error is retryable. This sets the max_retry_delay option of each transaction created by this database. See the transaction option description for more information.

 Link to this function

 database_option_transaction_retry_limit()

 View Source

 Specs

 database_option_transaction_retry_limit() :: key()

number of times to retry
Type: integer/0
Set a maximum number of retries after which additional calls to onError will throw the most recently seen error code. This sets the retry_limit option of each transaction created by this database. See the transaction option description for more information.

 Link to this function

 database_option_transaction_size_limit()

 View Source

 Specs

 database_option_transaction_size_limit() :: key()

value in bytes
Type: integer/0
Set the maximum transaction size in bytes. This sets the size_limit option on each transaction created by this database. See the transaction option description for more information.

 Link to this function

 database_option_transaction_timeout()

 View Source

 Specs

 database_option_transaction_timeout() :: key()

value in milliseconds of timeout
Type: integer/0
Set a timeout in milliseconds which, when elapsed, will cause each transaction automatically to be cancelled. This sets the timeout option of each transaction created by this database. See the transaction option description for more information. Using this option requires that the API version is 610 or higher.

 Link to this function

 database_option_use_config_database()

 View Source

 Specs

 database_option_use_config_database() :: key()

Use configuration database.

 Link to this function

 error_predicate_maybe_committed()

 View Source

 Specs

 error_predicate_maybe_committed() :: key()

Returns true if the error indicates the transaction may have succeeded, though not in a way the system can verify.

 Link to this function

 error_predicate_retryable()

 View Source

 Specs

 error_predicate_retryable() :: key()

Returns true if the error indicates the operations in the transactions should be retried because of transient error.

 Link to this function

 error_predicate_retryable_not_committed()

 View Source

 Specs

 error_predicate_retryable_not_committed() :: key()

Returns true if the error indicates the transaction has not committed, though in a way that can be retried.

 Link to this function

 mutation_type_add()

 View Source

 Specs

 mutation_type_add() :: key()

addend
Type: binary/0
Performs an addition of little-endian integers. If the existing value in the database is not present or shorter than param, it is first extended to the length of param with zero bytes. If param is shorter than the existing value in the database, the existing value is truncated to match the length of param. The integers to be added must be stored in a little-endian representation. They can be signed in two's complement representation or unsigned. You can add to an integer at a known offset in the value by prepending the appropriate number of zero bytes to param and padding with zero bytes to match the length of the value. However, this offset technique requires that you know the addition will not cause the integer field within the value to overflow.

 Link to this function

 mutation_type_and()

 View Source

 Specs

 mutation_type_and() :: key()

value with which to perform bitwise and
Type: binary/0
Deprecated

 Link to this function

 mutation_type_append_if_fits()

 View Source

 Specs

 mutation_type_append_if_fits() :: key()

value to append to the database value
Type: binary/0
Appends param to the end of the existing value already in the database at the given key (or creates the key and sets the value to param if the key is empty). This will only append the value if the final concatenated value size is less than or equal to the maximum value size (i.e., if it fits). WARNING: No error is surfaced back to the user if the final value is too large because the mutation will not be applied until after the transaction has been committed. Therefore, it is only safe to use this mutation type if one can guarantee that one will keep the total value size under the maximum size.

 Link to this function

 mutation_type_bit_and()

 View Source

 Specs

 mutation_type_bit_and() :: key()

value with which to perform bitwise and
Type: binary/0
Performs a bitwise and operation. If the existing value in the database is not present, then param is stored in the database. If the existing value in the database is shorter than param, it is first extended to the length of param with zero bytes. If param is shorter than the existing value in the database, the existing value is truncated to match the length of param.

 Link to this function

 mutation_type_bit_or()

 View Source

 Specs

 mutation_type_bit_or() :: key()

value with which to perform bitwise or
Type: binary/0
Performs a bitwise or operation. If the existing value in the database is not present or shorter than param, it is first extended to the length of param with zero bytes. If param is shorter than the existing value in the database, the existing value is truncated to match the length of param.

 Link to this function

 mutation_type_bit_xor()

 View Source

 Specs

 mutation_type_bit_xor() :: key()

value with which to perform bitwise xor
Type: binary/0
Performs a bitwise xor operation. If the existing value in the database is not present or shorter than param, it is first extended to the length of param with zero bytes. If param is shorter than the existing value in the database, the existing value is truncated to match the length of param.

 Link to this function

 mutation_type_byte_max()

 View Source

 Specs

 mutation_type_byte_max() :: key()

value to check against database value
Type: binary/0
Performs lexicographic comparison of byte strings. If the existing value in the database is not present, then param is stored. Otherwise the larger of the two values is then stored in the database.

 Link to this function

 mutation_type_byte_min()

 View Source

 Specs

 mutation_type_byte_min() :: key()

value to check against database value
Type: binary/0
Performs lexicographic comparison of byte strings. If the existing value in the database is not present, then param is stored. Otherwise the smaller of the two values is then stored in the database.

 Link to this function

 mutation_type_compare_and_clear()

 View Source

 Specs

 mutation_type_compare_and_clear() :: key()

Value to compare with
Type: binary/0
Performs an atomic compare and clear operation. If the existing value in the database is equal to the given value, then given key is cleared.

 Link to this function

 mutation_type_max()

 View Source

 Specs

 mutation_type_max() :: key()

value to check against database value
Type: binary/0
Performs a little-endian comparison of byte strings. If the existing value in the database is not present or shorter than param, it is first extended to the length of param with zero bytes. If param is shorter than the existing value in the database, the existing value is truncated to match the length of param. The larger of the two values is then stored in the database.

 Link to this function

 mutation_type_min()

 View Source

 Specs

 mutation_type_min() :: key()

value to check against database value
Type: binary/0
Performs a little-endian comparison of byte strings. If the existing value in the database is not present, then param is stored in the database. If the existing value in the database is shorter than param, it is first extended to the length of param with zero bytes. If param is shorter than the existing value in the database, the existing value is truncated to match the length of param. The smaller of the two values is then stored in the database.

 Link to this function

 mutation_type_or()

 View Source

 Specs

 mutation_type_or() :: key()

value with which to perform bitwise or
Type: binary/0
Deprecated

 Link to this function

 mutation_type_set_versionstamped_key()

 View Source

 Specs

 mutation_type_set_versionstamped_key() :: key()

value to which to set the transformed key
Type: binary/0
Transforms key using a versionstamp for the transaction. Sets the transformed key in the database to param. The key is transformed by removing the final four bytes from the key and reading those as a little-Endian 32-bit integer to get a position pos. The 10 bytes of the key from pos to pos + 10 are replaced with the versionstamp of the transaction used. The first byte of the key is position 0. A versionstamp is a 10 byte, unique, monotonically (but not sequentially) increasing value for each committed transaction. The first 8 bytes are the committed version of the database (serialized in big-Endian order). The last 2 bytes are monotonic in the serialization order for transactions. WARNING: At this time, versionstamps are compatible with the Tuple layer only in the Java, Python, and Go bindings. Also, note that prior to API version 520, the offset was computed from only the final two bytes rather than the final four bytes.

