

 Money

 v1.8.0

 [image: Logo]

 Table of contents

 	Introduction to Money SQL

 	Changelog

 	LICENSE

 	Modules

 	Money.DDL

 	Money.Ecto.Composite.Type

 	Money.Ecto.Map.Type

 	Money.Validate

 	Mix Tasks

 	mix money.gen.postgres.min_max_functions

 	mix money.gen.postgres.money_with_currency

 	mix money.gen.postgres.plus_operator

 	mix money.gen.postgres.sum_function

Introduction to Money SQL

[image: Build Status]
[image: Hex pm]
[image: License]
Money_SQL implements a set of functions to store and retrieve data structured as a %Money{} type that is composed of an ISO 4217 currency code and a currency amount. See ex_money for details of using Money. Note that ex_money_sql depends on ex_money.
Migrating from Money SQL versions 1.3 or earlier
As of ex_money_sql version 1.4.0 the composite type for postgres, Money.Ecto.Composite.Type is defined as a parameterized type. This is compatible with earlier versions with the exception of the behaviour of the type/2 macro used to cast results. These calls have to be changed as follows:
ex_money_sql version 1.3 and earlier
where(Credit, [c], c.price < type(^value, Money.Ecto.Composite.Type))

ex_money_sql version 1.4 and later
where(Credit, [c], c.price < type(^value, ^Money.Ecto.Composite.Type.cast_type()))

When the query is a schema query this is preferred
where(Credit, [c], c.price < type(^value, c.price))
Prerequisities
	Money_SQL is supported on Elixir 1.6 and later only

Serializing to a Postgres database with Ecto
Money_SQL provides custom Ecto data types and a custom Postgres data type to provide serialization of Money.t types without losing precision whilst also maintaining the integrity of the {currency_code, amount} relationship. To serialise and retrieve money types from a database the following steps should be followed:
	First generate the migration to create the custom type:

mix money.gen.postgres.money_with_currency
* creating priv/repo/migrations
* creating priv/repo/migrations/20161007234652_add_money_with_currency_type_to_postgres.exs
	Then migrate the database:

mix ecto.migrate
07:09:28.637 [info] == Running MoneyTest.Repo.Migrations.AddMoneyWithCurrencyTypeToPostgres.up/0 forward
07:09:28.640 [info] execute "CREATE TYPE public.money_with_currency AS (currency_code char(3), amount numeric)"
07:09:28.647 [info] == Migrated in 0.0s
	Create your database migration with the new type (don't forget to mix ecto.migrate as well):

defmodule MoneyTest.Repo.Migrations.CreateLedger do
 use Ecto.Migration

 def change do
 create table(:ledgers) do
 add :amount, :money_with_currency
 timestamps()
 end
 end
end
	Create your schema using the Money.Ecto.Composite.Type ecto type:

defmodule Ledger do
 use Ecto.Schema

 schema "ledgers" do
 field :amount, Money.Ecto.Composite.Type

 timestamps()
 end
end
	Insert into the database:

iex> Repo.insert %Ledger{amount: Money.new(:USD, "100.00")}
[debug] QUERY OK db=4.5ms
INSERT INTO "ledgers" ("amount","inserted_at","updated_at") VALUES ($1,$2,$3)
[{"USD", #Decimal<100.00>}, {{2016, 10, 7}, {23, 12, 13, 0}}, {{2016, 10, 7}, {23, 12, 13, 0}}]
	Retrieve from the database:

iex> Repo.all Ledger
[debug] QUERY OK source="ledgers" db=5.3ms decode=0.1ms queue=0.1ms
SELECT l0."amount", l0."inserted_at", l0."updated_at" FROM "ledgers" AS l0 []
[%Ledger{__meta__: #Ecto.Schema.Metadata<:loaded, "ledgers">, amount: #<:USD, 100.00>,
 inserted_at: ~N[2017-02-21 00:15:40.979576],
 updated_at: ~N[2017-02-21 00:15:40.991391]}]
Serializing to a MySQL (or other non-Postgres) database with Ecto
Since MySQL does not support composite types, the :map type is used which in MySQL is implemented as a JSON column. The currency code and amount are serialised into this column.
defmodule MoneyTest.Repo.Migrations.CreateLedger do
 use Ecto.Migration

