

 ex_osc

 v0.1.2

 Table of contents

 	ExOSC

 	Changelog

 	Modules

 	ExOSC.Client

 	OSC.Message

 	OSC.Types

 	OSC.Types.Blob

 	OSC.Types.Float

 	OSC.Types.Integer

 	OSC.Types.String

ExOSC

[image: Hex.pm Version]
ExOSC is a library for sending and receiving messages to/from audio hardware that supports the OpenSoundControl 1.0 protocol.
The exact capabilities of this library will depend on what hardware it's talking to. For example, when talking to an audio mixer, you'll likely be able to control the volume levels of the various faders, what audio gets routed to what outputs, etc.
x32_remote is an example of a library that uses ExOSC to talk to Behringer X32/M32 digital mixing consoles.
What is OSC?
OSC is a stateless protocol that typically operates over UDP. Messages have an address pattern string (or path, for short) that typically points to a resource or a command, and an arguments list comprised of zero or more supported OSC datatypes.
The OSC protocol is the same in both directions, i.e. simply passing messages back and forth. While there is no explicit request-reply mechanism — nor any built-in acknowledgement of requests — a typical pattern is for the local agent to issue a request with a given path, and the remote agent to respond using a message with an identical path.
A partial list of devices that support OSC can be found on the OSC Wikipedia page.
Installation
ExOSC requires Elixir v1.14. To use it, add :ex_osc to your list of dependencies in mix.exs:
def deps do
 [
 {:ex_osc, "~> 0.1.2"}
]
end
Usage
Here's an example of using ExOSC to request some basic info from a Behringer X32 digital rackmount mixer:
defmodule MyConsumer do
 use GenStage

 def init(:ok) do
 {:consumer, nil}
 end

 def handle_events(events, {_, _}, state) do
 events |> Enum.each(&IO.inspect/1)
 {:noreply, [], state}
 end
end

{:ok, client} = ExOSC.Client.start_link(ip: {192, 168, 1, 123}, port: 10023)
{:ok, consumer} = GenStage.start_link(MyConsumer, :ok, [])
{:ok, _} = GenStage.sync_subscribe(consumer, to: client)

ExOSC.Client.send_message(client, %OSC.Message{path: "/info"})
ExOSC.Client.send_message(client, %OSC.Message{path: "/ch/01/mix/fader"})
ExOSC.Client.send_message(client, %OSC.Message{path: "/ch/01/mix/pan"})
Process.sleep(100) # give it some time to reply
Output:
%OSC.Message{path: "/info", args: ["V2.07", "osc-server", "X32RACK", "4.06-8"]}
%OSC.Message{path: "/ch/01/mix/fader", args: [1.0]}
%OSC.Message{path: "/ch/01/mix/pan", args: [0.5]}
Of course, for this particular hardware, you should probably use x32_remote instead.
Documentation
Full documentation can be found at https://hexdocs.pm/ex_osc.
Legal stuff
Copyright © 2023, Adrian Irving-Beer.
ExOSC is released under the MIT license and is provided with no warranty. Be careful with what commands you issue to your (usually expensive) audio hardware.

Changelog

v0.1.2
	Added OSC.Message.path() and OSC.Message.args() typespecs.	These can be useful for typespecs in projects that use this library.

	Added typespecs for functions on OSC.Message.
	Cleaned up some typespec references.

v0.1.1
	Changelog created.
	Fixed some broken ExDoc links in OSC.Types.Blob.
	FIxed nulls in doctests in OSC.Types.String.

ExOSC.Client

A module for sending and receiving messages to/from an OSC server.
Starting a client will create a UDP socket on an arbitrary (system-assigned)
port and then wait for messages to be sent or received. No initial
negotiation is performed.
The client will act as a GenStage producer. To receive responses to your
requests, you should create a GenStage consumer (or consumer-producer) and
subscribe it to the PID returned by start_link/1. Each event will be a
decoded OSC.Message structure.
Due to the stateless nature of the OSC protocol, it is up to the user of this
library to ensure there is actually an OSC server at the target IP and port.
Failure to do so will not cause any errors on startup, nor prevent sending
messages, but will simply result in no actions being performed and no replies
being received.