 Link to this function

 mutation_type_set_versionstamped_value()

 View Source

 Specs

 mutation_type_set_versionstamped_value() :: key()

value to versionstamp and set
Type: binary/0
Transforms param using a versionstamp for the transaction. Sets the key given to the transformed param. The parameter is transformed by removing the final four bytes from param and reading those as a little-Endian 32-bit integer to get a position pos. The 10 bytes of the parameter from pos to pos + 10 are replaced with the versionstamp of the transaction used. The first byte of the parameter is position 0. A versionstamp is a 10 byte, unique, monotonically (but not sequentially) increasing value for each committed transaction. The first 8 bytes are the committed version of the database (serialized in big-Endian order). The last 2 bytes are monotonic in the serialization order for transactions. WARNING: At this time, versionstamps are compatible with the Tuple layer only in the Java, Python, and Go bindings. Also, note that prior to API version 520, the versionstamp was always placed at the beginning of the parameter rather than computing an offset.

 Link to this function

 mutation_type_xor()

 View Source

 Specs

 mutation_type_xor() :: key()

value with which to perform bitwise xor
Type: binary/0
Deprecated

 Link to this function

 network_option_buggify_disable()

 View Source

 Specs

 network_option_buggify_disable() :: key()

 Link to this function

 network_option_buggify_enable()

 View Source

 Specs

 network_option_buggify_enable() :: key()

 Link to this function

 network_option_buggify_section_activated_probability()

 View Source

 Specs

 network_option_buggify_section_activated_probability() :: key()

probability expressed as a percentage between 0 and 100
Type: integer/0
Set the probability of a BUGGIFY section being active for the current execution. Only applies to code paths first traversed AFTER this option is changed.

 Link to this function

 network_option_buggify_section_fired_probability()

 View Source

 Specs

 network_option_buggify_section_fired_probability() :: key()

probability expressed as a percentage between 0 and 100
Type: integer/0
Set the probability of an active BUGGIFY section being fired

 Link to this function

 network_option_callbacks_on_external_threads()

 View Source

 Specs

 network_option_callbacks_on_external_threads() :: key()

If set, callbacks from external client libraries can be called from threads created by the FoundationDB client library. Otherwise, callbacks will be called from either the thread used to add the callback or the network thread. Setting this option can improve performance when connected using an external client, but may not be safe to use in all environments. Must be set before setting up the network. WARNING: This feature is considered experimental at this time.

 Link to this function

 network_option_client_buggify_disable()

 View Source

 Specs

 network_option_client_buggify_disable() :: key()

Disable client buggify

 Link to this function

 network_option_client_buggify_enable()

 View Source

 Specs

 network_option_client_buggify_enable() :: key()

Enable client buggify - will make requests randomly fail (intended for client testing)

 Link to this function

 network_option_client_buggify_section_activated_probability()

 View Source

 Specs

 network_option_client_buggify_section_activated_probability() :: key()

probability expressed as a percentage between 0 and 100
Type: integer/0
Set the probability of a CLIENT_BUGGIFY section being active for the current execution.

 Link to this function

 network_option_client_buggify_section_fired_probability()

 View Source

 Specs

 network_option_client_buggify_section_fired_probability() :: key()

probability expressed as a percentage between 0 and 100
Type: integer/0
Set the probability of an active CLIENT_BUGGIFY section being fired. A section will only fire if it was activated

 Link to this function

 network_option_client_threads_per_version()

 View Source

 Specs

 network_option_client_threads_per_version() :: key()

Number of client threads to be spawned. Each cluster will be serviced by a single client thread.
Type: integer/0
Spawns multiple worker threads for each version of the client that is loaded. Setting this to a number greater than one implies disable_local_client.

 Link to this function

 network_option_cluster_file()

 View Source

 Specs

 network_option_cluster_file() :: key()

path to cluster file
Type: String.t/0
Deprecated

 Link to this function

 network_option_disable_client_statistics_logging()

 View Source

 Specs

 network_option_disable_client_statistics_logging() :: key()

Disables logging of client statistics, such as sampled transaction activity.

 Link to this function

 network_option_disable_local_client()

 View Source

 Specs

 network_option_disable_local_client() :: key()

Prevents connections through the local client, allowing only connections through externally loaded client libraries.

 Link to this function

 network_option_disable_multi_version_client_api()

 View Source

 Specs

 network_option_disable_multi_version_client_api() :: key()

Disables the multi-version client API and instead uses the local client directly. Must be set before setting up the network.

 Link to this function

 network_option_distributed_client_tracer()

 View Source

 Specs

 network_option_distributed_client_tracer() :: key()

Distributed tracer type. Choose from none, log_file, or network_lossy
Type: String.t/0
Set a tracer to run on the client. Should be set to the same value as the tracer set on the server.

 Link to this function

 network_option_enable_run_loop_profiling()

 View Source

 Specs

 network_option_enable_run_loop_profiling() :: key()

Enables debugging feature to perform run loop profiling. Requires trace logging to be enabled. WARNING: this feature is not recommended for use in production.

 Link to this function

 network_option_enable_slow_task_profiling()

 View Source

 Specs

 network_option_enable_slow_task_profiling() :: key()

Deprecated

 Link to this function

 network_option_external_client()

 View Source

 Specs

 network_option_external_client() :: key()

This option is set automatically on all clients loaded externally using the multi-version API.

 Link to this function

 network_option_external_client_directory()

 View Source

 Specs

 network_option_external_client_directory() :: key()

path to directory containing client libraries
Type: String.t/0
Searches the specified path for dynamic libraries and adds them to the list of client libraries for use by the multi-version client API. Must be set before setting up the network.

 Link to this function

 network_option_external_client_library()

 View Source

 Specs

 network_option_external_client_library() :: key()

path to client library
Type: String.t/0
Adds an external client library for use by the multi-version client API. Must be set before setting up the network.

 Link to this function

 network_option_external_client_transport_id()

 View Source

 Specs

 network_option_external_client_transport_id() :: key()

Transport ID for the child connection
Type: integer/0
This option tells a child on a multiversion client what transport ID to use.

 Link to this function

 network_option_knob()

 View Source

 Specs

 network_option_knob() :: key()

knob_name=knob_value
Type: String.t/0
Set internal tuning or debugging knobs

 Link to this function

 network_option_local_address()

 View Source

 Specs

 network_option_local_address() :: key()

IP:PORT
Type: String.t/0
Deprecated

 Link to this function

 network_option_supported_client_versions()

 View Source

 Specs

 network_option_supported_client_versions() :: key()

[release version],[source version],[protocol version];...
Type: String.t/0
This option is set automatically to communicate the list of supported clients to the active client.

 Link to this function

 network_option_tls_ca_bytes()

 View Source

 Specs

 network_option_tls_ca_bytes() :: key()

ca bundle
Type: binary/0
Set the ca bundle

 Link to this function

 network_option_tls_ca_path()

 View Source

 Specs

 network_option_tls_ca_path() :: key()

file path
Type: String.t/0
Set the file from which to load the certificate authority bundle

 Link to this function

 network_option_tls_cert_bytes()

 View Source

 Specs

 network_option_tls_cert_bytes() :: key()

certificates
Type: binary/0
Set the certificate chain

 Link to this function

 network_option_tls_cert_path()

 View Source

 Specs

 network_option_tls_cert_path() :: key()

file path
Type: String.t/0
Set the file from which to load the certificate chain

 Link to this function

 network_option_tls_key_bytes()

 View Source

 Specs

 network_option_tls_key_bytes() :: key()

key
Type: binary/0
Set the private key corresponding to your own certificate

 Link to this function

 network_option_tls_key_path()

 View Source

 Specs

 network_option_tls_key_path() :: key()

file path
Type: String.t/0
Set the file from which to load the private key corresponding to your own certificate

 Link to this function

 network_option_tls_password()

 View Source

 Specs

 network_option_tls_password() :: key()

key passphrase
Type: String.t/0
Set the passphrase for encrypted private key. Password should be set before setting the key for the password to be used.