 def change do
 create table(:ledgers) do
 add :amount, :map
 timestamps()
 end
 end
end
Create your schema using the Money.Ecto.Map.Type ecto type:
defmodule Ledger do
 use Ecto.Schema

 schema "ledgers" do
 field :amount, Money.Ecto.Map.Type

 timestamps()
 end
end
Insert into the database:
iex> Repo.insert %Ledger{amount_map: Money.new(:USD, 100)}
[debug] QUERY OK db=25.8ms
INSERT INTO "ledgers" ("amount_map","inserted_at","updated_at") VALUES ($1,$2,$3)
RETURNING "id" [%{amount: "100", currency: "USD"},
{{2017, 2, 21}, {0, 15, 40, 979576}}, {{2017, 2, 21}, {0, 15, 40, 991391}}]

{:ok,
 %MoneyTest.Thing{__meta__: #Ecto.Schema.Metadata<:loaded, "ledgers">,
 amount: nil, amount_map: #Money<:USD, 100>, id: 3,
 inserted_at: ~N[2017-02-21 00:15:40.979576],
 updated_at: ~N[2017-02-21 00:15:40.991391]}}
Retrieve from the database:
iex> Repo.all Ledger
[debug] QUERY OK source="ledgers" db=16.1ms decode=0.1ms
SELECT t0."id", t0."amount_map", t0."inserted_at", t0."updated_at" FROM "ledgers" AS t0 []
[%Ledger{__meta__: #Ecto.Schema.Metadata<:loaded, "ledgers">,
 amount_map: #Money<:USD, 100>, id: 3,
 inserted_at: ~N[2017-02-21 00:15:40.979576],
 updated_at: ~N[2017-02-21 00:15:40.991391]}]
Notes:
	 In order to preserve precision of the decimal amount, the amount part of the %Money{} struct is serialised as a string. This is done because JSON serializes numeric values as either integer or float, neither of which would preserve precision of a decimal value.

	 The precision of the serialized string value of amount is affected by the setting of Decimal.get_context. The default is 28 digits which should cater for your requirements.

	 Serializing the amount as a string means that SQL query arithmetic and equality operators will not work as expected. You may find that CASTing the string value will restore some of that functionality. For example:

CAST(JSON_EXTRACT(amount_map, '$.amount') AS DECIMAL(20, 8)) AS amount;
Casting Money with Changesets
Then the schema type is Money.Ecto.Composite.Type then any option that is applicable to Money.parse/2 or Money.new/3 can be added to the field definition. These options will then be applied when Money.Ecto.Composite.Type.cast/2 or Money.Ecto.Composite.Type.load/3 is called. These functions are called with loading data from the database or when calling Ecto.Changeset.cast/3 is called. Typically this is useful to:
	Apply a default currency to a field input representing a money amount.
	Add formatting options to the returned t:Money that will be applied when calling Money.to_string/2

Consider the following example where a money amount will be considered in a default currency if no currency is applied:
Example schema
The example below has three columns defined as Money.Ecto.Composite.Type.
	:payroll will be cast as with the default currency :JPY if no currency field is provided. Note that if no :default_currency option is defined, the default currency will be derived from the current locale or configured :locale option.

	:tax is defined with the option :fractional_digits. This option will be applied when formatting :tax with Money.to_string/2

	:default is the t:Money that is used if the :value field is nil both when casting and when loading from the database.

defmodule Organization do
 use Ecto.Schema
 import Ecto.Changeset

 @primary_key false
 schema "organizations" do
 field :payroll, Money.Ecto.Composite.Type, default_currency: :JPY
 field :tax, Money.Ecto.Composite.Type, fractional_digits: 4
 field :value, Money.Ecto.Composite.Type, default: Money.new(:USD, 0)
 field :name, :string
 field :employee_count, :integer
 timestamps()
 end

 def changeset(organization, params \\ %{}) do
 organization
 |> cast(params, [:payroll])
 end
end
Changeset execution
In the following example, a default of :JPY currency (using our previous schema example) will be applied when casting the changeset.
iex> changeset = Organization.changeset(%Organization{}, %{payroll: "0"})
iex> changeset.changes.payroll == Money.new(:JPY, 0)
true
Postgres Database functions
Since the datatype used to store Money in Postgres is a composite type (called :money_with_currency), the standard aggregation functions like sum and average are not supported and the order_by clause doesn't perform as expected. Money provides mechanisms to provide these functions.
Plus operator +
Money defines a migration generator which, when migrated to the database with mix ecto.migrate, supports the + operator for :money_with_currency columns. The steps are:
	Generate the migration by executing mix money.gen.postgres.plus_operator

