

 Money

 v5.5.5

 [image: Logo]

 Table of contents

 	Introduction to Money

 	Changelog

 	LICENSE

 	Modules

 	Money

 	Money.Application

 	Money.Currency

 	Money.Financial

 	Money.Sigil

 	Money.ExchangeRates

 	Money.ExchangeRates.Cache

 	Money.ExchangeRates.Cache.Dets

 	Money.ExchangeRates.Cache.Ets

 	Money.ExchangeRates.Cache.EtsDets

 	Money.ExchangeRates.Callback

 	Money.ExchangeRates.Config

 	Money.ExchangeRates.OpenExchangeRates

 	Money.ExchangeRates.Retriever

 	Money.ExchangeRates.Supervisor

 	Money.Subscription

 	Money.Subscription.Change

 	Money.Subscription.DateError

 	Money.Subscription.NoCurrentPlan

 	Money.Subscription.Plan

 	Money.Subscription.PlanError

 	Money.Subscription.PlanPending

 	Money.ExchangeRateError

 	Money.Invalid

 	Money.InvalidAmountError

 	Money.ParseError

 	Money.UnknownCurrencyError

 	Exceptions

 	Money.Subscription.DateError

 	Money.Subscription.NoCurrentPlan

 	Money.Subscription.PlanError

 	Money.Subscription.PlanPending

 	Money.ExchangeRateError

 	Money.Invalid

 	Money.InvalidAmountError

 	Money.ParseError

 	Money.UnknownCurrencyError

Introduction to Money
[image: Build Status]
[image: Hex pm]
[image: License]
Money implements a set of functions to store, retrieve, convert and perform arithmetic
on a %Money{} type that is composed of an ISO 4217 currency code and a currency amount.
Money is opinionated in the interests of serving as a dependable library that can underpin accounting and financial applications.
How is this opinion expressed?
	Money must always have both a amount and a currency code.

	The currency code must always be a valid ISO4217 code. Current and historical currency codes can be used. See the ISO Currency for more information. You can also identify the relevant codes by:
	Money.known_currencies/0 returns all the currency codes known to Money
	Money.known_current_currencies/0 returns the currency codes currently in use
	Money.known_historic_currencies/0 returns the list of historic currency codes
	Money.known_tender_currencies/0 returns the list of currencies known to be legal tender

	Money arithmetic can only be performed when both operands are of the same currency.

	Money amounts are represented as a Decimal.

	Money can be serialised to the database as a composite Postgres type that includes both the amount and the currency. For MySQL, money is serialized into a json column with the amount converted to a string to preserve precision since json does not have a decimal type. Serialization is entirely optional.

	All arithmetic functions work on a Decimal. No rounding occurs automatically (unless expressly called out for a function, as is the case for Money.split/2).

	Explicit rounding obeys the rounding rules for a given currency. The rounding rules are defined by the Unicode consortium in its CLDR repository as implemented by the hex package ex_cldr. These rules define the number of fractional digits for a currency and the rounding increment where appropriate.

	Money output string formatting output using the hex package ex_cldr that correctly rounds to the appropriate number of fractional digits and to the correct rounding increment for currencies that have minimum cash increments (like the Swiss Franc and Australian Dollar)

Prerequisities
	Money is supported on Elixir 1.6 and later only

Supervisor configuration and operation
Money starts a supervisor Money.Supervisor by default unless the dependency is configured as runtime: false in mix.exs. If configured as runtime: false then the application can be started later via Money.Application.start(:normal, supervisor_options) where supervisor_options is a keyword list of options that is given the Supervisor.start_link/2. The default options are [strategy: :one_for_one, name: Money.Supervisor].
The application supervisor is used by default to start the exchange rates service when required. The exchange rate service can be configured to run in a user defined supervision tree as explained in the next section.
Private Use Currencies
As of ex_cldr_currencies version 2.6.0 it is possible to define private use currencies. These are currencies that are ISO 4217 compliant but guaranteed never to be allocated by the ISO committee and therefore safe to be used by developers.
Defining private use currencies
See Cldr.Currency.new/2
Starting the private use currency store
In order to define private use currencies, a special :ets table is required to hold their definitions. The is implemented by a supervisor and two workers that together aim to preserve the availability of the :ets table as resiliently as possible. The implementation is an embedded and updated version of eternal.
The basic requirement is to add a the private use currency supervisor to your applications supervision tree. For example:
defmodule MyApp do
 use Application