 Link to this function

 network_option_tls_plugin()

 View Source

 Specs

 network_option_tls_plugin() :: key()

file path or linker-resolved name
Type: String.t/0
Deprecated

 Link to this function

 network_option_tls_verify_peers()

 View Source

 Specs

 network_option_tls_verify_peers() :: key()

verification pattern
Type: binary/0
Set the peer certificate field verification criteria

 Link to this function

 network_option_trace_clock_source()

 View Source

 Specs

 network_option_trace_clock_source() :: key()

Trace clock source
Type: String.t/0
Select clock source for trace files. now (the default) or realtime are supported.

 Link to this function

 network_option_trace_enable()

 View Source

 Specs

 network_option_trace_enable() :: key()

path to output directory (or NULL for current working directory)
Type: String.t/0
Enables trace output to a file in a directory of the clients choosing

 Link to this function

 network_option_trace_file_identifier()

 View Source

 Specs

 network_option_trace_file_identifier() :: key()

The identifier that will be part of all trace file names
Type: String.t/0
Once provided, this string will be used to replace the port/PID in the log file names.

 Link to this function

 network_option_trace_format()

 View Source

 Specs

 network_option_trace_format() :: key()

Format of trace files
Type: String.t/0
Select the format of the log files. xml (the default) and json are supported.

 Link to this function

 network_option_trace_log_group()

 View Source

 Specs

 network_option_trace_log_group() :: key()

value of the LogGroup attribute
Type: String.t/0
Sets the 'LogGroup' attribute with the specified value for all events in the trace output files. The default log group is 'default'.

 Link to this function

 network_option_trace_max_logs_size()

 View Source

 Specs

 network_option_trace_max_logs_size() :: key()

max total size of trace files
Type: integer/0
Sets the maximum size of all the trace output files put together. This value should be in the range [0, INT64_MAX]. If the value is set to 0, there is no limit on the total size of the files. The default is a maximum size of 104,857,600 bytes. If the default roll size is used, this means that a maximum of 10 trace files will be written at a time.

 Link to this function

 network_option_trace_partial_file_suffix()

 View Source

 Specs

 network_option_trace_partial_file_suffix() :: key()

Append this suffix to partially written log files. When a log file is complete, it is renamed to remove the suffix. No separator is added between the file and the suffix. If you want to add a file extension, you should include the separator - e.g. '.tmp' instead of 'tmp' to add the 'tmp' extension.
Type: String.t/0
Set file suffix for partially written log files.

 Link to this function

 network_option_trace_roll_size()

 View Source

 Specs

 network_option_trace_roll_size() :: key()

max size of a single trace output file
Type: integer/0
Sets the maximum size in bytes of a single trace output file. This value should be in the range [0, INT64_MAX]. If the value is set to 0, there is no limit on individual file size. The default is a maximum size of 10,485,760 bytes.

 Link to this function

 streaming_mode_exact()

 View Source

 Specs

 streaming_mode_exact() :: key()

Infrequently used. The client has passed a specific row limit and wants that many rows delivered in a single batch. Because of iterator operation in client drivers make request batches transparent to the user, consider WANT_ALL StreamingMode instead. A row limit must be specified if this mode is used.

 Link to this function

 streaming_mode_iterator()

 View Source

 Specs

 streaming_mode_iterator() :: key()

The default. The client doesn't know how much of the range it is likely to used and wants different performance concerns to be balanced. Only a small portion of data is transferred to the client initially (in order to minimize costs if the client doesn't read the entire range), and as the caller iterates over more items in the range larger batches will be transferred in order to minimize latency. After enough iterations, the iterator mode will eventually reach the same byte limit as WANT_ALL

 Link to this function

 streaming_mode_large()

 View Source

 Specs

 streaming_mode_large() :: key()

Infrequently used. Transfer data in batches large enough to be, in a high-concurrency environment, nearly as efficient as possible. If the client stops iteration early, some disk and network bandwidth may be wasted. The batch size may still be too small to allow a single client to get high throughput from the database, so if that is what you need consider the SERIAL StreamingMode.

 Link to this function

 streaming_mode_medium()

 View Source

 Specs

 streaming_mode_medium() :: key()

Infrequently used. Transfer data in batches sized in between small and large.

 Link to this function

 streaming_mode_serial()

 View Source

 Specs

 streaming_mode_serial() :: key()

Transfer data in batches large enough that an individual client can get reasonable read bandwidth from the database. If the client stops iteration early, considerable disk and network bandwidth may be wasted.

 Link to this function

 streaming_mode_small()

 View Source

 Specs

 streaming_mode_small() :: key()

Infrequently used. Transfer data in batches small enough to not be much more expensive than reading individual rows, to minimize cost if iteration stops early.

 Link to this function

 streaming_mode_want_all()

 View Source

 Specs

 streaming_mode_want_all() :: key()

Client intends to consume the entire range and would like it all transferred as early as possible.

 Link to this function

 transaction_option_access_system_keys()

 View Source

 Specs

 transaction_option_access_system_keys() :: key()

Allows this transaction to read and modify system keys (those that start with the byte 0xFF). Implies raw_access.

 Link to this function

 transaction_option_auto_throttle_tag()

 View Source

 Specs

 transaction_option_auto_throttle_tag() :: key()

String identifier used to associated this transaction with a throttling group. Must not exceed 16 characters.
Type: String.t/0
Adds a tag to the transaction that can be used to apply manual or automatic targeted throttling. At most 5 tags can be set on a transaction.

 Link to this function

 transaction_option_bypass_unreadable()

 View Source

 Specs

 transaction_option_bypass_unreadable() :: key()

Allows get operations to read from sections of keyspace that have become unreadable because of versionstamp operations. These reads will view versionstamp operations as if they were set operations that did not fill in the versionstamp.

 Link to this function

 transaction_option_causal_read_disable()

 View Source

 Specs

 transaction_option_causal_read_disable() :: key()

 Link to this function

 transaction_option_causal_read_risky()

 View Source

 Specs

 transaction_option_causal_read_risky() :: key()

The read version will be committed, and usually will be the latest committed, but might not be the latest committed in the event of a simultaneous fault and misbehaving clock.

 Link to this function

 transaction_option_causal_write_risky()

 View Source

 Specs

 transaction_option_causal_write_risky() :: key()

The transaction, if not self-conflicting, may be committed a second time after commit succeeds, in the event of a fault

 Link to this function

 transaction_option_check_writes_enable()

 View Source

 Specs

 transaction_option_check_writes_enable() :: key()

 Link to this function

 transaction_option_commit_on_first_proxy()

 View Source

 Specs

 transaction_option_commit_on_first_proxy() :: key()

Committing this transaction will bypass the normal load balancing across commit proxies and go directly to the specifically nominated 'first commit proxy'.