 Anchor for this section

 Summary

 Types

 option()

 Option values used by start_link/1

 options()

 Options used by start_link/1

 Functions

 send_message(pid, msg)

 Encodes and sends an OSC.Message to the target.

 start_link(opts)

 Starts a client that will send and receive OSC messages to/from a target IP and port.

 Anchor for this section

Types

 Link to this type

 option()

 View Source

 @type option() ::
 {:ip, :inet.ip_address()} | {:port, :inet.port_number()} | GenServer.option()

Option values used by start_link/1

 Link to this type

 options()

 View Source

 @type options() :: [option()]

Options used by start_link/1

 Anchor for this section

Functions

 Link to this function

 send_message(pid, msg)

 View Source

 @spec send_message(pid(), OSC.Message.t()) :: :ok

Encodes and sends an OSC.Message to the target.

 Link to this function

 start_link(opts)

 View Source

 @spec start_link(options()) :: GenServer.on_start()

Starts a client that will send and receive OSC messages to/from a target IP and port.

 options

 Options

	:ip (required) - target IP in tuple form
	:port (required) - target UDP port

This function also accepts all the options accepted by GenServer.start_link/3.

 return-values

 Return values

Same as GenServer.start_link/3.

OSC.Message

A structure representing an OSC message.
The same structure is used in both directions, serving as both requests and
replies. It consists of a request path (encoded as an OSC.Types.String), a
type tag string (same), and an encoded list of arguments that can be decoded
using the type tag string as a reference.
For querying device parameters, a typical pattern is that the client will
send a message with a given path and empty args, and the server will
respond via a message with the same path and the requested data as the
args list.

 Anchor for this section

 Summary

 Types

 args()

 Arguments list for an OSC.Message structure

 path()

 Path string for an OSC.Message structure

 t()

 The OSC.Message structure.

 Functions

 construct(path, args \\ [])

 Create a message with a given path and (optional) arguments.

 parse(str)

 Parse a raw binary into an OSC.Message structure.

 to_packet(msg)

 Convert an OSC.Message structure to encoded network format.

 Anchor for this section

Types

 Link to this type

 args()

 View Source

 @type args() :: OSC.Types.args()

Arguments list for an OSC.Message structure

 Link to this type

 path()

 View Source

 @type path() :: binary()

Path string for an OSC.Message structure

 Link to this type

 t()

 View Source

 @type t() :: %OSC.Message{args: args(), path: path()}

The OSC.Message structure.

 Anchor for this section

Functions

 Link to this function

 construct(path, args \\ [])

 View Source

 @spec construct(path(), args()) :: t()

Create a message with a given path and (optional) arguments.
This is the preferred means of creating OSC.Message structures — in
addition to some basic checks on path and args, this will also call
OSC.Types.validate_args/1 to ensure that all the arguments can be mapped to
OSC types.

 Link to this function

 parse(str)

 View Source

 @spec parse(binary()) :: t()

Parse a raw binary into an OSC.Message structure.
The path and type tag string are decoded using OSC.Types.String.decode/1,
and then the arguments are decoded via OSC.Types.decode_args/2 using the
type tag string as a reference.
Returns the resulting OSC.Message structure. Raises if there is any
unconsumed data after the message ends.

 Link to this function

 to_packet(msg)

 View Source

 @spec to_packet(t()) :: binary()

Convert an OSC.Message structure to encoded network format.
The arguments will be encoded using OSC.Types.encode_args/1, and then the
message path, type tag string, and encoded arguments will be concatenated
to form the packet.
Returns the encoded packet as a binary, ready to send via UDP.

OSC.Types

Encoding and decoding of the possible args types in an OSC.Message.
Encoded messages contain a "type tag string" (encoded as an OSC "string"
type), starting with a comma, where each subsequent letter indicates the type
of the respective argument. For example, ",sif" indicates a message whose
three arguments are an OSC string, integer, and float, respectively.
Thus, to decode arguments, we need to know the type tag string; and when
encoding arguments, we must also produce a type tag string.