 def start(_type, _args) do

 # Start the service which maintains the
 # :ets table that holds the private use currencies
 children = [
 Cldr.Currency
 ...
]

 opts = [strategy: :one_for_one, name: MoneyTest.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
It is also possible to define a callback that is called when the Cldr.Currency supervisor is started so that private use currencies can be defined. For further information see Defining Private Use Currencies.
Updating to ex_cldr_currencies verison 2.6.0
Executing mix deps.update ex_cldr_currencies is all that should be required.
Exchange rates and currency conversion
Money includes a process to retrieve exchange rates on a periodic basis. These exchange rates can then be used to support currency conversion. This service is not started by default. If started it will attempt to retrieve exchange rates every 5 minutes by default.
By default, exchange rates are retrieved from Open Exchange Rates however any module that conforms to the Money.ExchangeRates behaviour can be configured.
An optional callback module can also be defined. This module defines a rates_retrieved/2 function that is invoked upon every successful retrieval of exchange rates. This might be used to serialize exchange rate to a data store or to stream rates to other applications or systems.
Configuration
Money provides a set of configuration keys to customize behaviour. The default configuration is:
config :ex_money,
 exchange_rates_retrieve_every: 300_000,
 api_module: Money.ExchangeRates.OpenExchangeRates,
 callback_module: Money.ExchangeRates.Callback,
 exchange_rates_cache_module: Money.ExchangeRates.Cache.Ets,
 preload_historic_rates: nil,
 retriever_options: nil,
 log_failure: :warn,
 log_info: :info,
 log_success: nil,
 json_library: Jason,
 default_cldr_backend: MyApp.Cldr
Configuration key definitions
	:exchange_rates_retrieve_every defines how often the exchange rates are retrieved in milliseconds. The default is :never. An atom value is interpreted to mean that there should be no periodic retrieval.

	:api_module identifies the module that does the retrieval of exchange rates. This is any module that implements the Money.ExchangeRates behaviour. The default is Money.ExchangeRates.OpenExchangeRates.

	:exchange_rates_cache_module defines the module that provides an exchange rates cache. Any module that implements the Money.ExchangeRates.Cache behaviour. Two alternative strategies are provided:
	Money.ExchangeRates.Cache.Ets which is also the default.
	Money.ExchangeRates.Cache.Dets

	:preload_historic_rates defines a date or a date range that will be requested when the exchange rate service starts up. The date or date range should be specified as either a Date.t or a Date.Range.t or a tuple of {Date.t, Date.t} representing the from and to dates for the rates to be retrieved. The default is nil meaning no historic rates are preloaded. Some examples:

	callback_module defines a module that follows the Money.ExchangeRates.Callback behaviour whereby the function rates_retrieved/2 is invoked after every successful retrieval of exchange rates. The default is Money.ExchangeRates.Callback.

	log_failure defines the log level at which api retrieval errors are logged. The default is :warn.

	log_success defines the log level at which successful api retrieval notifications are logged. The default is nil which means no logging.

	log_info defines the log level at which service startup messages are logged. The default is info.

	:retriever_options is available for exchange rate retriever module developers as a place to add retriever-specific configuration information. This information should be added in the init/1 callback in the retriever module. See Money.ExchangeRates.OpenExchangeRates.init/1 for an example.

	:json_library determines which json library to be used for decoding. Two common options are Poison and Jason. The default is Cldr.Config.json_library/0 which is currently configured by default as Jason.

	:default_cldr_backend defines the Cldr backend module that is default for Money. See the ex_cldr documentation for further information on how to define this module. This is a required option.