 Link to this function

 transaction_option_debug_dump()

 View Source

 Specs

 transaction_option_debug_dump() :: key()

 Link to this function

 transaction_option_debug_retry_logging()

 View Source

 Specs

 transaction_option_debug_retry_logging() :: key()

Optional transaction name
Type: String.t/0

 Link to this function

 transaction_option_debug_transaction_identifier()

 View Source

 Specs

 transaction_option_debug_transaction_identifier() :: key()

String identifier to be used when tracing or profiling this transaction. The identifier must not exceed 100 characters.
Type: String.t/0
Sets a client provided identifier for the transaction that will be used in scenarios like tracing or profiling. Client trace logging or transaction profiling must be separately enabled.

 Link to this function

 transaction_option_durability_datacenter()

 View Source

 Specs

 transaction_option_durability_datacenter() :: key()

 Link to this function

 transaction_option_durability_dev_null_is_web_scale()

 View Source

 Specs

 transaction_option_durability_dev_null_is_web_scale() :: key()

Deprecated

 Link to this function

 transaction_option_durability_risky()

 View Source

 Specs

 transaction_option_durability_risky() :: key()

 Link to this function

 transaction_option_expensive_clear_cost_estimation_enable()

 View Source

 Specs

 transaction_option_expensive_clear_cost_estimation_enable() :: key()

Asks storage servers for how many bytes a clear key range contains. Otherwise uses the location cache to roughly estimate this.

 Link to this function

 transaction_option_first_in_batch()

 View Source

 Specs

 transaction_option_first_in_batch() :: key()

No other transactions will be applied before this transaction within the same commit version.

 Link to this function

 transaction_option_include_port_in_address()

 View Source

 Specs

 transaction_option_include_port_in_address() :: key()

Addresses returned by get_addresses_for_key include the port when enabled. As of api version 630, this option is enabled by default and setting this has no effect.

 Link to this function

 transaction_option_initialize_new_database()

 View Source

 Specs

 transaction_option_initialize_new_database() :: key()

This is a write-only transaction which sets the initial configuration. This option is designed for use by database system tools only.

 Link to this function

 transaction_option_lock_aware()

 View Source

 Specs

 transaction_option_lock_aware() :: key()

The transaction can read and write to locked databases, and is responsible for checking that it took the lock.

 Link to this function

 transaction_option_log_transaction()

 View Source

 Specs

 transaction_option_log_transaction() :: key()

Enables tracing for this transaction and logs results to the client trace logs. The DEBUG_TRANSACTION_IDENTIFIER option must be set before using this option, and client trace logging must be enabled to get log output.

 Link to this function

 transaction_option_max_retry_delay()

 View Source

 Specs

 transaction_option_max_retry_delay() :: key()

value in milliseconds of maximum delay
Type: integer/0
Set the maximum amount of backoff delay incurred in the call to onError if the error is retryable. Defaults to 1000 ms. Valid parameter values are [0, INT_MAX]. If the maximum retry delay is less than the current retry delay of the transaction, then the current retry delay will be clamped to the maximum retry delay. Prior to API version 610, like all other transaction options, the maximum retry delay must be reset after a call to onError. If the API version is 610 or greater, the retry limit is not reset after an onError call. Note that at all API versions, it is safe and legal to set the maximum retry delay each time the transaction begins, so most code written assuming the older behavior can be upgraded to the newer behavior without requiring any modification, and the caller is not required to implement special logic in retry loops to only conditionally set this option.

 Link to this function

 transaction_option_next_write_no_write_conflict_range()

 View Source

 Specs

 transaction_option_next_write_no_write_conflict_range() :: key()

The next write performed on this transaction will not generate a write conflict range. As a result, other transactions which read the key(s) being modified by the next write will not conflict with this transaction. Care needs to be taken when using this option on a transaction that is shared between multiple threads. When setting this option, write conflict ranges will be disabled on the next write operation, regardless of what thread it is on.

 Link to this function

 transaction_option_priority_batch()

 View Source

 Specs

 transaction_option_priority_batch() :: key()

Specifies that this transaction should be treated as low priority and that default priority transactions will be processed first. Batch priority transactions will also be throttled at load levels smaller than for other types of transactions and may be fully cut off in the event of machine failures. Useful for doing batch work simultaneously with latency-sensitive work

 Link to this function

 transaction_option_priority_system_immediate()

 View Source

 Specs

 transaction_option_priority_system_immediate() :: key()

Specifies that this transaction should be treated as highest priority and that lower priority transactions should block behind this one. Use is discouraged outside of low-level tools

 Link to this function

 transaction_option_raw_access()

 View Source

 Specs

 transaction_option_raw_access() :: key()

Allows this transaction to access the raw key-space when tenant mode is on.

 Link to this function

 transaction_option_read_ahead_disable()

 View Source

 Specs

 transaction_option_read_ahead_disable() :: key()

Deprecated

 Link to this function

 transaction_option_read_lock_aware()

 View Source

 Specs

 transaction_option_read_lock_aware() :: key()

The transaction can read from locked databases.

 Link to this function

 transaction_option_read_system_keys()

 View Source

 Specs

 transaction_option_read_system_keys() :: key()

Allows this transaction to read system keys (those that start with the byte 0xFF). Implies raw_access.

 Link to this function

 transaction_option_read_your_writes_disable()

 View Source

 Specs

 transaction_option_read_your_writes_disable() :: key()

Reads performed by a transaction will not see any prior mutations that occured in that transaction, instead seeing the value which was in the database at the transaction's read version. This option may provide a small performance benefit for the client, but also disables a number of client-side optimizations which are beneficial for transactions which tend to read and write the same keys within a single transaction. It is an error to set this option after performing any reads or writes on the transaction.

 Link to this function

 transaction_option_report_conflicting_keys()

 View Source

 Specs

 transaction_option_report_conflicting_keys() :: key()

The transaction can retrieve keys that are conflicting with other transactions.

 Link to this function

 transaction_option_retry_limit()

 View Source

 Specs

 transaction_option_retry_limit() :: key()

number of times to retry
Type: integer/0
Set a maximum number of retries after which additional calls to onError will throw the most recently seen error code. Valid parameter values are [-1, INT_MAX]. If set to -1, will disable the retry limit. Prior to API version 610, like all other transaction options, the retry limit must be reset after a call to onError. If the API version is 610 or greater, the retry limit is not reset after an onError call. Note that at all API versions, it is safe and legal to set the retry limit each time the transaction begins, so most code written assuming the older behavior can be upgraded to the newer behavior without requiring any modification, and the caller is not required to implement special logic in retry loops to only conditionally set this option.

 Link to this function

 transaction_option_server_request_tracing()

 View Source

 Specs

 transaction_option_server_request_tracing() :: key()

Sets an identifier for server tracing of this transaction. When committed, this identifier triggers logging when each part of the transaction authority encounters it, which is helpful in diagnosing slowness in misbehaving clusters. The identifier is randomly generated. When there is also a debug_transaction_identifier, both IDs are logged together.