	Migrate the database by executing mix ecto.migrate

	Formulate an Ecto query to use the + operator
 iex> q = Ecto.Query.select Item, [l], type(fragment("price + price"), l.price)
 #Ecto.Query<from l0 in Item, select: type(fragment("price + price"), l0.price)>
 iex> Repo.one q
 [debug] QUERY OK source="items" db=5.6ms queue=0.5ms
 SELECT price + price::money_with_currency FROM "items" AS l0 []
 #Money<:USD, 200>]

Aggregate functions: sum()
Money provides a migration generator which, when migrated to the database with mix ecto.migrate, supports performing sum() aggregation on Money types. The steps are:
	Generate the migration by executing mix money.gen.postgres.sum_function

	Migrate the database by executing mix ecto.migrate

	Formulate an Ecto query to use the aggregate function sum()

 # Formulate the query. Note the required use of the type()
 # expression which is needed to inform Ecto of the return
 # type of the function
 iex> q = Ecto.Query.select Item, [l], type(sum(l.price), l.price)
 #Ecto.Query<from l0 in Item, select: type(sum(l.price), l.price)>
 iex> Repo.all q
 [debug] QUERY OK source="items" db=6.1ms
 SELECT sum(l0."price")::money_with_currency FROM "items" AS l0 []
 [#Money<:USD, 600>]
The function Repo.aggregate/3 can also be used. However at least ecto version 3.2.4 is required for this to work correctly for custom ecto types such as :money_with_currency.
 iex> Repo.aggregate(Item, :sum, :price)
 #Money<:USD, 600>
Note that to preserve the integrity of Money it is not permissable to aggregate money that has different currencies. If you attempt to aggregate money with different currencies the query will abort and an exception will be raised:
 iex> Repo.all q
 [debug] QUERY ERROR source="items" db=4.5ms
 SELECT sum(l0."price")::money_with_currency FROM "items" AS l0 []
 ** (Postgrex.Error) ERROR 22033 (): Incompatible currency codes. Expected all currency codes to be USD
Aggregate functions: min() and max()
Money provides a migration generator which, when migrated to the database with mix ecto.migrate, supports performing min() and max() aggregation on Money types. The steps are:
	Generate the migration by executing mix money.gen.postgres.min_max_functions

	Migrate the database by executing mix ecto.migrate

	Formulate an Ecto query to use the aggregate function min() or max()

 # Formulate the query. Note the required use of the type()
 # expression which is needed to inform Ecto of the return
 # type of the function
 iex> q = Ecto.Query.select Item, [l], type(min(l.price), l.price)
 #Ecto.Query<from l0 in Item, select: type(min(l.price), l.price)>
 iex> Repo.all q
 [debug] QUERY OK source="items" db=6.1ms
 SELECT min(l0."price")::money_with_currency FROM "items" AS l0 []
 [#Money<:USD, 600>]
The function Repo.aggregate/3 can also be used. However at least ecto version 3.2.4 is required for this to work correctly for custom ecto types such as :money_with_currency.
 iex> Repo.aggregate(Item, :min, :price)
 #Money<:USD, 600>
Note that to preserve the integrity of Money it is not permissable to aggregate money that has different currencies. If you attempt to aggregate money with different currencies the query will abort and an exception will be raised:
 iex> Repo.all q
 [debug] QUERY ERROR source="items" db=4.5ms
 SELECT min(l0."price")::money_with_currency FROM "items" AS l0 []
 ** (Postgrex.Error) ERROR 22033 (): Incompatible currency codes. Expected all currency codes to be USD
Order_by with Money
Since :money_with_currency is a composite type, the default order_by results may surprise since the ordering is based upon the type structure, not the money amount. Postgres defines a means to access the components of a composite type and therefore sorting can be done in a more predictable fashion. For example:
 # In this example we are decomposing the the composite column called
 # `price` and using the sub-field `amount` to perform the ordering.
 iex> q = from l in Item, select: l.price, order_by: fragment("amount(price)")
 #Ecto.Query<from l in Item, order_by: [asc: fragment("amount(price)")],
 select: l.amount>
 iex> Repo.all q
 [debug] QUERY OK source="items" db=2.0ms
 SELECT l0."price" FROM "items" AS l0 ORDER BY amount(price) []
 [#Money<:USD, 100.00000000>, #Money<:USD, 200.00000000>,
 #Money<:USD, 300.00000000>, #Money<:AUD, 300.00000000>]
Note that the results may still be unexpected. The example above shows the correct ascending ordering by amount(price) however the ordering is not currency code aware and therefore mixed currencies will return a largely meaningless order.
Installation
Money can be installed by adding ex_money_sql to your list of dependencies in mix.exs and then executing mix deps.get
def deps do
 [
 {:ex_money_sql, "~> 1.0"},
 ...
]
end