JSON library configuration
Note that ex_money does not define a json library dependency and therefore it is the users responsibility to configure the required json library as a dependency in the application's mix.exs.
The recommended library is jason which would be configured as:
 defp deps do
 [
 {:jason, "~> 1.0"},
 ...
]
 end
ex_money depends on ex_cldr which provides currency and localisation data. The default configuration of ex_money uses the default json_library from ex_cldr. This can be configured as follows in config.exs:
config :ex_cldr,
 json_library: Jason
In most cases this is not required since the presence of Jason (or Poison) is automatic.
Configuring locales to support localised formatting
Money uses ex_cldr and ex_cldr_numbers to support configuring locales and providing locale formatting. These packages are also the source of currency definitions, names, formats and so on.
To use Cldr and therefore Money, a backend module must be defined. This module will host the Cldr data and public API used by Money. A simple example would be:
defmodule MyApp.Cldr do
 use Cldr,
 locales: ["en", "fr", "zh"],
 default_locale: "en",
 providers: [Cldr.Number, Money]
end
Preloading historic exchange rates
The current implementation will call the api_module to retrieve the historic rates once for each date in the :preload_exchange_rates range. Some exchange rate services, like Open Exchange Rates, provides a bulk retrieval api that can retrieve multiple dates in a single call. However this endpoint is only available for premium subscribers and it is still charged on a "per date retrieved" basis. So while there is a network/performance/efficiency benefit there is no economic benefit. Please file an issue on github if implementing a bulk api is important to you.
Some examples of configuring the :preload_exchange_rates key follow:
	preload_exchange_rates: ~D[2017-01-01]
	preload_exchange_rates: Date.range(~D[2017-01-01], ~D[2017-10-01])
	preload_exchange_rates: {~D[2017-01-01], ~D[2017-10-01]}

Open Exchange Rates configuration
If you plan to use the provided Open Exchange Rates module to retrieve exchange rates then you should also provide the addition configuration key for app_id:
 config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
 or configure it via environment variable, for example:
 config :ex_money,
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
The default exchange rate retrieval module is provided in Money.ExchangeRates.OpenExchangeRates which can be used as a example to implement your own retrieval module for other services.
Managing the configuration at runtime
During exchange rate service startup, the function init/1 is called on the configured exchange rate retrieval module. This module is expected to return an updated configuration allowing a developer to customise how the configuration is to be managed. See the implementation at Money.ExchangeRates.OpenExchangeRates.init/1 for an example.
To support runtime (re-)configuration the following functions are provided:
	Money.ExchangeRates.Retriever.config/0 returns the current configuration of the exchange rates retrieval service.

	Money.ExchangeRates.Retriever.stop/0 and Money.ExchangeRates.Retriever.start/0 stop and start the exchange rates retrieval service respectively.

	Money.ExchangeRates.Retriever.reconfigure/1 reconfigures the exchange rates retrieval service. It does not restart the service, the service remains active during the recongiguration.

Using Environment Variables in the configuration
Keys can also be configured to retrieve values from environment variables. This lookup is done at runtime to facilitate deployment strategies. If the value of a configuration key is {:system, "some_string"} then "some_string" is interpreted as an environment variable name which is passed to System.get_env/2. An example configuration might be:
config :ex_money,
 auto_start_exchange_rate_service: {:system, "RATE_SERVICE"},
 exchange_rates_retrieve_every: {:system, "RETRIEVE_EVERY"},
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
Note that the {:system, "ENV KEY"} approach is not currently supported for the :preload_historic_rates configuration key.
The Exchange rates service process supervision and startup
If the exchange rate service is configured to automatically start up (because the config key auto_start_exchange_rate_service is set to true) then a supervisor process named Money.ExchangeRates.Supervisor is started which in turns starts a child GenServer called Money.ExchangeRates.Retriever. It is Money.ExchangeRates.Retriever which will call the configured api_module to retrieve the rates. It is also responsible for calling the configured callback_module after a successfull retrieval.
 +-----------------+
 | |
+-------------+ +-----------+ | api_module |-> External Service
| | | |---> | |
| Supervisor |--->| Retriever | +-----------------+
| | | |---> +-----------------+
+-------------+ +-----------+ | |
 | callback_module |
 | |
 +-----------------+
On application start (or manual start if :auto_start_exchange_rate_service is set to false), Money.ExchangeRates.Retriever will schedule the first retrieval to be executed after immediately and then each :exchange_rates_retrieve_every milliseconds thereafter.
Using Ecto or other applications from within the callback module
If you provide your own callback module and that module depends on some other applications, like Ecto, already being started then automatically starting Money.ExchangeRates.Supervisor may not work since your Ecto.Repo is unlikely to have already been started.
In this situation the appropriate way to configure the exchange rates retrieval service is the following:
	Set the configuration key auto_start_exchange_rate_service to false to prevent automatic startup of the service.

