

 EXLA

 v0.3.0

 Table of contents

 	Rotating Image

 	Changelog

 	Modules

 	EXLA

 	EXLA.Backend

 	EXLA.BinaryBuffer

 	EXLA.Builder

 	EXLA.Client

 	EXLA.Computation

 	EXLA.DeviceBuffer

 	EXLA.Executable

 	EXLA.Lib

 	EXLA.Op

 	EXLA.Shape

Rotating Image

Setup
Mix.install(
 [
 {:req, "~> 0.2.0"},
 {:kino, "~> 0.5.1"},
 {:exla, "~> 0.2"},
 {:stb_image, "~> 0.5"}
],
 config: [
 nx: [default_backend: EXLA.Backend]
]
)
Preprocessing
Note: if you want to use TPUs/GPUs, you must set the XLA_TARGET environment variable.
See XLA_TARGET.

Preprocessing a binary to the tensor representation and calculating shapes of the rotated image.
defmodule Preprocess do
 def image_to_tensor(file_or_url) do
 case URI.parse(file_or_url) do
 %URI{scheme: nil} ->
 img = StbImage.read_file!(file_or_url)
 Nx.from_binary(img.data, {:u, 8}) |> Nx.reshape(img.shape)

 _ ->
 %{body: binary_image} = Req.get!(file_or_url)
 img = StbImage.read_binary!(binary_image)
 Nx.from_binary(img.data, {:u, 8}) |> Nx.reshape(img.shape)
 end
 end

 # there is no pi const in Nx yet.
 @pi 3.14159

 defp calculate_new_side_length(side1, side2, angle, radians?) do
 angle = if radians?, do: angle, else: angle |> Nx.divide(180) |> Nx.multiply(@pi)
 sine = Nx.sin(angle)
 cosine = Nx.cos(angle)

 side1
 |> Nx.multiply(cosine)
 |> Nx.abs()
 |> Nx.add(Nx.abs(Nx.multiply(side2, sine)))
 |> Nx.add(1)
 |> Nx.to_number()
 |> round()
 end

 def get_new_height_and_width(height, width, angle, radians? \\ true) do
 new_height = calculate_new_side_length(height, width, angle, radians?)
 new_width = calculate_new_side_length(width, height, angle, radians?)
 {new_height, new_width}
 end
end
Rotating image
defmodule Rotate do
 import Nx.Defn
 @num_channels 3
 # using three shears to avoid aliasing
 # https://datagenetics.com/blog/august32013/index.html
 defnp calculate_new_positions(
 {y_image, x_image, _},
 orig_ctr_height,
 orig_ctr_width,
 new_ctr_height,
 new_ctr_width,
 angle
) do
 k = Nx.iota({y_image * x_image})
 i = Nx.as_type(Nx.divide(k, x_image), {:u, 32})
 j = rem(k, x_image)

 y =
 orig_ctr_height
 |> Nx.add(1)
 |> Nx.add(i)
 |> then(&Nx.subtract(y_image, &1))

 x =
 orig_ctr_width
 |> Nx.add(1)
 |> Nx.add(j)
 |> then(&Nx.subtract(x_image, &1))

 tangent =
 angle
 |> Nx.divide(2)
 |> Nx.tan()

 new_x =
 y
 |> Nx.multiply(tangent)
 |> then(&Nx.subtract(x, &1))
 |> Nx.round()

 new_y =
 angle
 |> Nx.sin()
 |> Nx.multiply(new_x)
 |> Nx.add(y)
 |> Nx.round()

 new_x =
 new_y
 |> Nx.multiply(tangent)
 |> then(&Nx.subtract(new_x, &1))
 |> Nx.round()

 new_y = Nx.subtract(new_ctr_height, new_y)
 new_x = Nx.subtract(new_ctr_width, new_x)

 new_y = Nx.as_type(Nx.round(new_y), {:u, 32})
 new_x = Nx.as_type(Nx.round(new_x), {:u, 32})

 Nx.stack([new_y, new_x], axis: 1)
 end

 defnp calculate_ctr(coordinate) do
 coordinate
 |> Nx.add(1)
 |> Nx.divide(2)
 |> Nx.subtract(1)
 |> Nx.round()
 end

 defnp preprocess_position(pos, n) do
 Nx.concatenate(
 [
 Nx.new_axis(pos, 1) |> Nx.tile([1, @num_channels, 1]),
 Nx.iota({n, @num_channels, 1}, axis: 1)
],
 axis: 2
)
 |> Nx.reshape({n * @num_channels, 3})
 end

 # there is no pi const in Nx yet.
 @pi 3.14159

 # new_image is a tensor with dims of rotated image filled with zeros

 defn rotate_image_by_angle(image, angle, new_image, radians? \\ true) do
 # if radians? is set to false than assuming that angle is given in degrees
 angle = if radians?, do: angle, else: angle |> Nx.divide(180) |> Nx.multiply(@pi)

 {height, width, _} = image.shape
 {new_height, new_width, _} = new_image.shape

 orig_ctr_height = calculate_ctr(height)
 orig_ctr_width = calculate_ctr(width)

 new_ctr_height = calculate_ctr(new_height)
 new_ctr_width = calculate_ctr(new_width)

 pos =
 calculate_new_positions(
 image.shape,
 orig_ctr_height,
 orig_ctr_width,
 new_ctr_height,
 new_ctr_width,
 angle
)

 {n, 2} = Nx.shape(pos)

 preprocessed_pos = preprocess_position(pos, n)
 image = image |> Nx.reshape({n * @num_channels})

