exbtc v0.1.2 Exbtc.Core
Link to this section Summary
Functions
return hexdigest instead of binary digest
use charlist to represent code strings
recover the public key
if encoding base is 256, return a charlist else return a String.t
use :binary.list_to_bin, not List.to_string which expects utf-8 codepoints
the term bytes
in Python 3 is used as charlist
in naming the method and argument here
extended Euclidean Algo
iex> C.sha256(‘784734adfids’) “ae616f5c8f6d338e4905f6170a90a231d0c89470a94b28e894a83aef90975557”
Link to this section Types
jacobian_number() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()}
jacobian number as a tuple
point on the elliptic curve ?
Link to this section Functions
return hexdigest instead of binary digest
bin_to_b58check(charlist(), integer()) :: charlist()
use charlist to represent code strings
decode(String.t() | charlist(), integer()) :: non_neg_integer()
decode_sig(String.t()) :: {integer(), integer(), integer()}
ecdsa_raw_recover(charlist(), {non_neg_integer(), non_neg_integer(), non_neg_integer()}) :: pair()
recover the public key
encode(non_neg_integer(), integer(), pos_integer()) :: String.t() | charlist()
if encoding base is 256, return a charlist else return a String.t
use :binary.list_to_bin, not List.to_string which expects utf-8 codepoints
the term bytes
in Python 3 is used as charlist
in naming the method and argument here
get_privkey_format(charlist() | non_neg_integer()) :: String.t()
extended Euclidean Algo
jacobian_add(jacobian_number(), jacobian_number()) :: jacobian_number()
jacobian_multiply(jacobian_number(), jacobian_number()) :: jacobian_number()
iex> C.sha256(‘784734adfids’) “ae616f5c8f6d338e4905f6170a90a231d0c89470a94b28e894a83aef90975557”
to_jacobian(pair()) :: {non_neg_integer(), non_neg_integer(), 1}