 Link to this function

 transaction_option_size_limit()

 View Source

 Specs

 transaction_option_size_limit() :: key()

value in bytes
Type: integer/0
Set the transaction size limit in bytes. The size is calculated by combining the sizes of all keys and values written or mutated, all key ranges cleared, and all read and write conflict ranges. (In other words, it includes the total size of all data included in the request to the cluster to commit the transaction.) Large transactions can cause performance problems on FoundationDB clusters, so setting this limit to a smaller value than the default can help prevent the client from accidentally degrading the cluster's performance. This value must be at least 32 and cannot be set to higher than 10,000,000, the default transaction size limit.

 Link to this function

 transaction_option_skip_grv_cache()

 View Source

 Specs

 transaction_option_skip_grv_cache() :: key()

Specifically instruct this transaction to NOT use cached GRV. Primarily used for the read version cache's background updater to avoid attempting to read a cached entry in specific situations.

 Link to this function

 transaction_option_snapshot_ryw_disable()

 View Source

 Specs

 transaction_option_snapshot_ryw_disable() :: key()

Snapshot read operations will not see the results of writes done in the same transaction. This was the default behavior prior to API version 300.

 Link to this function

 transaction_option_snapshot_ryw_enable()

 View Source

 Specs

 transaction_option_snapshot_ryw_enable() :: key()

Snapshot read operations will see the results of writes done in the same transaction. This is the default behavior.

 Link to this function

 transaction_option_span_parent()

 View Source

 Specs

 transaction_option_span_parent() :: key()

A byte string of length 16 used to associate the span of this transaction with a parent
Type: binary/0
Adds a parent to the Span of this transaction. Used for transaction tracing. A span can be identified with any 16 bytes

 Link to this function

 transaction_option_special_key_space_enable_writes()

 View Source

 Specs

 transaction_option_special_key_space_enable_writes() :: key()

By default, users are not allowed to write to special keys. Enable this option will implicitly enable all options required to achieve the configuration change.

 Link to this function

 transaction_option_special_key_space_relaxed()

 View Source

 Specs

 transaction_option_special_key_space_relaxed() :: key()

By default, the special key space will only allow users to read from exactly one module (a subspace in the special key space). Use this option to allow reading from zero or more modules. Users who set this option should be prepared for new modules, which may have different behaviors than the modules they're currently reading. For example, a new module might block or return an error.

 Link to this function

 transaction_option_tag()

 View Source

 Specs

 transaction_option_tag() :: key()

String identifier used to associated this transaction with a throttling group. Must not exceed 16 characters.
Type: String.t/0
Adds a tag to the transaction that can be used to apply manual targeted throttling. At most 5 tags can be set on a transaction.

 Link to this function

 transaction_option_timeout()

 View Source

 Specs

 transaction_option_timeout() :: key()

value in milliseconds of timeout
Type: integer/0
Set a timeout in milliseconds which, when elapsed, will cause the transaction automatically to be cancelled. Valid parameter values are [0, INT_MAX]. If set to 0, will disable all timeouts. All pending and any future uses of the transaction will throw an exception. The transaction can be used again after it is reset. Prior to API version 610, like all other transaction options, the timeout must be reset after a call to onError. If the API version is 610 or greater, the timeout is not reset after an onError call. This allows the user to specify a longer timeout on specific transactions than the default timeout specified through the transaction_timeout database option without the shorter database timeout cancelling transactions that encounter a retryable error. Note that at all API versions, it is safe and legal to set the timeout each time the transaction begins, so most code written assuming the older behavior can be upgraded to the newer behavior without requiring any modification, and the caller is not required to implement special logic in retry loops to only conditionally set this option.

 Link to this function

 transaction_option_transaction_logging_enable()

 View Source

 Specs

 transaction_option_transaction_logging_enable() :: key()

String identifier to be used in the logs when tracing this transaction. The identifier must not exceed 100 characters.
Type: String.t/0
Deprecated

 Link to this function

 transaction_option_transaction_logging_max_field_length()

 View Source

 Specs

 transaction_option_transaction_logging_max_field_length() :: key()

Maximum length of escaped key and value fields.
Type: integer/0
Sets the maximum escaped length of key and value fields to be logged to the trace file via the LOG_TRANSACTION option, after which the field will be truncated. A negative value disables truncation.

 Link to this function

 transaction_option_use_grv_cache()

 View Source

 Specs

 transaction_option_use_grv_cache() :: key()

Allows this transaction to use cached GRV from the database context. Defaults to off. Upon first usage, starts a background updater to periodically update the cache to avoid stale read versions.

 Link to this function

 transaction_option_use_provisional_proxies()

 View Source

 Specs

 transaction_option_use_provisional_proxies() :: key()

This option should only be used by tools which change the database configuration.

 Link to this function

 transaction_option_used_during_commit_protection_disable()

 View Source

 Specs

 transaction_option_used_during_commit_protection_disable() :: key()

By default, operations that are performed on a transaction while it is being committed will not only fail themselves, but they will attempt to fail other in-flight operations (such as the commit) as well. This behavior is intended to help developers discover situations where operations could be unintentionally executed after the transaction has been reset. Setting this option removes that protection, causing only the offending operation to fail.

FDB.RangeResult

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.RangeResult{
 has_more: boolean(),
 key_values: [{any(), any()}],
 next: (FDB.Transaction.t() -> t())
}

FDB.Transaction

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add_conflict_key(transaction, key, type, options \\ %{})

 add_conflict_range(transaction, key_range, type, options \\ %{})

 Adds a conflict range to a transaction without performing the
associated read or write.

 atomic_op(transaction, key, operation_type, param, options \\ %{})

 Modify the database snapshot represented by transaction to perform
the operation indicated by operation_type with operand param to the
value stored by the given key.

 cancel(transaction)

 Cancels the transaction. All pending or future uses of the
transaction will return a transaction_cancelled error.

 clear(transaction, key, options \\ %{})

 Modifies the database snapshot represented by transaction to remove
the given key from the database. If the key was not previously
present in the database, there is no effect.

 clear_range(transaction, key_range, options \\ %{})

 Modify the database snapshot represented by transaction to remove
all keys (if any) which are lexicographically greater than or equal
to the given begin key and lexicographically less than the given end
key.

 commit(transaction)

 Attempts to commit the sets and clears previously applied to the
database snapshot represented by transaction to the actual
database. The commit may or may not succeed – in particular, if a
conflicting transaction previously committed, then the commit must
fail in order to preserve transactional isolation. If the commit
does succeed, the transaction is durably committed to the database
and all subsequently started transactions will observe its effects.

 commit_q(transaction)

 Async version of commit/1

 create(database, defaults \\ %{})

 Creates a new transaction.

 get(transaction, key, options \\ %{})

 Reads a value from the database snapshot represented by transaction.

 get_addresses_for_key(transaction, key)

 Returns a list of public network addresses as strings, one for each
of the storage servers responsible for storing key and its
associated value.

 get_addresses_for_key_q(transaction, key, options \\ %{})

 Async version of get_addresses_for_key/2

 get_approximate_size(transaction)

 Returns the approximate transaction size so far in the returned future,
which is the summation of the estimated size of mutations,
read conflict ranges, and write conflict ranges.

 get_approximate_size_q(transaction)

 Async version of get_approximate_size/1

 get_committed_version(transaction)

 Retrieves the database version number at which a given transaction
was committed.

 get_estimated_range_size_bytes(transaction, key_range, options \\ %{})