Changelog

When upgrading from ex_money_sql version 1.3.x to 1.4.x and later, please read the important migration information in the README
Note That money_sql is supported on Elixir 1.11 and later only from ex_money_sql version 1.7.0.
Money_SQL v1.8.0
This is the changelog for Money_SQL v1.8.0 released on December 26th, 2022.
Enhancements
	Adds migrations and SQL functions to support min and max aggregate functions for Postgres when using the money_with_currency composite data type. The new mix task is money.gen.postgres.min_max_functions.

	Renames the migration task money.gen.postgres.aggregate_functions to money.gen.postgres.sum_function to better reflect its intent. This change affects only new installations. It has no effect on pre-existing generated migrations.

Money_SQL v1.7.3
This is the changelog for Money_SQL v1.7.3 released on December 18th, 2022.
Bug Fixes
	WHen loading money from the database with the Money.Ecto.Map.Type type, do not do localized parsing of the amount. The amount is always saved using Decimal.to_string/1 and therefore is not localized. It must not be parsed with localization on loading.

Money_SQL v1.7.2
This is the changelog for Money_SQL v1.7.2 released on August 27th, 2022.
Bug Fixes
	Makes the aggregate functions parallel-safe which provides up to 100% speed improvement. Thanks to @milangupta1 for the PR.

Money_SQL v1.7.1
This is the changelog for Money_SQL v1.7.1 released on July 8th, 2022.
Bug Fixes
	Fixes casting a money map when the currency is nil. Thanks to @frahugo for the report. Closes #24.

Money_SQL v1.7.0
This is the changelog for Money_SQL v1.7.0 released on May 21st, 2022.
Enhancements
	Adds the module Money.Validation to provide Ecto Changeset validations. In particular it adds Money.Validation.validate_money/3 which behaves exactly like Ecto.Changeset.validate_number/3 only for Money.t/0 types.

Money_SQL v1.6.0
This is the changelog for Money_SQL v1.6.0 released on December 31st, 2021.
Note That money_sql is now supported on Elixir 1.10 and later only.
Enhancements
	t:Money.Ecto.Composite.Type and t:Money.Ecto.Map.Type now return the exception module when there is an error in cast/1. For example:

iex> Money.Ecto.Composite.Type.cast("") ==
{:error,
 [
 exception: Money.InvalidAmountError,
 message: "Amount cannot be converted to a number: \"\""
]}
 The expected exceptions are:
	Money.InvalidAmountError
	Money.UnknownCurrencyError
	Money.ParseError

Thanks to @DaTrader for the enhancement request.
Money_SQL v1.5.2
This is the changelog for Money_SQL v1.5.2 released on December 13th, 2021.
Note That money_sql is now supported on Elixir 1.10 and later only.
Bug Fixes
	Fixes Ecto.ParameterizedType.embed_as/2 callback for the Ecto.ParameterizedType behaviour. Thanks to @nseantanly for the report and the PR.