 Anchor for this section

 Summary

 Types

 args()

 List of OSC message arguments

 t()

 Values that can be encoded into OSC types

 Functions

 decode_args(arg, encoded_args)

 Decodes OSC arguments, given a decoded OSC type tag string.

 encode_args(args)

 Encode arguments into an OSC type tag string and encoded binaries.

 validate_args(args)

 Ensure that all arguments can be mapped to OSC types.

 Anchor for this section

Types

 Link to this type

 args()

 View Source

 @type args() :: [t()]

List of OSC message arguments

 Link to this type

 t()

 View Source

 @type t() ::
 OSC.Types.String.t()
 | OSC.Types.Integer.t()
 | OSC.Types.Float.t()
 | OSC.Types.Blob.t()

Values that can be encoded into OSC types

 Anchor for this section

Functions

 Link to this function

 decode_args(arg, encoded_args)

 View Source

 @spec decode_args(binary(), binary()) :: {args(), binary()}

Decodes OSC arguments, given a decoded OSC type tag string.
The type tag string will need to be decoded first using
OSC.Types.String.decode/1. This function will then determine which type
decoder to use for each argument, based on the respective characters in the tag
string.
Returns {args, rest} where args is the decoded args and rest is any
data that was not consumed by the argument decoders.

 example

 Example

iex> OSC.Types.decode_args(",iiis", <<
...> 0, 0, 0, 3,
...> 0, 0, 0, 2,
...> 0, 0, 0, 1,
...> "go", 0, 0,
...> "stop"
...> >>)
{[3, 2, 1, "go"], "stop"}

 Link to this function

 encode_args(args)

 View Source

 @spec encode_args(args()) :: {binary(), [binary()]}

Encode arguments into an OSC type tag string and encoded binaries.
Returns {tags, encoded} where tags is the tag string, and encoded is a
list of each encoded argument.
Note that the tag string will itself need to be encoded before sending, using
OSC.Types.String.encode/1. The encoded tag string can then be concatenated
with the remaining binaries to form the argument portion of an OSC.Message.

 example

 Example

iex> OSC.Types.encode_args([1.0, 2, [3], "4"])
{",fibs", [
 <<63, 128, 0, 0>>, # float: 1.0
 <<0, 0, 0, 2>>, # int: 2
 <<0, 0, 0, 1, 3, 0, 0, 0>>, # blob: [3]
 <<52, 0, 0, 0>> # string: "4"
]}

 Link to this function

 validate_args(args)

 View Source

 @spec validate_args(args()) :: :ok

Ensure that all arguments can be mapped to OSC types.
Raises ArgumentError if an argument is of a type that cannot be encoded.
Note that this only serves as a basic sanity check on argument types, and
does not actually ensure that arguments can be encoded. For example, it does
not check the range of numeric types, nor does it check the contents of
blobs.

 examples

 Examples

iex> OSC.Types.validate_args([1, 2.0, [3, 4, 5], "str"])
:ok

iex> OSC.Types.validate_args([1, :atom, 12])
** (ArgumentError) Unknown OSC type: :atom

OSC.Types.Blob

Encoding and decoding of the OSC blob type.
Blobs are of a list of arbitrary bytes of a given length. Their encoded form
consists of an OSC integer indicating the length, followed by the bytes in
raw binary format, then padded with null characters ("\0") until the result
is 32-bit aligned (like all OSC datatypes).
As such, this is a composite type that also uses the encoding and decoding
functions from OSC.Types.Integer.

 Anchor for this section

 Summary

 Types

 t()

 An OSC blob represented as a list of bytes

 Functions

 decode(binary)

 Decodes an OSC blob to a list of bytes.

 encode(list)

 Encodes a list of bytes to an OSC blob type.

 type_tag()

 Returns ?b, the type tag for the OSC blob type

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: [:erlang.byte()]

An OSC blob represented as a list of bytes

 Anchor for this section

Functions

 Link to this function

 decode(binary)

 View Source

Decodes an OSC blob to a list of bytes.
The blob must start with an OSC integer (see OSC.Types.Integer.decode/1)
that indicates the number of bytes in the blob. After reading the blob
contents, some additional bytes may be consumed (but discarded) as needed to
reach the next 32-bit boundary.
Returns {blob, rest} where blob is a list of bytes and rest is a binary
containing any data not consumed by the decoder.