 Nx.indexed_add(new_image, preprocessed_pos, image)
 end
end
Example of usage
num_channels = 3

dir = File.cwd!()

default_input =
 "https://www.researchgate.net/publication/259521525/figure/fig8/AS:268024322195479@1440913386352/Original-standard-test-image-of-Peppers.png"

input = Kino.Input.text("Image to rotate", default: default_input)
Kino.render(input)
path_to_file = Kino.Input.read(input)

set options
radians? = false
angle = 70

rotate image by 70 degrees to the right
image = Preprocess.image_to_tensor(path_to_file)
{height, width, _} = image.shape
{new_height, new_width} = Preprocess.get_new_height_and_width(height, width, angle, radians?)
new_image = Nx.broadcast(Nx.tensor([0], type: {:u, 8}), {new_height, new_width, num_channels})
rotate_image = EXLA.jit(&Rotate.rotate_image_by_angle/4)
rotate_image.(image, angle, new_image, radians?)

convert the tensor back to stb_image and render it as png
img = StbImage.from_nx(rotated_image)
content = StbImage.to_binary(img, :png)

display the rotated image
Kino.Image.new(content, :png)

Changelog

v0.3.0 (2022-08-13)
Enhancements
	Support debug: true option on defn compiler
	Allow specifying preferred clients via the application environment
	Support new callbacks added in Nx v0.3.0

Deprecations
	Deprecate set_as_nx_default

v0.2.3 (2022-07-05)
Bug fixes
	Fix predicate handling inside cond/while
	Set Nx backend globally

v0.2.2 (2022-06-15)
Bug fixes
	Fix invalid cache expiration when defn received functions as arguments

v0.2.1 (2022-06-04)
Enhancements
	Implement EXLA.Backend.to_batched_list/3

Bug fixes
	Improve support for non-finite values in EXLA compiler
	Fix segmentation fault while deallocating tensors

v0.2.0 (2022-04-28)
First release.

EXLA

Google's XLA (Accelerated Linear Algebra) compiler/backend for Nx.
It supports just-in-time (JIT) compilation to GPU (both CUDA and ROCm) and TPUs.
Configuration
As a backend
EXLA ships with a backend to store tensors and run computations on.
Generally speaking, the backend is enabled globally in your config/config.exs
(or config/ENV.exs) with the following:
import Config
config :nx, :default_backend, EXLA.Backend
In a script/notebook, you would do:
Mix.install(
 [
 {:exla, "~> 0.2"}
],
 config: [
 nx: [default_backend: EXLA.Backend]
]
)
From now on, all created tensors will be allocated directly on the given
EXLA.Backend. You can use functions such as Nx.backend_transfer/2 to
explicitly transfer tensors.
EXLA will pick an available client to allocate and compute tensors, in this
order: :cuda, :rocm, :tpu, and :host (CPU). See the "Clients" section
below for more information.
To use GPUs/TPUs, you must also set the appropriate value for the
XLA_TARGET environment
variable. If you have GPU/TPU enabled, we recommend setting the environment
variable for your machine altogether. For CUDA, setting
ELIXIR_ERL_OPTIONS="+sssdio 128" is also required on more complex operations
to increase CUDA's compiler stack size.
As a compiler
You can also use EXLA to compile your numerical definitions. One option is to
do so globally in your configuration:
import Config
config :nx, :default_defn_options, [compiler: EXLA]
But compilation can be time consuming when first executing large numerical
definitions. Therefore explicit compilation is often preferred by passing
the :compiler option to Nx.Defn.jit/2 or by using the convenient EXLA.jit/2
shortcut:
Nx.Defn.jit(&some_function/3, compiler: EXLA).(arg1, arg2, arg3)
EXLA.jit(&some_function/3).(arg1, arg2, arg3)
Options
The options accepted by EXLA backend/compiler are:
	:client - an atom representing the client to use. The default
client is chosen on this order: :cuda, :rocm, :tpu, and :host.

	:device_id - the default device id to run the computation
 on. Defaults to the :default_device_id on the client

Clients
The EXLA library uses a client for compiling and executing code.
Those clients are typically bound to a platform, such as CPU or
GPU.
Those clients are singleton resources on Google's XLA library,
therefore they are treated as a singleton resource on this library
too. EXLA ships with the client configuration for each supported
platform:
config :exla, :clients,
 cuda: [platform: :cuda],
 rocm: [platform: :rocm],
 tpu: [platform: :tpu],
 host: [platform: :host]
You can provide your own list of clients, replacing the list above
or configuring each client as listed below. You can also specify
:default_client to set a particular client by default or
:preferred_clients to change the order of clients preference,
but those configurations are rarely set in practice.
Important! you should avoid using multiple clients for the
same platform. If you have multiple clients per platform, they
can race each other and fight for resources, such as memory.
Therefore, we recommend developers to stick with the default
clients above.

Client options
Each client configuration accepts the following options:
	:platform - the platform the client runs on. It can be
:host (CPU), :cuda, :rocm, or :tpu. Defaults to :host.

	:default_device_id - the default device ID to run on.
For example, if you have two GPUs, you can choose a different
one as the default. Defaults to device 0 (the first device).

	:preallocate- if the memory should be preallocated on
GPU devices. Defaults to true.

	:memory_fraction - how much memory of a GPU device to
allocate. Defaults to 0.9.