	Configure your api_module, callback_module and any other required configuration as appropriate

	In your client application code, add the Money.ExchangeRates.Supervisor to the children configuration of your application. For example, in an application that uses Ecto and where your callback_module is designed to save exchange rates to a database, your application may would look something like:

defmodule Application do
 use Application

 def start(_type, _args) do
 import Supervisor.Spec

 children = [

 # Start your repo first so that it is running before your
 # exchange rates callback module is called
 supervisor(MoneyTest.Repo, []),

 # Include the Money.ExchangeRates.Supervisor in your application's
 # supervision tree. This supervisor will start the child process
 # Money.ExchangeRates.Retriever.

 # Note the use of double `[]` around
 # the parameters which are required to ensure that the supervisor
 # is stopped before including in your supervisor tree.
 # The `start_retriever: true` is optional. The default value is `false`.
 supervisor(Money.ExchangeRates.Supervisor, [[restart: true, start_retriever: true]])
]

 opts = [strategy: :one_for_one, name: Application.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
API Usage Examples
Creating a %Money{} struct
iex> Money.new(:USD, 100)
#Money<:USD, 100>

iex> Money.new(100, :USD)
#Money<:USD, 100>

iex> Money.new("CHF", "130.02")
#Money<:CHF, 130.02>

iex> Money.new("thb", 11)
#Money<:THB, 11>

iex> Money.new("1.000,99", :EUR, locale: "de")
#Money<:EUR, 1000.99>

iex> Money.parse("USD 100")
#Money<:USD, 100>

iex> Money.parse("USD 100,00", locale: "de")
#Money<:USD, 100.00>
The canonical representation of a currency code is an atom that is a valid
ISO4217 currency code. The amount of a %Money{} is represented by a Decimal.
Note that the amount and currency code arguments to Money.new/3 can be supplied in either order.
Parsing money strings
Money provides an ability to parse strings that contain a currency and an amount. The currency can be represented in different ways depending on the locale. See Money.parse/2 for further information. Some examples are:
 # These are the strings available for a given currency
 # and locale that are recognised during parsing
 iex> Cldr.Currency.strings_for_currency :AUD, "de"
 ["aud", "au$", "australischer dollar", "australische dollar"]

 iex> Money.parse "$au 12 346", locale: "fr"
 #Money<:AUD, 12346>

 iex> Money.parse "12 346 dollar australien", locale: "fr"
 #Money<:AUD, 12346>

 iex> Money.parse "A$ 12346", locale: "en"
 #Money<:AUD, 12346>

 iex> Money.parse "australian dollar 12346.45", locale: "en"
 #Money<:AUD, 12346.45>

 # Parse using a default currency
 iex> Money.parse("100", default_currency: :EUR)
 #Money<:EUR, 100>

 # Parse using the default currency of the locale
 # If no `:locale` option is provided then
 # the locale associated with `Money.default_backend/0`
 # is used.
 iex> Money.parse("100", locale: "en")
 #Money<:EUR, 100>

 # Parse with a default currency for the current locale
 iex> Money.parse("100", default_currency: Money.default_currency_for_locale())
 #Money<:USD, 100>