Money_SQL v1.5.1
This is the changelog for Money_SQL v1.5.1 released on December 8th, 2021.
Note That money_sql is now supported on Elixir 1.10 and later only.
Bug Fixes
	Implements Ecto.ParameterizedType.equal?/3 callback for the Ecto.ParameterizedType behaviour. Thanks to @namhoangyojee for the report and the PR.

	Adds @impl Ecto.ParamaterizedType to the relevant callbacks.

Money_SQL v1.5.0
This is the changelog for Money_SQL v1.5.0 released on September 25th, 2021.
Enhancements
	Adds a + operator for the Postgres type :money_with_currency

	The name of the migration to create the :money_with_currency type has shortened to be money.gen.postgres.money_with_currency

Money_SQL v1.4.5
This is the changelog for Money_SQL v1.4.5 released on June 3rd, 2021.
Bug Fixes
	Remove conditional compilation in Money.Ecto.Composite.Type - the type is always Ecto.ParameterizedType.

Money_SQL v1.4.4
This is the changelog for Money_SQL v1.4.4 released on March 18th, 2021.
Bug Fixes
	Don't use is_struct/1 guard to support compatibility on older Elixir releases

Money_SQL v1.4.3
This is the changelog for Money_SQL v1.4.3 released on February 17th, 2021.
Bug Fixes
	Don't propogate a :default option into the t:Money from the schema. Fixes #14. Thanks to @emaiax.

Money_SQL v1.4.2
This is the changelog for Money_SQL v1.4.2 released on February 12th, 2021.
Bug Fixes
	Dumping/loading nil returns {:ok, nil}. Thanks to @morinap.

Money_SQL v1.4.1
This is the changelog for Money_SQL v1.4.1 released on February 11th, 2021.
Bug Fixes
	Casting nil returns {:ok, nil}. Thanks to @morinap.

Money_SQL v1.4.0
This is the changelog for Money_SQL v1.4.0 released on February 10th, 2021.
Bug Fixes
	Fix parsing error handling in Money.Ecto.Composite.Type.cast/2. Thanks to @NikitaAvvakumov. Closes #10.

	Fix casting localized amounts. Thanks to @olivermt. Closes #11.

Enhancements
	Changes Money.Ecto.Composite.Type and Money.Ecto.Map.Type to be ParameterizedType. As a result, Ecto 3.5 or later is required. This change allows configuration of format options for the :money_with_currency to added as parameters in the Ecto schema. For the example schema:defmodule Organization do
 use Ecto.Schema

 @primary_key false
 schema "organizations" do
 field :payroll, Money.Ecto.Composite.Type
 field :tax, Money.Ecto.Composite.Type, fractional_digits: 4
 field :name, :string
 field :employee_count, :integer
 timestamps()
 end
end
The field :tax will be instantiated as a Money.t with :format_options of fractional_digits: 4.

Money_SQL v1.3.1
This is the changelog for Money_SQL v1.3.1 released on September 30th, 2020.
Bug Fixes
	Fixes compatibility with both Decimal version 1.x and 2.x. Thanks to @doughsay and @coladarci for the report. Closes #8.

Money_SQL v1.3.0
This is the changelog for Money_SQL v1.3.0 released on January 30th, 2020.
Enhancements
	Updates to ex_money version 5.0. Thanks to @morgz

Money_SQL v1.2.1
This is the changelog for Money_SQL v1.2.1 released on November 3rd, 2019.
Bug Fixes
	Fixes Money.Ecto.Composite.Type and Money.Ecto.Map.Type by ensuring the load/1 and cast/1 callbacks conform to their typespecs. Thanks to @bgracie. Closes #4 and #5.

	Fixes the migration templates for money.gen.postgres.aggregate_functions to use numeric intermediate types rather than numeric(20,8). For current installations it should be enough to run mix money.gen.postgres.aggregate_functions again followed by mix ecto.migrate to install the corrected aggregate function.

Money_SQL v1.2.0
This is the changelog for Money_SQL v1.2.0 released on November 2nd, 2019.
Bug Fixes
	Removes the precision specification from intermediate results of the sum aggregate function for Postgres.

Enhancements
	Adds equal?/2 callbacks to the Money.Ecto.Composite.Type and Money.Ecto.Map.Type for ecto_sql version 3.2

Money_SQL v1.1.0
This is the changelog for Money_SQL v1.1.0 released on August 22nd, 2019.
Enhancements
	Renames the migration that generator that creates the Postgres composite type to be more meaningful.