GPU Runtime Issues
GPU Executions run in dirty IO threads, which have a considerable smaller
stack size than regular scheduler threads. This may lead to problems with
certain CUDA or cuDNN versions, leading to segmentation fails. In a development
environment, it is suggested to set:
ELIXIR_ERL_OPTIONS="+sssdio 128"
To increase the stack size of dirty IO threads from 40 kilowords to
128 kilowords. In a release, you can set this flag in your vm.args.
Docker considerations
EXLA should run fine on Docker with one important consideration:
you must not start the Erlang VM as the root process in Docker.
That's because when the Erlang VM runs as root, it has to manage
all child programs.
At the same time, Google XLA's shells out to child program during
compilation and it must retain control over how child programs
terminate.
To address this, simply make sure you wrap the Erlang VM in
another process, such as the shell one. In other words, if you
are using releases, instead of this:
RUN path/to/release start
do this:
RUN sh -c "path/to/release start"
If you are using Mix inside your Docker containers, instead of this:
RUN mix run
do this:
RUN sh -c "mix run"
Alternatively, you can pass the --init flag to docker run, so
it runs an init inside the container that forwards signals and
reaps processes.

 Anchor for this section

 Summary

 Functions

 cached?(function, args, options \\ [])

 Checks if the compilation of function with args is cached.

 compile(function, args, options \\ [])

 A shortcut for Nx.Defn.compile/3 with the EXLA compiler.

 jit(function, options \\ [])

 A shortcut for Nx.Defn.jit/2 with the EXLA compiler.

 jit_apply(function, args, options \\ [])

 A shortcut for Nx.Defn.jit_apply/3 with the EXLA compiler.

 stream(function, args, options \\ [])

 Starts streaming the given anonymous function with just-in-time
compilation.

 stream_cached?(function, args, options \\ [])

 Checks if the JIT compilation of stream with
args is cached.

 Anchor for this section

Functions

 Link to this function

 cached?(function, args, options \\ [])

 View Source

Checks if the compilation of function with args is cached.
Note that hooks are part of the cache, and
therefore they must be included in the options.

 examples

 Examples

iex> fun = fn a, b -> Nx.add(a, b) end
iex> left = Nx.tensor(1, type: {:u, 8})
iex> right = Nx.tensor([1, 2, 3], type: {:u, 16})
iex> EXLA.jit(fun).(left, right)
iex> EXLA.cached?(fun, [left, right])
true
iex> EXLA.cached?(fun, [left, Nx.tensor([1, 2, 3, 4], type: {:u, 16})])
false
Compiled functions are also cached, unless cache is set to false:
iex> fun = fn a, b -> Nx.subtract(a, b) end
iex> left = Nx.tensor(1, type: {:u, 8})
iex> right = Nx.tensor([1, 2, 3], type: {:u, 16})
iex> EXLA.compile(fun, [left, right], cache: false)
iex> EXLA.cached?(fun, [left, right])
false
iex> EXLA.compile(fun, [left, right])
iex> EXLA.cached?(fun, [left, right])
true

 Link to this function

 compile(function, args, options \\ [])

 View Source

A shortcut for Nx.Defn.compile/3 with the EXLA compiler.
iex> fun = EXLA.compile(&Nx.add(&1, &1), [Nx.template({3}, {:s, 64})])
iex> fun.(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
 s64[3]
 [2, 4, 6]
>

 options

 Options

It accepts the same option as Nx.Defn.compile/3 plus:
	:debug - print compile and debugging information, defaults to false.

	:cache - cache the results of compilation, defaults to true.
You can set it to false if you plan to compile the function only
once and store the compile contents somewhere.

	:client - an atom representing the client to use. The default
client is chosen on this order: :cuda, :rocm, :tpu, and :host.

	:device_id - the default device id to run the computation on.
Defaults to the :default_device_id on the client

 Link to this function

 jit(function, options \\ [])

 View Source

A shortcut for Nx.Defn.jit/2 with the EXLA compiler.
iex> EXLA.jit(&Nx.add(&1, &1)).(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
 s64[3]
 [2, 4, 6]
>

 options

 Options

It accepts the same option as Nx.Defn.jit/2 plus:
	:debug - print compile and debugging information, defaults to false.

	:cache - cache the results of compilation, defaults to true.

	:client - an atom representing the client to use. The default
client is chosen on this order: :cuda, :rocm, :tpu, and :host.

	:device_id - the default device id to run the computation on.
Defaults to the :default_device_id on the client

 Link to this function

 jit_apply(function, args, options \\ [])

 View Source

A shortcut for Nx.Defn.jit_apply/3 with the EXLA compiler.
iex> EXLA.jit_apply(&Nx.add(&1, &1), [Nx.tensor([1, 2, 3])])
#Nx.Tensor<
 s64[3]
 [2, 4, 6]
>
See jit/2 for supported options.

 Link to this function

 stream(function, args, options \\ [])

 View Source

Starts streaming the given anonymous function with just-in-time
compilation.
At least two arguments are expected:
	The first argument is a tensor template of the data to
be streamed in

	The second argument is a tensor with the stream initial state

The streaming function must return a two element tuple, the
first element is the data to be sent and the second is the
accumulator.
For each streamed chunk, you must call Nx.Stream.send/2 and
Nx.Stream.recv/1. You don't need to call recv immediately
after send, but doing so can be a useful mechanism to provide
backpressure. Once all chunks are sent, you must use Nx.Stream.done/1
to receive the accumulated result. Let's see an example:
defmodule Streamed do
 import Nx.Defn

 defn sum(tensor, acc) do
 {acc, tensor + acc}
 end
end
Now let's invoke it:
stream = EXLA.stream(&Streamed.sum/2, [Nx.template({}, {:s, 64}), 0])

for i <- 1..5 do
 Nx.Stream.send(stream, i)
 IO.inspect {:chunk, Nx.Stream.recv(stream)}
end

IO.inspect {:result, Nx.Stream.done(stream)}
It will print:
{:chunk, 0}
{:chunk, 1}
{:chunk, 2}
{:chunk, 3}
{:chunk, 4}
{:result, 5}
Note: While any process can call Nx.Stream.send/2, EXLA
expects the process that starts the streaming to be the one
calling Nx.Stream.recv/1 and Nx.Stream.done/1.
See jit/2 for supported options.