 Returns the estimated size of the key range given.

 get_estimated_range_size_bytes_q(transaction, key_range, options \\ %{})

 Async version of get_estimated_range_size_bytes/3

 get_key(transaction, key_selector, options \\ %{})

 Resolves a key selector against the keys in the database snapshot
represented by transaction.

 get_key_q(transaction, key_selector, options \\ %{})

 Async version of get_key/2

 get_metadata_version(transaction)

 Get metadata version.

 get_q(transaction, key, options \\ %{})

 Async version of get/3

 get_range(transaction, key_selector_range, options \\ %{})

 Reads all key-value pairs in the database snapshot represented by
transaction which have a key lexicographically greater than or equal
to the key resolved by the begin key selector and lexicographically
less than the key resolved by the end key selector.

 get_range_split_points(transaction, key_range, chunk_size, options \\ %{})

 Returns a list of keys that can split the given key range into
similar sized chunks based on chunk_size.

 get_range_split_points_q(transaction, key_range, chunk_size, options \\ %{})

 Async version of get_range_split_points/4

 get_range_stream(transaction, key_selector_range, options \\ %{})

 See get_range/3 for options

 get_read_version(transaction)

 Returns the transaction snapshot read version.

 get_read_version_q(transaction)

 Async version of get_read_version/1

 get_versionstamp_q(transaction)

 Returns an FDB.Future.t/0 which will be set to the FDB.Versionstamp.t/0 which was used by any versionstamp operations in this transaction.

 on_error(transaction, code)

 on_error_q(transaction, code)

 Async version of on_error/2

 set(transaction, key, value, options \\ %{})

 Modify the database snapshot represented by transaction to change
the given key to have the given value.

 set_defaults(transaction, defaults)

 Changes the default options associated with the transaction.

 set_option(transaction, option)

 Refer FDB.Option for the list of options. Any option that starts with transaction_option_ is allowed.

 set_option(transaction, option, value)

 Refer FDB.Option for the list of options. Any option that starts with transaction_option_ is allowed.

 set_read_version(transaction, version)

 Sets the snapshot read version used by a transaction.

 set_versionstamped_key(transaction, key, value, options \\ %{})

 Same as set, but replaces the placeholder versionstamp in the key

 set_versionstamped_value(transaction, key, value, options \\ %{})

 Same as set, but replaces the placeholder versionstamp in the value

 update_metadata_version(transaction)

 Update metadata version.

 watch_q(transaction, key, options \\ %{})

 watch’s behavior is relative to the transaction that created it. A
watch will report a change in relation to the key’s value as
readable by that transaction. The initial value used for comparison
is either that of the transaction’s read version or the value as
modified by the transaction itself prior to the creation of the
watch. If the value changes and then changes back to its initial
value, the watch might not report the change.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.Transaction{
 coder: FDB.Transaction.Coder.t(),
 resource: identifier(),
 snapshot: integer()
}

 Anchor for this section

Functions

 Link to this function

 add_conflict_key(transaction, key, type, options \\ %{})

 View Source

 Link to this function

 add_conflict_range(transaction, key_range, type, options \\ %{})

 View Source

Adds a conflict range to a transaction without performing the
associated read or write.
Most applications will use the serializable isolation that
transactions provide by default and will not need to manipulate
conflict ranges.

 Link to this function

 atomic_op(transaction, key, operation_type, param, options \\ %{})

 View Source

Modify the database snapshot represented by transaction to perform
the operation indicated by operation_type with operand param to the
value stored by the given key.
An atomic operation is a single database command that carries out
several logical steps: reading the value of a key, performing a
transformation on that value, and writing the result. Different
atomic operations perform different transformations. Like other
database operations, an atomic operation is used within a
transaction; however, its use within a transaction will not cause
the transaction to conflict.
Atomic operations do not expose the current value of the key to the
client but simply send the database the transformation to apply. In
regard to conflict checking, an atomic operation is equivalent to a
write without a read. It can only cause other transactions
performing reads of the key to conflict.
By combining these logical steps into a single, read-free operation,
FoundationDB can guarantee that the transaction will not conflict
due to the operation. This makes atomic operations ideal for
operating on keys that are frequently modified. A common example is
the use of a key-value pair as a counter.
If a transaction uses both an atomic operation and a serializable
read on the same key, the benefits of using the atomic operation
(for both conflict checking and performance) are lost.

The modification affects the actual database only if transaction is
later committed with commit/1.
Refer FDB.Option for the list of operationtype. Any option that
starts with `mutation_type` is allowed

 Link to this function

 cancel(transaction)

 View Source

 Specs

 cancel(t()) :: :ok

Cancels the transaction. All pending or future uses of the
transaction will return a transaction_cancelled error.
If your program attempts to cancel a transaction after commit/1
has been called but before it returns, unpredictable behavior will
result. While it is guaranteed that the transaction will
eventually end up in a cancelled state, the commit may or may not
occur. Moreover, even if the call to commit/1 appears to return
a transaction_cancelled error, the commit may have occurred or may
occur in the future. This can make it more difficult to reason
about the order in which transactions occur.

 Link to this function

 clear(transaction, key, options \\ %{})

 View Source

Modifies the database snapshot represented by transaction to remove
the given key from the database. If the key was not previously
present in the database, there is no effect.
The modification affects the actual database only if transaction is
later committed with commit/1.

 Link to this function

 clear_range(transaction, key_range, options \\ %{})

 View Source

Modify the database snapshot represented by transaction to remove
all keys (if any) which are lexicographically greater than or equal
to the given begin key and lexicographically less than the given end
key.
The modification affects the actual database only if transaction is
later committed with commit/1.

 Link to this function

 commit(transaction)

 View Source

 Specs

 commit(t()) :: :ok

Attempts to commit the sets and clears previously applied to the
database snapshot represented by transaction to the actual
database. The commit may or may not succeed – in particular, if a
conflicting transaction previously committed, then the commit must
fail in order to preserve transactional isolation. If the commit
does succeed, the transaction is durably committed to the database
and all subsequently started transactions will observe its effects.
It is not necessary to commit a read-only transaction.
As with other client/server databases, in some failure scenarios a
client may be unable to determine whether a transaction
succeeded. In these cases, commit/1 will return a
commit_unknown_result error. The FDB.Database.transact/2 function
treats this error as retryable, so this could execute the
transaction twice. In these cases, you must consider the idempotence
of the transaction.
Normally, commit will wait for outstanding reads to return. However,
if those reads were snapshot reads or the transaction option for
FDB.Option.transaction_option_read_your_writes_disable/0 has been
invoked, any outstanding reads will immediately return errors.

 Link to this function

 commit_q(transaction)

 View Source

 Specs

 commit_q(t()) :: FDB.Future.t()

Async version of commit/1

 Link to this function

 create(database, defaults \\ %{})

 View Source

 Specs

 create(FDB.Database.t(), map()) :: t()

Creates a new transaction.

 Link to this function

 get(transaction, key, options \\ %{})

 View Source

 Specs

 get(t(), any(), map()) :: any()

Reads a value from the database snapshot represented by transaction.
If key is not present in the database, nil is returned as the result.

 Options

	:snapshot - (boolean) Defaults to false.