 examples

 Examples

iex> <<0, 0, 0, 5, 1, 2, 3, 4, 5, 0, 0, 0, 123>> |> OSC.Types.Blob.decode()
{[1, 2, 3, 4, 5], <<123>>}

iex> <<0, 0, 0, 7, "goodbye world">> |> OSC.Types.Blob.decode()
{'goodbye', "world"}

 Link to this function

 encode(list)

 View Source

 @spec encode(t()) :: binary()

Encodes a list of bytes to an OSC blob type.
The encoded data consists of the number of bytes encoded as an OSC integer
(see OSC.Types.Integer.encode/1), followed by the bytes in raw binary
format, followed by zero or more null characters until 32-bit aligned.

 examples

 Examples

iex> [1, 2, 3, 4] |> OSC.Types.Blob.encode()
<<0, 0, 0, 4, 1, 2, 3, 4>>

iex> [1, 2, 3, 4, 5] |> OSC.Types.Blob.encode()
<<0, 0, 0, 5, 1, 2, 3, 4, 5, 0, 0, 0>>

iex> 'hello world' |> OSC.Types.Blob.encode()
<<0, 0, 0, 11, 104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100, 0>>

 Link to this function

 type_tag()

 View Source

Returns ?b, the type tag for the OSC blob type
iex> <<OSC.Types.Blob.type_tag()>>
"b"

OSC.Types.Float

Encoding and decoding of the OSC float type.
OSC floats are encoded in 32-bit IEEE 754 binary format (a.k.a single, or
more recently, binary32). This makes converting them very easy in Elixir,
since we can just use <<x::float-size(32)>> binary notation for both
encoding and decoding.
Precision and rounding
As is always the case when working with floating point numbers, you should
expect precision errors to appear rather quickly when using this datatype —
especially since 32-bit floats are not especially precise, only reliable to
about 7 digits worth. For example, you will almost always get different
results if you encode and then immediately decode a float:
iex> 0.333 |> OSC.Types.Float.encode() |> OSC.Types.Float.decode()
{0.3330000042915344, ""}
This is also before you get into any precision errors introduced by the
OSC-controlled hardware itself. For example, your mixing hardware might
store a fader volume as an integer, performing float-to-int conversions on
"set" operations and int-to-float conversions on "get" operations.
As such, you should always expect a lot of rounding when using the OSC
float type, as well as a lot of extraneous digits (that you might want to
consider discarding before displaying to the end user).

 Anchor for this section

 Summary

 Types

 t()

 An OSC float represented by an Elixir float

 Functions

 decode(arg)

 Decodes an OSC float to an Elixir float.

 encode(float)

 Encodes an Elixir float to an OSC float type.

 type_tag()

 Returns ?f, the type tag for the OSC float type

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: float()

An OSC float represented by an Elixir float

 Anchor for this section

Functions

 Link to this function

 decode(arg)

 View Source

Decodes an OSC float to an Elixir float.
Returns {float, rest} where float is a float decoded from the first four
bytes of the input, and rest is a binary containing the remaining data.

 examples

 Examples

iex> <<63, 128, 0, 0>> |> OSC.Types.Float.decode()
{1.0, ""}

iex> <<68, 249, 184, 0, 234>> |> OSC.Types.Float.decode()
{1997.75, <<234>>}

 Link to this function

 encode(float)

 View Source

Encodes an Elixir float to an OSC float type.
Returns a 32-bit binary-encoded float.

 examples

 Examples

iex> OSC.Types.Float.encode(0.3333)
<<62, 170, 166, 76>>

 Link to this function

 type_tag()

 View Source

Returns ?f, the type tag for the OSC float type
iex> <<OSC.Types.Float.type_tag()>>
"f"

OSC.Types.Integer

Encoding and decoding of the OSC integer type.
OSC integers are encoded in 32-bit, signed, big-endian binary format. As
such, the lowest possible integer is -2³¹ (min/0 = -2,147,483,648) and
the highest is one less than 2³¹ (max/0 = 2,147,483,647).