 Link to this function

 stream_cached?(function, args, options \\ [])

 View Source

Checks if the JIT compilation of stream with
args is cached.
Note that hooks are part of the cache, and
therefore they must be included in the options.

 examples

 Examples

iex> left = Nx.tensor(1, type: {:u, 8})
iex> right = Nx.tensor([1, 2, 3], type: {:u, 16})
iex> fun = fn x, acc -> {acc, Nx.add(x, acc)} end
iex> stream = EXLA.stream(fun, [left, right])
iex> Nx.Stream.done(stream)
iex> EXLA.stream_cached?(fun, [left, right])
true
iex> EXLA.stream_cached?(fun, [left, Nx.tensor([1, 2, 3, 4], type: {:u, 16})])
false

EXLA.Backend

A Nx tensor backend for the data kept on the device.
You can directly transfer to this backend by calling
Nx.backend_transfer/2 or Nx.backend_copy/2. It
allows the following options:
	:client - the client to store the data on.
Defaults to EXLA's default client.

	:device_id - which device to store it on.

To get the data out of the device backend into a regular
tensor, call Nx.backend_transfer/1 (with the device
tensor as the single argument).

EXLA.BinaryBuffer

A buffer where data is kept in a binary.

 Anchor for this section

 Summary

 Functions

 from_binary(data, shape)

 Anchor for this section

Functions

 Link to this function

 from_binary(data, shape)

 View Source

EXLA.Builder

Wrapper around XLA's builder.

 Anchor for this section

 Summary

 Functions

 build(root)

 new(name)

 new(builder, name)

 Anchor for this section

Functions

 Link to this function

 build(root)

 View Source

 Link to this function

 new(name)

 View Source

 Link to this function

 new(builder, name)

 View Source

EXLA.Client

Functions for managing EXLA.Client.
See EXLA module docs for a general introduction.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 copy_buffer_to_device(client, device_buffer, device_id)

 Copies buffer to device with given device ID.

 default_name()

 Returns the name of the default client.

 fetch!(name)

 Fetches a client with the given name from configuration.

 from_outfeed(client, device_id, shapes, pid, ref)

 Sends buffer from device outfeed to the given process tagged by ref.

 get_supported_platforms()

 Returns a map of supported platforms with device information.

 to_infeed(client, device_id, data_and_shapes)

 Sends data_and_shapes to device infeed.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 copy_buffer_to_device(client, device_buffer, device_id)

 View Source

Copies buffer to device with given device ID.

 Link to this function

 default_name()

 View Source

Returns the name of the default client.

 Link to this function

 fetch!(name)

 View Source

Fetches a client with the given name from configuration.

 Link to this function

 from_outfeed(client, device_id, shapes, pid, ref)

 View Source

Sends buffer from device outfeed to the given process tagged by ref.
Note: XLA does not support tuple outfeed shapes. Passing one will simply
block the operation indefinitely. Instead, convert the tuple into multiple
outfeed operations.

 Link to this function

 get_supported_platforms()

 View Source

Returns a map of supported platforms with device information.

 Link to this function

 to_infeed(client, device_id, data_and_shapes)

 View Source

Sends data_and_shapes to device infeed.
data_and_shapes must be a list of two element tuples where the
first element is a binary or a flat list of binaries and the second
element is a EXLA.Shape.
Note: XLA does not support tuple infeed shapes when running on
host. Passing one will simply block the operation indefinitely.
Instead, convert the tuple into multiple infeed operations.

EXLA.Computation

Wrapper around XLA's computation.

 Anchor for this section

 Summary

 Functions

 compile(computation, client, argument_shapes, options \\ [])

 Compiles a computation into an executable.

 Anchor for this section

Functions

 Link to this function

 compile(computation, client, argument_shapes, options \\ [])

 View Source

Compiles a computation into an executable.

 options

 Options

	:device_id - the device id to compile to and run the executable on.
Defaults to the :default_device_id on the client. If :num_replicas
or :num_partitions are given, this option is ignored and the device
id is set to -1.

	:num_replicas - the number of replicas this computation will run on.
It defaults to 1 but you can set it if you want to enable single-program
multiple data.

	:use_spmd - enables Single-Program Multiple-Data partioning.
This is set to true if :num_partitions is more than one, otherwise is false.

Currently those options do not have an effect as they related to running the
same compiled executable on multiple replicas.
Some options apply to TPU only:
	:num_partitions - the number of partitions this computation will run on.

EXLA.DeviceBuffer

An EXLA DeviceBuffer for data allocated in the device.

 Anchor for this section

 Summary

 Functions

 deallocate(device_buffer)

 Deallocates the underlying buffer.

 place_on_device(data, shape, client, device_id)

 Places the given binary buffer on the given device using client.

 read(device_buffer, size \\ -1)

 Reads size from the underlying buffer ref.

 Anchor for this section

Functions

 Link to this function

 deallocate(device_buffer)

 View Source

Deallocates the underlying buffer.
Returns :ok | :already_deallocated.

 Link to this function

 place_on_device(data, shape, client, device_id)

 View Source

Places the given binary buffer on the given device using client.

 Link to this function

 read(device_buffer, size \\ -1)

 View Source

Reads size from the underlying buffer ref.
This copies the underlying device memory into a binary
without destroying it. If size is negative, then it
reads the whole buffer.

EXLA.Executable

Wrapper around XLA's executable.

 Anchor for this section

 Summary

 Functions

 run(executable, inputs, options \\ [])

 Runs the given executable with a list of lists as inputs and the given options.