 # Note that the decimal separator in the "de" locale
 # is a `.`
 iex> Money.parse "AU$ 12346,45", locale: "de"
 #Money<:AUD, 12346.45>

 # Round trip formatting is supported
 iex> {:ok, string} = Cldr.Number.to_string 1234, Money.Cldr, currency: :AUD
 {:ok, "A$1,234.00"}
 iex> Money.parse string
 #Money<:AUD, 1234.00>

 # Fuzzy matching is possible
 iex> Money.parse("100 eurosports", fuzzy: 0.8)
 #Money<:EUR, 100>

 iex> Money.parse("100 eurosports", fuzzy: 0.9)
 {:error,
 {Money.Invalid, "Unable to create money from \"eurosports\" and \"100\""}}

 # Eligible currencies can be filtered
 iex> Money.parse("100 eurosports", fuzzy: 0.8, only: [:current])
 #Money<:EUR, 100>

 iex> Money.parse("100 euro", only: [:EUR, :USD, :COP])
 #Money<:EUR, 100>

 iex> Money.parse("100 euro", except: [:EUR, :USD, :COP])
 {:error,
 {Money.UnknownCurrencyError,
 "The currency \"euro\" is unknown or not supported"}}

 iex> Money.parse "100 afghan afghanis"
 #Money<:AFN, 100>

 iex> Money.parse "100 afa", only: [:current]
 {:error,
 {Money.UnknownCurrencyError,
 "The currency \"afa\" is unknown or not supported"}}
Casting a money type (basic support for HTML forms)
Money supports form field inputs that are a single string combining both a currency code and an amount. When a form field (or other data) is cast then Money will attempt to parse a string field into a Money.t using Money.parse/2. Therefore simple money form input can be supported with a single input field of type=text.
Note that when parsing the input text, the amount is interpreted in the context of the current locale set on the default backend configured for ex_money. This affects how separator characters are interpreted in exactly the same way as is done for Money.new/3.
Float amounts cannot be provided to Money.new/2
Float have well-known issues in computing due to issues of rounding and potential precision loss. Internally Money uses Decimal to store the amount which allows arbitrary precision arithmetic. Money also uses the numeric type in Postgres to preserve precision and even goes to far as to store the amount as a string in MySQL for the same reason.
Therefore an error is returned if an attempt is made to use Money.new/2 with a float amount:
{:error,
 {Money.InvalidAmountError,
 "Float amounts are not supported in new/2 due to potenial rounding " <>
 "and precision issues. If absolutely required, use Money.from_float/2"}}
If the use of floats is require then the function Money.from_float/2 is provided with the same arguments as those for Money.new/2. Money.from_float/2 provides an addition check and will return an error if the precision (number of digits) of the provided float is more than 15 (the number of digits guaranteed to round-trip between a 64-bit float and a string).
Comparison functions
Money values can be compared as long as they have the same currency. The recommended function is Money.compare/2 which, given two compatible money amounts, will return :lt, :eq or :gt depending on the relationship. For example:
iex> Money.compare Money.new(:USD, 100), Money.new(:USD, 200)
:lt

iex> Money.compare Money.new(:USD, 100), Money.new(:AUD, 200)
{:error,
 {ArgumentError,
 "Cannot compare monies with different currencies. Received :USD and :AUD."}}
From Elixir verison 1.10.0 onwards, several functions in the Enum module can use the Money.compare/2 function to simplify sorting. For example:
iex> list = [Money.new(:USD, 100), Money.new(:USD, 200)]
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, Money
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:asc, Money}
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:desc, Money}
[#Money<:USD, 200>, #Money<:USD, 100>]
Note that Enum.sort/2 will sort money amounts even when the currencies are incompatible. In this case the order of the result is not predictable. It is the developers responsibility to filter the list to compatible currencies prior to sorting. This is a limitation of the Enum.sort/2 implementation.
Optional ~M sigil
An optional sigil module is available to aid in creating %Money{} structs. It needs to be imported before use:
import Money.Sigil