Bug Fixes
	Correctly generate and execute migrations. Fixes #1 and #2. Thanks to @davidsulc, @KungPaoChicken.

Money_SQL v1.0.0
This is the changelog for Money_SQL v1.0.0 released on July 8th, 2019.
Enhancements
	Initial release. Extracted from ex_money

LICENSE

License
Copyright 2017-2019 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Money.DDL

Functions to return SQL DDL commands that support the
creation and deletion of the money_with_currency database
type and associated aggregate functions.

 Anchor for this section

 Summary

 Functions

 create_money_with_currency(db_type \\ :postgres)

 Returns the SQL string which when executed will
define the money_with_currency data type.

 define_minmax_functions(db_type \\ :postgres)

 Returns the SQL string which when executed will
define min and max functions for the money_with_currency
data type.

 define_plus_operator(db_type \\ :postgres)

 Returns the SQL string which when executed will
define a + operator for the money_with_currency
data type.

 define_sum_function(db_type \\ :postgres)

 Returns the SQL string which when executed will
define sum functions for the money_with_currency
data type.

 drop_minmax_functions(db_type \\ :postgres)

 Returns the SQL string which when executed will
drop the min and max functions for the money_with_currency
data type.

 drop_money_with_currency(db_type \\ :postgres)

 Returns the SQL string which when executed will
drop the money_with_currency data type.

 drop_plus_operator(db_type \\ :postgres)

 Returns the SQL string which when executed will
drop the + operator for the money_with_currency
data type.

 drop_sum_function(db_type \\ :postgres)

 Returns the SQL string which when executed will
drop the sum functions for the money_with_currency
data type.

 execute(sql)

 Returns a string that will Ecto execute a single SQL
command.

 execute_each(sql)

 Returns a string that will Ecto execute each SQL
command.

 Anchor for this section

Functions

 Link to this function

 create_money_with_currency(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
define the money_with_currency data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 define_minmax_functions(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
define min and max functions for the money_with_currency
data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 define_plus_operator(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
define a + operator for the money_with_currency
data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 define_sum_function(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
define sum functions for the money_with_currency
data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 drop_minmax_functions(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
drop the min and max functions for the money_with_currency
data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 drop_money_with_currency(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
drop the money_with_currency data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 drop_plus_operator(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
drop the + operator for the money_with_currency
data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 drop_sum_function(db_type \\ :postgres)

 View Source

Returns the SQL string which when executed will
drop the sum functions for the money_with_currency
data type.

 arguments

 Arguments

	db_type: the type of the database for which the SQL
string should be returned. Defaults to :postgres which
is currently the only supported database type.

 Link to this function

 execute(sql)

 View Source

Returns a string that will Ecto execute a single SQL
command.

 arguments

 Arguments

	sql is a single SQL command

 example

 Example

iex> Money.DDL.execute "SELECT name FROM customers;"
"execute "SELECT name FROM customers;""

 Link to this function

 execute_each(sql)

 View Source

Returns a string that will Ecto execute each SQL
command.

 arguments

 Arguments

	sql is a string of SQL commands that are
separated by three newlines ("\n"),
that is to say two blank lines between commands
in the file.

 example

 Example

iex> Money.DDL.execute "SELECT name FROM customers;
SELECT id FROM orders;"
"execute """
SELECT name FROM customers;
SELECT id FROM orders;
""""

Money.Ecto.Composite.Type

Implements the Ecto.Type behaviour for a user-defined Postgres composite type
called :money_with_currency.
This is the preferred option for Postgres database since the serialized money
amount is stored as a decimal number,

 Anchor for this section

 Summary

 Functions

 cast(money)

 cast_type(opts \\ [])

 embed_as(term)

 equal?(money1, money2)

 Anchor for this section

Functions

 Link to this function

 cast(money)

 View Source

 Link to this function

 cast_type(opts \\ [])

 View Source

 Link to this function

 embed_as(term)

 View Source

 Link to this function

 equal?(money1, money2)

 View Source

Money.Ecto.Map.Type

Implements Ecto.Type behaviour for Money, where the underlying schema type
is a map.
This is the required option for databases such as MySQL that do not support
composite types.
In order to preserve precision, the amount is serialized as a string since the
JSON representation of a numeric value is either an integer or a float.
Decimal.to_string/1 is not guaranteed to produce a string that will round-trip
convert back to the identical number.