 Anchor for this section

Functions

 Link to this function

 run(executable, inputs, options \\ [])

 View Source

Runs the given executable with a list of lists as inputs and the given options.

EXLA.Lib

High-level operations built on top of EXLA.Op.

 Anchor for this section

 Summary

 Functions

 argmax(builder, op, opts \\ [])

 Computes the argmax of the given operation.

 argmin(builder, op, opts \\ [])

 Computes the argmin of the given operation.

 argsort(builder, operand, dimension, comparator, iota_type)

 Sorts a tensor and returns the corresponding indices in the new positions.

 iota(builder, shape, axis)

 Builds iota along axis.

 max_finite(builder, type)

 Returns a maximum value scalar operator for the given type.

 min_finite(builder, type)

 Returns a minimum value scalar operator for the given type.

 tan(op)

 Element-wise tangent function.

 Anchor for this section

Functions

 Link to this function

 argmax(builder, op, opts \\ [])

 View Source

Computes the argmax of the given operation.

 options

 Options

	:axis - the axis to reduce on
	:keep_axis - whether or not to keep reduced axis
	:tie_break - how to break ties

 Link to this function

 argmin(builder, op, opts \\ [])

 View Source

Computes the argmin of the given operation.

 options

 Options

	:axis - the axis to reduce on
	:keep_axis - whether or not to keep reduced axis
	:tie_break - how to break ties

 Link to this function

 argsort(builder, operand, dimension, comparator, iota_type)

 View Source

Sorts a tensor and returns the corresponding indices in the new positions.

 Link to this function

 iota(builder, shape, axis)

 View Source

Builds iota along axis.

 Link to this function

 max_finite(builder, type)

 View Source

Returns a maximum value scalar operator for the given type.
Maximum values are defined in Nx.Type.max_finite_binary/1.

 Link to this function

 min_finite(builder, type)

 View Source

Returns a minimum value scalar operator for the given type.
Minimum values are defined in Nx.Type.min_finite_binary/1.

 Link to this function

 tan(op)

 View Source

Element-wise tangent function.

EXLA.Op

Wrapper around XLA's ops.

 Anchor for this section

 Summary

 Functions

 abs(op)

 Unary abs.

 acos(op)

 Unary acos.

 acosh(op)

 Unary acosh.

 add(op1, op2, broadcast_dims \\ {})

 Element-wise add with broadcasting.

 asin(op)

 Unary asin.

 asinh(op)

 Unary asinh.

 atan2(op1, op2, broadcast_dims \\ {})

 Element-wise atan2 with broadcasting.

 atan(op)

 Unary atan.

 atanh(op)

 Unary atanh.

 bitcast_convert_type(op, dtype)

 bitwise_and(op1, op2, broadcast_dims \\ {})

 Element-wise bitwise_and with broadcasting.

 bitwise_not(op)

 Unary bitwise_not.

 bitwise_or(op1, op2, broadcast_dims \\ {})

 Element-wise bitwise_or with broadcasting.

 bitwise_xor(op1, op2, broadcast_dims \\ {})

 Element-wise bitwise_xor with broadcasting.

 broadcast_in_dim(op, shape, broadcast_dims)

 Broadcasts the tensor to shape.

 cbrt(op)

 Unary cbrt.

 ceil(op)

 Unary ceil.

 cholesky(op)

 clamp(op1, op2, op3)

 concatenate(operands, dimension)

 conditional(op, branches, operands)

 conditional(op1, op2, computation1, op3, computation2)

 conjugate(op)

 constant_from_binary(builder, data, shape)

 Creates a n-dimensional constant from binary data with shape.

 constant_r0(builder, non_finite, dtype)

 Creates a numeric constant.

 conv_general_dilated(op1, op2, strides, padding, lhs_dilation, rhs_dilation, dim_nums, feature_group_count, batch_group_count, precision_config)

 convert_element_type(op, dtype)

 cos(op)

 Unary cos.

 cosh(op)

 Unary cosh.

 count_leading_zeros(op)

 Unary count_leading_zeros.

 create_token(builder)

 divide(op1, op2, broadcast_dims \\ {})

 Element-wise divide with broadcasting.

 dot(op1, op2, precision_config)

 dot_general(op1, op2, dimnos, precision_config)

 dynamic_slice(op, indices, slice_sizes)

 dynamic_update_slice(op1, op2, indices)

 eigh(op, lower)

 equal(op1, op2, broadcast_dims \\ {})

 Element-wise equal with broadcasting.

 erf(op)

 Unary erf.

 erf_inv(op)

 Unary erf_inv.

 erfc(op)

 Unary erfc.

 exp(op)

 Unary exp.

 expm1(op)

 Unary expm1.

 fft(op, fft_size)

 floor(op)

 Unary floor.

 gather(op1, op2, index_vector_dim, slice_sizes, offset_dims, collapsed_slice_dims, start_index_map)

 The XLA gather operation stitches together several slices
of an input array.

 get_shape(op)

 Gets the shape of an operator.

 get_tuple_element(op, index)

 greater(op1, op2, broadcast_dims \\ {})

 Element-wise greater with broadcasting.

 greater_equal(op1, op2, broadcast_dims \\ {})

 Element-wise greater_equal with broadcasting.

 ifft(op, fft_size)

 imag(op)

 infeed(op, shape)

 iota(builder, shape, dim)

 Creates iota tensor.

 is_infinity(op, type, shape, axes, state)

 is_nan(op, type, shape, axes, state)

 is_non_finite(nif_function, op, arg3, shape, axes, arg6)

 left_shift(op1, op2, broadcast_dims \\ {})