 Anchor for this section

 Summary

 Types

 t()

 An OSC integer, represented by a signed 32-bit Elixir integer

 Functions

 decode(arg)

 Decodes an OSC integer to an Elixir integer.

 encode(int)

 Encodes an Elixir integer to an OSC integer type.

 max()

 Returns the largest possible OSC integer (2**31 - 1).

 min()

 Returns the smallest possible OSC integer (0 - 2**31).

 type_tag()

 Returns ?i, the type tag for the OSC integer type

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: -2_147_483_648..2_147_483_647

An OSC integer, represented by a signed 32-bit Elixir integer

 Anchor for this section

Functions

 Link to this function

 decode(arg)

 View Source

Decodes an OSC integer to an Elixir integer.
Returns {int, rest} where int is an integer decoded from the first four
bytes of the input, and rest is a binary containing the remaining data.

 examples

 Examples

iex> <<0, 0, 0, 3>> |> OSC.Types.Integer.decode()
{3, ""}

iex> <<0, 1, 2, 3, 4, 5>> |> OSC.Types.Integer.decode()
{66051, <<4, 5>>}

 Link to this function

 encode(int)

 View Source

Encodes an Elixir integer to an OSC integer type.
Returns a 32-bit big-endian-encoded integer.
Will raise an error if the integer is lower than min/0 or higher than max/0.

 examples

 Examples

iex> OSC.Types.Integer.encode(123)
<<0, 0, 0, 123>>

iex> OSC.Types.Integer.encode(-987)
<<255, 255, 252, 37>>

 Link to this function

 max()

 View Source

Returns the largest possible OSC integer (2**31 - 1).
iex> OSC.Types.Integer.max()
2_147_483_647

 Link to this function

 min()

 View Source

Returns the smallest possible OSC integer (0 - 2**31).
iex> OSC.Types.Integer.min()
-2_147_483_648

 Link to this function

 type_tag()

 View Source

Returns ?i, the type tag for the OSC integer type
iex> <<OSC.Types.Integer.type_tag()>>
"i"

OSC.Types.String

Encoding and decoding of the OSC string type.
There's minimal encoding and decoding required here, since the only
requirement for an OSC string is that it end with a null byte ("\0") and
that it be 32-bit aligned (like all OSC types). As such, encoding just
involves adding null bytes, and decoding just involves finding the last block
and removing the trailing nulls.

 Anchor for this section

 Summary

 Types

 t()

 An OSC string, represented by an Elixir binary string

 Functions

 decode(arg)

 Decodes an OSC string to an Elixir string.

 encode(str)

 Encodes an Elixir string to an OSC string type.

 type_tag()

 Returns ?s, the type tag for the OSC integer type

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: binary()

An OSC string, represented by an Elixir binary string

 Anchor for this section

Functions

 Link to this function

 decode(arg)

 View Source

Decodes an OSC string to an Elixir string.
Will search through the input data for a 32-bit (4-byte) block that ends with
a null character ("\0"), raising if it reaches the end without finding one.
Returns {string, rest}, where string is all data prior to the first null
in the final block, and rest is a binary containing data after that block.

 examples

 Examples

iex> "goodbye\0world" |> OSC.Types.String.decode()
{"goodbye", "world"}

iex> "unaligned\0\0\0rest" |> OSC.Types.String.decode()
{"unaligned", "rest"}

iex> "nulblock\0\0\0\0after" |> OSC.Types.String.decode()
{"nulblock", "after"}

 Link to this function

 encode(str)

 View Source

Encodes an Elixir string to an OSC string type.
Returns the encoded string, which will be the original string with 1 to 4
null bytes ("\0") added as needed (to 32-bit align it).
The input string cannot itself contain any null bytes.

 examples

 Examples

iex> "hello world" |> OSC.Types.String.encode()
<<"hello world", 0>>

iex> "PadMe" |> OSC.Types.String.encode()
<<"PadMe", 0, 0, 0>>

iex> "multiple of four" |> OSC.Types.String.encode()
<<"multiple of four", 0, 0, 0, 0>>

 Link to this function

 type_tag()

 View Source

Returns ?s, the type tag for the OSC integer type
iex> <<OSC.Types.String.type_tag()>>
"s"

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