~M[100]USD
#> #Money<:USD, 100>
Localised Money formatting
Money provides locale-specific formatted output that is controlled be either the locale that has been set for this process or by the :locale parameter supplied to Money.to_string/2. Configuring your localised environment requires configuring ex_cldr which is a dependency to Money. See the Configuration section of the ex_cldr readme for more information.
The main API for formatting Money is Money.to_string/2. Additionally formatting options are passed to Cldr.Number.to_string/2. Those options are described in the readme for ex_cldr_numbers which is also a dependency to Money.
iex> Money.to_string Money.new("thb", 11)
{:ok, "THB11.00"}

The default locale is "en-001" which is
"global english"
iex> Money.to_string Money.new("USD", "234.467")
{:ok, "$US234.47"}

The locale "en" is "American English". For
UK English use the locale "en-GB". Australian
English is "en-AU" and so on.
iex> Money.to_string Money.new("USD", "234.467"), locale: "en"
{:ok, "$234.47"}

iex> Money.to_string Money.new("USD", "234.467"), format: :long
{:ok, "234.47 US dollars"}

iex> Money.to_string Money.new("USD", "234.467"), locale: "fr"
{:ok, "234,47 $US"}

iex> Money.to_string Money.new("USD", "234.467"), locale: "de"
{:ok, "234,47 $"}

iex> Money.to_string Money.new("EUR", "234.467"), locale: "de"
{:ok, "234,47 €"}

iex> Money.to_string Money.new("EUR", "234.467"), locale: "fr"
{:ok, "234,47 €"}
Note that the output is influenced by the locale in effect. By default the locale used is that returned by Cldr.get_locale/0. Its default value is :en-001. Additional locales can be configured, see Cldr. The formatting options are defined in Cldr.Number.to_string/2.
Arithmetic Functions
See also the module Money.Arithmetic:
iex> m1 = Money.new(:USD, 100)
#Money<:USD, 100>}

iex> m2 = Money.new(:USD, 200)
#Money<:USD, 200>}

iex> Money.add(m1, m2)
{:ok, #Money<:USD, 300>}

iex> Money.add!(m1, m2)
#Money<:USD, 300>

iex> m3 = Money.new(:AUD, 300)
#Money<:AUD, 300>

iex> Money.add Money.new(:USD, 200), Money.new(:AUD, 100)
{:error, {ArgumentError, "Cannot add monies with different currencies. Received :USD and :AUD."}}

Split a %Money{} returning the a dividend and a remainder. All
operations respect the number of fractional digits defined for a currency
iex> m1 = Money.new(:USD, 100)
#Money<:USD, 100>

iex> Money.split(m1, 3)
{#Money<:USD, 33.33>, #Money<:USD, 0.01>}

Rounding applies the currency definitions of CLDR as implemented in
the hex package [ex_cldr](https://hex.pm/packages/ex_cldr)
iex> Money.round Money.new(:USD, "100.678")
#Money<:USD, 100.68>

iex> Money.round Money.new(:JPY, "100.678")
#Money<:JPY, 101>
Currency Conversion
A %Money{} struct can be converted to another currency using Money.to_currency/3 or Money.to_currency!/3. For example:
iex> Money.to_currency Money.new(:USD, 100), :AUD
{:ok, #Money<:AUD, 136.43>}

iex> Money.to_currency Money.new(:USD, 100), :AUD, ExchangeRates.historic_rates(~D[2017-01-01])
{:ok, #Money<:AUD, 128.76>}

iex> Money.to_currency Money.new(:USD, 100) , :AUDD, %{USD: Decimal.new(1), AUD: Decimal.new(0.7345)}
{:error, {Cldr.UnknownCurrencyError, "Currency :AUDD is not known"}}

iex> Money.to_currency! Money.new(:USD, 100), :XXX
** (Money.ExchangeRateError) No exchange rate is available for currency :XXX
A user-defined map of exchange rates can also be supplied:
iex> Money.to_currency Money.new(:USD, 100), :AUD, %{USD: Decimal.new(1.0), AUD: Decimal.new(1.3)}
#Money<:AUD, 130>
Historic Conversion Rates
As noted in the configuration section, ex_money can preload historic exchange rates when the exchange rates service starts up. It can be anticipated that additional historic rates may be required subsequently.
	Money.ExchangeRates.Retriever.historic_rates/1 can be called to request retrieval of historic rates at any time. This call will send a message to the retrieval service to request retrieval. It does not return the rates.