 Element-wise left_shift with broadcasting.

 less(op1, op2, broadcast_dims \\ {})

 Element-wise less with broadcasting.

 less_equal(op1, op2, broadcast_dims \\ {})

 Element-wise less_equal with broadcasting.

 log1p(op)

 Unary log1p.

 log(op)

 Unary log.

 lu(op)

 map(op, computation, dimensions)

 max(op1, op2, broadcast_dims \\ {})

 Element-wise max with broadcasting.

 min(op1, op2, broadcast_dims \\ {})

 Element-wise min with broadcasting.

 multiply(op1, op2, broadcast_dims \\ {})

 Element-wise multiply with broadcasting.

 negate(op)

 Unary negate.

 not_equal(op1, op2, broadcast_dims \\ {})

 Element-wise not_equal with broadcasting.

 outfeed(op1, op2)

 pad(op1, op2, padding_config)

 Pads the tensor with value and padding config.

 parameter(builder, i, shape, name)

 Specifies a parameter at position i with shape and name.

 population_count(op)

 Unary population_count.

 power(op1, op2, broadcast_dims \\ {})

 Element-wise power with broadcasting.

 qr(op, full_matrices)

 real(op)

 reduce(op1, op2, computation, reduction_dimensions)

 remainder(op1, op2, broadcast_dims \\ {})

 Element-wise remainder with broadcasting.

 reshape(op, shape)

 Reshapes the tensor to shape.

 reverse(op, dimensions)

 right_shift_arithmetic(op1, op2, broadcast_dims \\ {})

 Element-wise right_shift_arithmetic with broadcasting.

 right_shift_logical(op1, op2, broadcast_dims \\ {})

 Element-wise right_shift_logical with broadcasting.

 rng_normal(op1, op2, shape)

 Creates tensor with normal distribution.

 rng_uniform(op1, op2, shape)

 Creates tensor with uniform distribution.

 round(op)

 Unary round.

 rsqrt(op)

 Unary rsqrt.

 scatter(op1, op2, op3, computation, indices_rank, update_window_dims, inserted_window_dims, index_dims_to_window_dims)

 select(op1, op2, op3)

 select_and_scatter(op1, computation1, window_dimensions, window_strides, padding_config, op2, op3, computation2)

 sigmoid(op)

 Unary sigmoid.

 sign(op)

 Unary sign.

 sin(op)

 Unary sin.

 sinh(op)

 Unary sinh.

 slice(op, start_indices, limit_indices, strides)

 sort(op, computation, dimension)

 sqrt(op)

 Unary sqrt.

 subtract(op1, op2, broadcast_dims \\ {})

 Element-wise subtract with broadcasting.

 svd(op, precision)

 tanh(op)

 Unary tanh.

 transpose(op, permutation)

 triangular_solve(op1, op2, left_side, lower, unit_diagonal, transpose_a)

 tuple(builder, elements)

 Builds a tuple with the given elements.

 variadic_reduce(builder, operands, init_values, computation, reduction_dimensions)

 variadic_sort(builder, operands, computation, dimension)

 while(computation1, computation2, op)

 window_reduce(op1, op2, computation, window_dimensions, window_strides, window_dilations, padding_config)

 Anchor for this section

Functions

 Link to this function

 abs(op)

 View Source

Unary abs.

 Link to this function

 acos(op)

 View Source

Unary acos.

 Link to this function

 acosh(op)

 View Source

Unary acosh.

 Link to this function

 add(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise add with broadcasting.

 Link to this function

 asin(op)

 View Source

Unary asin.

 Link to this function

 asinh(op)

 View Source

Unary asinh.

 Link to this function

 atan2(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise atan2 with broadcasting.

 Link to this function

 atan(op)

 View Source

Unary atan.

 Link to this function

 atanh(op)

 View Source

Unary atanh.

 Link to this function

 bitcast_convert_type(op, dtype)

 View Source

 Link to this function

 bitwise_and(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise bitwise_and with broadcasting.

 Link to this function

 bitwise_not(op)

 View Source

Unary bitwise_not.

 Link to this function

 bitwise_or(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise bitwise_or with broadcasting.

 Link to this function

 bitwise_xor(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise bitwise_xor with broadcasting.

 Link to this function

 broadcast_in_dim(op, shape, broadcast_dims)

 View Source

Broadcasts the tensor to shape.

 Link to this function

 cbrt(op)

 View Source

Unary cbrt.

 Link to this function

 ceil(op)

 View Source

Unary ceil.

 Link to this function

 cholesky(op)

 View Source

 Link to this function

 clamp(op1, op2, op3)

 View Source

 Link to this function

 concatenate(operands, dimension)

 View Source

 Link to this function

 conditional(op, branches, operands)

 View Source

 Link to this function

 conditional(op1, op2, computation1, op3, computation2)

 View Source

 Link to this function

 conjugate(op)

 View Source

 Link to this function

 constant_from_binary(builder, data, shape)

 View Source

Creates a n-dimensional constant from binary data with shape.

 Link to this function

 constant_r0(builder, non_finite, dtype)

 View Source

Creates a numeric constant.

 Link to this function

 conv_general_dilated(op1, op2, strides, padding, lhs_dilation, rhs_dilation, dim_nums, feature_group_count, batch_group_count, precision_config)

 View Source

 Link to this function

 convert_element_type(op, dtype)

 View Source

 Link to this function

 cos(op)

 View Source

Unary cos.

 Link to this function

 cosh(op)

 View Source

Unary cosh.

 Link to this function

 count_leading_zeros(op)

 View Source

Unary count_leading_zeros.

 Link to this function

 create_token(builder)

 View Source

 Link to this function

 divide(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise divide with broadcasting.