 Anchor for this section

 Summary

 Functions

 cast(money)

 See Money.Ecto.Composite.Type.cast/1.

 cast(money, params)

 Callback implementation for Ecto.ParameterizedType.cast/2.

 dump(money, dumper \\ nil, params \\ [])

 Callback implementation for Ecto.ParameterizedType.dump/3.

 embed_as(term)

 See Money.Ecto.Composite.Type.embed_as/1.

 equal?(term1, term2)

 See Money.Ecto.Composite.Type.equal?/2.

 init(params)

 Callback implementation for Ecto.ParameterizedType.init/1.

 load(money, loader \\ nil, params \\ [])

 Callback implementation for Ecto.ParameterizedType.load/3.

 type(params)

 Callback implementation for Ecto.ParameterizedType.type/1.

 Anchor for this section

Functions

 Link to this function

 cast(money)

 View Source

See Money.Ecto.Composite.Type.cast/1.

 Link to this function

 cast(money, params)

 View Source

Callback implementation for Ecto.ParameterizedType.cast/2.

 Link to this function

 dump(money, dumper \\ nil, params \\ [])

 View Source

Callback implementation for Ecto.ParameterizedType.dump/3.

 Link to this function

 embed_as(term)

 View Source

See Money.Ecto.Composite.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

 View Source

See Money.Ecto.Composite.Type.equal?/2.

 Link to this function

 init(params)

 View Source

Callback implementation for Ecto.ParameterizedType.init/1.

 Link to this function

 load(money, loader \\ nil, params \\ [])

 View Source

Callback implementation for Ecto.ParameterizedType.load/3.

 Link to this function

 type(params)

 View Source

Callback implementation for Ecto.ParameterizedType.type/1.

Money.Validate

Implements Ecto validations for the Money.t/0 type based upon the
Money.Ecto.Composite.Type type.

 Anchor for this section

 Summary

 Functions

 validate_money(changeset, field, opts)

 Validates the properties of a Money.t/0.

 Anchor for this section

Functions

 Link to this function

 validate_money(changeset, field, opts)

 View Source

 @spec validate_money(Ecto.Changeset.t(), atom(), Keyword.t()) :: Ecto.Changeset.t()

Validates the properties of a Money.t/0.
This function, including its options, is designed to
mirror the function Ecto.Changeset.validate_number/3.

 options

 Options

	:less_than
	:greater_than
	:less_than_or_equal_to
	:greater_than_or_equal_to
	:equal_to
	:not_equal_to
	:message - the message on failure, defaults to one of:	"must be less than %{money}"
	"must be greater than %{money}"
	"must be less than or equal to %{money}"
	"must be greater than or equal to %{money}"
	"must be equal to %{money}"
	"must be not equal to %{money}"

 examples

 Examples

 validate_money(changeset, :value, less_than: Money.new(:USD, 200))
 validate_money(changeset, :value, less_than_or_equal_to: Money.new(:USD, 200)
 validate_money(changeset, :value, less_than_or_equal_to: Money.new(:USD, 100))
 validate_money(changeset, :value, greater_than: Money.new(:USD, 50))
 validate_money(changeset, :value, greater_than_or_equal_to: Money.new(:USD, 50))
 validate_money(changeset, :value, greater_than_or_equal_to: Money.new(:USD, 100))

mix money.gen.postgres.min_max_functions

Generates a migration to add min and max aggregate functions
to Postgres for the money_with_currency type.

mix money.gen.postgres.money_with_currency

Generates a migration to add a composite type called :money_with_currency
to a Postgres database.
The :money_with_currency type created is a composite type and
therefore may not be supported in other databases.

mix money.gen.postgres.plus_operator

Generates a migration to add a + operator
to Postgres for the money_with_currency type

mix money.gen.postgres.sum_function

Generates a migration to add a sum aggregate function
to Postgres for the money_with_currency type.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