 Link to this function

 get_addresses_for_key(transaction, key)

 View Source

 Specs

 get_addresses_for_key(t(), any()) :: [String.t()]

Returns a list of public network addresses as strings, one for each
of the storage servers responsible for storing key and its
associated value.

 Link to this function

 get_addresses_for_key_q(transaction, key, options \\ %{})

 View Source

Async version of get_addresses_for_key/2

 Link to this function

 get_approximate_size(transaction)

 View Source

 Specs

 get_approximate_size(t()) :: integer()

Returns the approximate transaction size so far in the returned future,
which is the summation of the estimated size of mutations,
read conflict ranges, and write conflict ranges.
This can be called multiple times before the transaction is committed.

 Link to this function

 get_approximate_size_q(transaction)

 View Source

 Specs

 get_approximate_size_q(t()) :: FDB.Future.t()

Async version of get_approximate_size/1

 Link to this function

 get_committed_version(transaction)

 View Source

 Specs

 get_committed_version(t()) :: integer()

Retrieves the database version number at which a given transaction
was committed.
commit/1 must have been called on transaction and not an error
before this function is called, or the behavior is
undefined. Read-only transactions do not modify the database when
committed and will have a committed version of -1. Keep in mind that
a transaction which reads keys and then sets them to their current
values may be optimized to a read-only transaction.
Note that database versions are not necessarily unique to a given
transaction and so cannot be used to determine in what order two
transactions completed. The only use for this function is to
manually enforce causal consistency when calling
set_read_version/2 on another subsequent transaction.
Most applications will not call this function.

 Link to this function

 get_estimated_range_size_bytes(transaction, key_range, options \\ %{})

 View Source

 Specs

 get_estimated_range_size_bytes(t(), FDB.KeyRange.t(), map()) :: integer()

Returns the estimated size of the key range given.

 Link to this function

 get_estimated_range_size_bytes_q(transaction, key_range, options \\ %{})

 View Source

 Specs

 get_estimated_range_size_bytes_q(t(), FDB.KeyRange.t(), map()) :: FDB.Future.t()

Async version of get_estimated_range_size_bytes/3

 Link to this function

 get_key(transaction, key_selector, options \\ %{})

 View Source

Resolves a key selector against the keys in the database snapshot
represented by transaction.
Returns the key in the database matching the key selector.

 Link to this function

 get_key_q(transaction, key_selector, options \\ %{})

 View Source

Async version of get_key/2

 Link to this function

 get_metadata_version(transaction)

 View Source

 Specs

 get_metadata_version(t()) :: FDB.Versionstamp.t() | nil

Get metadata version.
Note: This might return nil if the metadata version was never set
earlier.

 Link to this function

 get_q(transaction, key, options \\ %{})

 View Source

 Specs

 get_q(t(), any(), map()) :: FDB.Future.t()

Async version of get/3

 Link to this function

 get_range(transaction, key_selector_range, options \\ %{})

 View Source

 Specs

 get_range(t(), FDB.KeySelectorRange.t(), map()) :: FDB.RangeResult.t()

Reads all key-value pairs in the database snapshot represented by
transaction which have a key lexicographically greater than or equal
to the key resolved by the begin key selector and lexicographically
less than the key resolved by the end key selector.
Makes a single call to fetch data. The returned struct
FDB.RangeResult.t/0 contains key_values, has_more and next
function. If has_more is true, then next function can be called
to fetch the next batch of FDB.RangeResult.t/0.
The next function expects transaction as the first argument and
returns FDB.RangeResult.t/0
The amount of data returned on each call is determined by the
options like target_bytes and mode.

 Options

	:snapshot - (boolean) Defaults to false.
	:reverse - (boolean) Defaults to false.
	:target_bytes - (boolean) If non-zero, indicates a (soft) cap on
the combined number of bytes of keys and values to return per
call. Defaults to 0.
	:mode - (FDB.Option.key/0) Refer FDB.Option for the list
of options. Any option that starts with streaming_mode_ is
allowed. Defaults to FDB.Option.streaming_mode_iterator/0.
	:limit - (number) If non-zero, indicates the maximum number of
key-value pairs to return. Defaults to 0.

 Link to this function

 get_range_split_points(transaction, key_range, chunk_size, options \\ %{})

 View Source

 Specs

 get_range_split_points(t(), FDB.KeyRange.t(), integer(), map()) :: integer()

Returns a list of keys that can split the given key range into
similar sized chunks based on chunk_size.

 Link to this function

 get_range_split_points_q(transaction, key_range, chunk_size, options \\ %{})

 View Source

 Specs

 get_range_split_points_q(t(), FDB.KeyRange.t(), integer(), map()) ::
 FDB.Future.t()

Async version of get_range_split_points/4

 Link to this function

 get_range_stream(transaction, key_selector_range, options \\ %{})

 View Source

 Specs

 get_range_stream(t() | FDB.Database.t(), FDB.KeySelectorRange.t(), map()) ::
 Enumerable.t()

See get_range/3 for options
A Stream is returned which fetches all the key value pairs lazily
using get_range/3 function. This is suitable for iterating over
large list of key value pair.

 Link to this function

 get_read_version(transaction)

 View Source

 Specs

 get_read_version(t()) :: integer()

Returns the transaction snapshot read version.
The transaction obtains a snapshot read version automatically at the
time of the first call to get_* (including this one) and (unless
causal consistency has been deliberately compromised by transaction
options) is guaranteed to represent all transactions which were
reported committed before that call.

 Link to this function

 get_read_version_q(transaction)

 View Source

 Specs

 get_read_version_q(t()) :: FDB.Future.t()

Async version of get_read_version/1

 Link to this function

 get_versionstamp_q(transaction)

 View Source

 Specs

 get_versionstamp_q(t()) :: FDB.Future.t()

Returns an FDB.Future.t/0 which will be set to the FDB.Versionstamp.t/0 which was used by any versionstamp operations in this transaction.
The future will be ready only after the successful completion of a
call to commit/1 on this transaction. Read-only transactions do
not modify the database when committed and will result in the future
completing with an error. Keep in mind that a transaction which
reads keys and then sets them to their current values may be
optimized to a read-only transaction.

 Link to this function

 on_error(transaction, code)

 View Source

 Specs

 on_error(t(), integer()) :: :ok

 Link to this function

 on_error_q(transaction, code)

 View Source

 Specs

 on_error_q(t(), integer()) :: FDB.Future.t()

Async version of on_error/2

 Link to this function

 set(transaction, key, value, options \\ %{})

 View Source

 Specs

 set(t(), any(), any(), map()) :: :ok

Modify the database snapshot represented by transaction to change
the given key to have the given value.
If the given key was not previously present in the database it is
inserted. The modification affects the actual database only if
transaction is later committed with commit/1.

 Link to this function

 set_defaults(transaction, defaults)

 View Source

 Specs

 set_defaults(t(), map()) :: t()

Changes the default options associated with the transaction.

 Link to this function

 set_option(transaction, option)

 View Source

 Specs

 set_option(t(), FDB.Option.key()) :: :ok

Refer FDB.Option for the list of options. Any option that starts with transaction_option_ is allowed.

 Link to this function

 set_option(transaction, option, value)

 View Source

 Specs

 set_option(t(), FDB.Option.key(), FDB.Option.value()) :: :ok

Refer FDB.Option for the list of options. Any option that starts with transaction_option_ is allowed.