 Link to this function

 dot(op1, op2, precision_config)

 View Source

 Link to this function

 dot_general(op1, op2, dimnos, precision_config)

 View Source

 Link to this function

 dynamic_slice(op, indices, slice_sizes)

 View Source

 Link to this function

 dynamic_update_slice(op1, op2, indices)

 View Source

 Link to this function

 eigh(op, lower)

 View Source

 Link to this function

 equal(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise equal with broadcasting.

 Link to this function

 erf(op)

 View Source

Unary erf.

 Link to this function

 erf_inv(op)

 View Source

Unary erf_inv.

 Link to this function

 erfc(op)

 View Source

Unary erfc.

 Link to this function

 exp(op)

 View Source

Unary exp.

 Link to this function

 expm1(op)

 View Source

Unary expm1.

 Link to this function

 fft(op, fft_size)

 View Source

 Link to this function

 floor(op)

 View Source

Unary floor.

 Link to this function

 gather(op1, op2, index_vector_dim, slice_sizes, offset_dims, collapsed_slice_dims, start_index_map)

 View Source

The XLA gather operation stitches together several slices
of an input array.
Note that this operation is extremely generic and far from
intuitive for regular usage. However, it can be used to implement
many specific operations that have to do with combining multiple
tensor slices.

 parameteres

 Parameteres

The XLA docs are rather cryptic unless already understood,
so here's an attempt of a more intuitive description.

 index_vector_dim

 index_vector_dim

Determines which dimension contains index vectors. In most cases
we want to set this to the last dimension.
given
 start_indices = [[0, 1], [1, 1]]
and given
 index_vector_dim = 1
then
 index vectors are [0, 1] and [1, 1]
Note that we can set this to last_dimension + 1, in which case
start_indices are implicitly reshaped to have a trailing dimension
of 1.
given
 start_indices = [[0, 1], [1, 1]]
and given
 index_vector_dim = 2
then
 start_indices <- [[[0], [1]], [[1], [1]]]
 index vectors are [0], [1], [1], [1]

 start_index_map

 start_index_map

Note: though given as a list, it can be treated as a map of list_idx -> value.
An index vector may have less elements than the operand tensor shape.
For example:
given
 operand = [[1, 2], [3, 4]]
 start_indices = [[1], [0]]
 index_vector_dim = 1
As described above, in this case index vectors are [1], [0] and they have
length 1. However, the operand has rank 2, so we need vectors of the form [_, _]
to point to a specific element in the operand. The start_index_map determines
where indices go into this template:
and given
 start_index_map = [0] # effectively %{0 => 0}
then
 actual index vectors are [1, _] and [0, _]

and given
 start_index_map = [1] # effectively %{0 => 1}
then
 actual index vectors are [_, 1] and [_, 0]
Finally, the missing elements (_) are assumed to be 0.
Complete examples:
given
 operand = [[1, 2], [3, 4]]
 start_indices = [[0], [1]]
 index_vector_dim = 1
and given
 start_index_map = [1] # effectively %{0 => 1}
then
 actual index vectors are [0, 0], [0, 1] (leading 0 is inserted)

given
 operand = [[1, 2], [3, 4]]
 start_indices = [[0, 1], [1, 1]]
 index_vector_dim = 1
and given
 start_index_map = [0, 1] # effectively %{0 => 0, 1 => 1}
then
 actual index vectors are [0, 1], [1, 1] (as expected)

given
 operand = [[1, 2], [3, 4]]
 start_indices = [[0, 1], [1, 1]]
 index_vector_dim = 1
and given
 start_index_map = [1, 0] # effectively %{0 => 1, 1 => 0}
then
 actual index vectors are [1, 0], [1, 1] (see how the first vector is reversed)

 slice_sizes

 slice_sizes

For every starting point (as described above) we take a slice given
by slice_sizes. Naturally, slice_sizes must have the same length
as operand rank, so that we have one size per dimension.
given
 operand = [[1, 2], [3, 4]]
 actual index vector [1, 0]
and given
 slice_sizes = [1, 2]
then
 slice for actual index vector is [[3, 4]]

 collapsed_slice_dims

 collapsed_slice_dims

A list of dimensions that are collapsed (effectively removed) in
the slice shape. Only dimensions of size 1 can be collapsed.
given
 slice is [[3, 4]] # shape: [1][2]
and given
 collapsed_slice_dims = [0]
then
 actual slice is [3, 4] # shape [2]

 offset_dims

 offset_dims

A list of dimensions in the output tensor corresponding to the
non-collapsed dimensions in slice tensors. In other words, these
dimensions are used for indexing elements of the slice tensors.
given
 operand = [[1, 2], [3, 4]]
 start_indices = [[1, 0], [0, 0], [1, 0]]
 index_vector_dim = 1
 start_index_map = [1, 2] # effectively %{0 => 0, 1 => 1}
 collapsed_slice_dims = [0]
and given
 offset_dims = [1]
then
 result is [[3, 4], [1, 2], [3, 4]]
In the above example the collapsed slices are [3, 4], [1, 2], [3, 4]
and have rank 1. Using offset_dims we specify that the first
dimension in each slice corresponds to the second dimension in
the output tensor.
If we use the first output dimension instead, we get:
and given
 offset_dims = [0]
then
 result is [[3, 1, 3], [4, 2, 4]]

 docs

 Docs

More formal specification can be found in the XLA Gather docs.

 Link to this function

 get_shape(op)

 View Source

Gets the shape of an operator.

 Link to this function

 get_tuple_element(op, index)

 View Source

 Link to this function

 greater(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise greater with broadcasting.

 Link to this function

 greater_equal(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise greater_equal with broadcasting.

 Link to this function

 ifft(op, fft_size)

 View Source

 Link to this function

 imag(op)

 View Source

 Link to this function

 infeed(op, shape)

 View Source

 Link to this function

 iota(builder, shape, dim)

 View Source

Creates iota tensor.

 Link to this function

 is_infinity(op, type, shape, axes, state)

 View Source

 Link to this function

 is_nan(op, type, shape, axes, state)

 View Source

 Link to this function

 is_non_finite(nif_function, op, arg3, shape, axes, arg6)

 View Source

 Link to this function

 left_shift(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise left_shift with broadcasting.

 Link to this function

 less(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise less with broadcasting.

 Link to this function

 less_equal(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise less_equal with broadcasting.

 Link to this function

 log1p(op)

 View Source

Unary log1p.

 Link to this function

 log(op)

 View Source

Unary log.

 Link to this function

 lu(op)

 View Source

 Link to this function

 map(op, computation, dimensions)

 View Source

 Link to this function

 max(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise max with broadcasting.

 Link to this function

 min(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise min with broadcasting.

 Link to this function

 multiply(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise multiply with broadcasting.

 Link to this function

 negate(op)

 View Source

Unary negate.

 Link to this function

 not_equal(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise not_equal with broadcasting.

 Link to this function

 outfeed(op1, op2)

 View Source

 Link to this function

 pad(op1, op2, padding_config)

 View Source

Pads the tensor with value and padding config.

 Link to this function

 parameter(builder, i, shape, name)

 View Source

Specifies a parameter at position i with shape and name.

 Link to this function

 population_count(op)

 View Source

Unary population_count.

 Link to this function

 power(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise power with broadcasting.

 Link to this function

 qr(op, full_matrices)

 View Source

 Link to this function

 real(op)

 View Source

 Link to this function

 reduce(op1, op2, computation, reduction_dimensions)

 View Source

 Link to this function

 remainder(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise remainder with broadcasting.

 Link to this function

 reshape(op, shape)

 View Source

Reshapes the tensor to shape.

 Link to this function

 reverse(op, dimensions)

 View Source

 Link to this function

 right_shift_arithmetic(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise right_shift_arithmetic with broadcasting.

 Link to this function

 right_shift_logical(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise right_shift_logical with broadcasting.

 Link to this function

 rng_normal(op1, op2, shape)

 View Source

Creates tensor with normal distribution.

 Link to this function

 rng_uniform(op1, op2, shape)

 View Source

Creates tensor with uniform distribution.

 Link to this function

 round(op)

 View Source

Unary round.

 Link to this function

 rsqrt(op)

 View Source

Unary rsqrt.

 Link to this function

 scatter(op1, op2, op3, computation, indices_rank, update_window_dims, inserted_window_dims, index_dims_to_window_dims)

 View Source

 Link to this function

 select(op1, op2, op3)

 View Source

 Link to this function

 select_and_scatter(op1, computation1, window_dimensions, window_strides, padding_config, op2, op3, computation2)

 View Source

 Link to this function

 sigmoid(op)

 View Source

Unary sigmoid.

 Link to this function

 sign(op)

 View Source

Unary sign.

 Link to this function

 sin(op)

 View Source

Unary sin.

 Link to this function

 sinh(op)

 View Source

Unary sinh.

 Link to this function

 slice(op, start_indices, limit_indices, strides)

 View Source

 Link to this function

 sort(op, computation, dimension)

 View Source

 Link to this function

 sqrt(op)

 View Source

Unary sqrt.

 Link to this function

 subtract(op1, op2, broadcast_dims \\ {})

 View Source

Element-wise subtract with broadcasting.

 Link to this function

 svd(op, precision)

 View Source

 Link to this function

 tanh(op)

 View Source

Unary tanh.

 Link to this function

 transpose(op, permutation)

 View Source

 Link to this function

 triangular_solve(op1, op2, left_side, lower, unit_diagonal, transpose_a)

 View Source

 Link to this function

 tuple(builder, elements)

 View Source

Builds a tuple with the given elements.

 Link to this function

 variadic_reduce(builder, operands, init_values, computation, reduction_dimensions)

 View Source

 Link to this function

 variadic_sort(builder, operands, computation, dimension)

 View Source

 Link to this function

 while(computation1, computation2, op)

 View Source

 Link to this function

 window_reduce(op1, op2, computation, window_dimensions, window_strides, window_dilations, padding_config)

 View Source

EXLA.Shape

Wrapper around XLA's shape.

 Anchor for this section

 Summary

 Functions

 byte_size(shape)

 Returns the shape size in bytes.

 charlist_to_dtype(list)

 Converts a charlist type into Nx' tuple format.

 dtype_to_charlist(arg)

 Converts Nx's tuple format into charlist.

 make_shape(arg, dims)

 Creates a shape with the given type-size tuple and dimensions.

 make_token_shape()

 Creates a token shape.

 make_tuple_shape(shapes)

 Creates a tuple shape with the given shapes.

 Anchor for this section

Functions

 Link to this function

 byte_size(shape)

 View Source

Returns the shape size in bytes.

 Link to this function

 charlist_to_dtype(list)

 View Source

Converts a charlist type into Nx' tuple format.

 Link to this function

 dtype_to_charlist(arg)

 View Source

Converts Nx's tuple format into charlist.

 Link to this function

 make_shape(arg, dims)

 View Source

Creates a shape with the given type-size tuple and dimensions.

 Link to this function

 make_token_shape()

 View Source

Creates a token shape.

 Link to this function

 make_tuple_shape(shapes)

 View Source

Creates a tuple shape with the given shapes.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