 Link to this function

 set_read_version(transaction, version)

 View Source

 Specs

 set_read_version(t(), integer()) :: :ok

Sets the snapshot read version used by a transaction.
This is not needed in simple cases. If the given version is too old,
subsequent reads will fail with error_code_past_version; if it is
too new, subsequent reads may be delayed indefinitely and/or fail
with error_code_future_version. If any of get* have been called on
this transaction already, the result is undefined.

 Link to this function

 set_versionstamped_key(transaction, key, value, options \\ %{})

 View Source

 Specs

 set_versionstamped_key(t(), any(), any(), map()) :: :ok

Same as set, but replaces the placeholder versionstamp in the key
The semantics are same as set/4 except the key should have one
incomplete FDB.Versionstamp.t/0. The versionstamp will get
replaced on commit of the transaction.
A transaction is not permitted to read any transformed key or value
previously set within that transaction, and an attempt to do so will
result in an error.
This operation is not compatible with the READ_YOUR_WRITES_DISABLE
transaction option and will generate an error if used with it.
The database version should be atleast 5.2.

 Example

coder =
 FDB.Transaction.Coder.new(
 Coder.Tuple.new({Coder.ByteString.new(), Coder.Versionstamp.new()})
)

future =
 Database.transact(db, fn t ->
 :ok =
 Transaction.set_versionstamped_key(
 t,
 {"stamped", FDB.Versionstamp.incomplete()},
 random_value()
)

 Transaction.get_versionstamp_q(t)
 end)

stamp = Future.await(future)

[{{"stamped", key_stamp}, _}] =
 Database.get_range_stream(db, KeySelectorRange.starts_with({"stamped"}))
 |> Enum.to_list()

assert stamp == key_stamp

 Link to this function

 set_versionstamped_value(transaction, key, value, options \\ %{})

 View Source

 Specs

 set_versionstamped_value(t(), any(), any(), map()) :: :ok

Same as set, but replaces the placeholder versionstamp in the value
The semantics are same as set/4 except the value should have one
incomplete FDB.Versionstamp.t/0. The versionstamp will get
replaced on commit of the transaction.
A transaction is not permitted to read any transformed key or value
previously set within that transaction, and an attempt to do so will
result in an error.
This operation is not compatible with the READ_YOUR_WRITES_DISABLE
transaction option and will generate an error if used with it.
The database version should be atleast 5.2.

 Example

coder =
 FDB.Transaction.Coder.new(
 Coder.ByteString.new(),
 Coder.Tuple.new({Coder.ByteString.new(), Coder.Versionstamp.new()})
)

future =
 Database.transact(db, fn t ->
 :ok =
 Transaction.set_versionstamped_value(
 t,
 key,
 {"stamped", FDB.Versionstamp.incomplete()}
)

 Transaction.get_versionstamp_q(t)
 end)

stamp = Future.await(future)

value =
 Database.transact(db, fn t ->
 Transaction.get(t, key)
 end)

assert {"stamped", stamp} == value

 Link to this function

 update_metadata_version(transaction)

 View Source

 Specs

 update_metadata_version(t()) :: :ok

Update metadata version.

 Link to this function

 watch_q(transaction, key, options \\ %{})

 View Source

watch’s behavior is relative to the transaction that created it. A
watch will report a change in relation to the key’s value as
readable by that transaction. The initial value used for comparison
is either that of the transaction’s read version or the value as
modified by the transaction itself prior to the creation of the
watch. If the value changes and then changes back to its initial
value, the watch might not report the change.
Until the transaction that created it has been committed, a watch
will not report changes made by other transactions. In contrast, a
watch will immediately report changes made by the transaction
itself. Watches cannot be created if the transaction has set the
FDB.Option.transaction_option_read_your_writes_disable/0
transaction option, and an attempt to do so will return an
watches_disabled error.
If the transaction used to create a watch encounters an error during
commit, then the watch will be set with that error. A transaction
whose commit result is unknown will set all of its watches with the
commit_unknown_result error. If an uncommitted transaction is reset
or destroyed, then any watches it created will be set with the
transaction_cancelled error.
Returns an FDB.Future.t/0 representing an empty value that will
be set once the watch has detected a change to the value at the
specified key.
By default, each database connection can have no more than 10,000
watches that have not yet reported a change. When this number is
exceeded, an attempt to create a watch will return a
too_many_watches error. This limit can be changed using the
FDB.Option.database_option_max_watches/0 database option.

FDB.Transaction.Coder

A FDB.Transaction.Coder.t/0 specifies how the key and value should be encoded.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(key_coder \\ Identity.new(), value_coder \\ Identity.new())

 Creates a new FDB.Transaction.Coder.t/0

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.Transaction.Coder{key: FDB.Coder.t(), value: FDB.Coder.t()}

 Anchor for this section

Functions

 Link to this function

 new(key_coder \\ Identity.new(), value_coder \\ Identity.new())

 View Source

 Specs

 new(FDB.Coder.t(), FDB.Coder.t()) :: t()

Creates a new FDB.Transaction.Coder.t/0

FDB.Versionstamp

A versionstamp is a 12 byte, unique, monotonically (but not sequentially) increasing value for each committed transaction.
{8 byte} {2 byte} {2 byte}
	The first 8 bytes are the committed version of the database.
	The next 2 bytes are monotonic in the serialization order for transactions.
	The last 2 bytes are user supplied version in big-endian format

 Anchor for this section

 Summary

 Types

 t()

 Functions

 incomplete(user_version \\ 0)

 Creates an incomplete versionstamp.

 incomplete?(versionstamp)

 Returns true if the transaction version is equal to placeholder value

 new(raw)

 new(transaction_version, user_version)

 transaction_version(versionstamp)

 Returns the transaction version

 user_version(versionstamp)

 Returns the user version

 version(versionstamp)

 Returns the full versionstamp as binary

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.Versionstamp{raw: binary()}

 Anchor for this section

Functions

 Link to this function

 incomplete(user_version \\ 0)

 View Source

 Specs

 incomplete(integer()) :: t()

Creates an incomplete versionstamp.
A placeholder value is used instead of the transaction
version. When a key created with an incompleted version is passed to
FDB.Transaction.set_versionstamped_key/4, the placeholder value
will get replaced by transaction version on commit.

 Link to this function

 incomplete?(versionstamp)

 View Source

 Specs

 incomplete?(t()) :: boolean()

Returns true if the transaction version is equal to placeholder value

 Link to this function

 new(raw)

 View Source

 Specs

 new(binary()) :: t()

 Link to this function

 new(transaction_version, user_version)

 View Source

 Specs

 new(binary(), integer()) :: t()

 Link to this function

 transaction_version(versionstamp)

 View Source

 Specs

 transaction_version(t()) :: binary()

Returns the transaction version

 Link to this function

 user_version(versionstamp)

 View Source

 Specs

 user_version(t()) :: integer()

Returns the user version

 Link to this function

 version(versionstamp)

 View Source

 Specs

 version(t()) :: binary()

Returns the full versionstamp as binary

FDB.Error exception

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.Error{__exception__: term(), code: integer(), message: binary()}

FDB.TimeoutError exception

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %FDB.TimeoutError{__exception__: term(), message: binary()}

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