	Money.ExchangeRates.historic_rates/1 is the partner function to Money.ExchangeRates.latest_rates/0. It returns the exchange rates for a given date, and will return an error if no rates are available.

Financial Functions
A set of basic financial functions are available in the module Money.Financial. These functions are:
	Present value: Money.Financial.present_value/3
	Future value: Money.Financial.future_value/3
	Interest rate: Money.Financial.interest_rate/3
	Number of periods: Money.Financial.periods/3
	Payment amount: Money.Financial.payment/3
	Net Present Value of a set of cash flows: Money.Financial.net_present_value/2
	Internal rate of return: Money.Financial.internal_rate_of_return/1

For more detail see Money.Financial.
Subscriptions
Subscriptions, especially in the context of a SaaS, can involve changing plans - either from a smaller plan to a larger or a larger plan to smaller. In either situation a credit amount needs to be calculated based upon the current plan which is then applied to the new plan. Money.Subscription is a module that provides functions to support this subscription pricing, credit calculations and payment dates.
The primary functions supporting subscriptions are:
	Create a new subscription: Money.Subscription.new/3
	Create a subscription plan: Money.Subscription.Plan.new/3
	Change a from one plan to another: Money.Subscription.change_plan/3
	Calculate the start date for the next interval of a plan: Money.Subscription.next_interval_starts/3
	Calculate the number of days in a plan interval: Money.Subscription.plan_days/3
	Calculate the number of days left in a plan interval: Money.Subscription.days_remaining/4

Examples
Create the current plan
iex> current_plan = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 1)
%Money.Subscription.Plan{
 interval: :month,
 interval_count: 1,
 price: #Money<:USD, 10>
}

How many days in a billing period?
iex> Money.Subscription.plan_days current_plan, ~D[2018-03-01]
31

iex> Money.Subscription.plan_days current_plan, ~D[2018-02-01]
28

How many days remaining in the current billing period
iex> Money.Subscription.days_remaining current_plan, ~D[2018-03-01], ~D[2018-03-10]
22

When is the next billing date
iex> Money.Subscription.next_interval_starts current_plan, ~D[2018-03-01]
~D[2018-04-01]

Create a new plan
iex> new_plan = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 3)
%Money.Subscription.Plan{
 interval: :month,
 interval_count: 3,
 price: #Money<:USD, 10>
}

Change plans at the end of the current billing period
iex> Money.Subscription.change_plan current_plan, new_plan, current_interval_started: ~D[2018-03-01]
%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 10>,
 first_interval_starts: ~D[2018-04-01],
 next_interval_starts: ~D[2018-07-01]
}

Change plans in the middle of the current plan period
and credit the balance of the current plan to the new plan
iex> Money.Subscription.change_plan current_plan, new_plan, current_interval_started: ~D[2018-03-01], effective: ~D[2018-03-15]
%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 5.49>,
 credit_amount_applied: #Money<:USD, 5.49>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 4.51>,
 first_interval_starts: ~D[2018-03-15],
 next_interval_starts: ~D[2018-06-15]
}

Change plans in the middle of the current plan period
but instead of a monetary credit, apply the credit as
extra days on the new plan in the first billing period
iex> Money.Subscription.change_plan current_plan, new_plan, current_interval_started: ~D[2018-03-01], effective: ~D[2018-03-15], prorate: :period
%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 5.49>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 51,
 credit_period_ends: ~D[2018-05-04],
 first_billing_amount: #Money<:USD, 10>,
 first_interval_starts: ~D[2018-03-15],
 next_interval_starts: ~D[2018-08-05]
}

Create a subscription
iex> plan = Money.Subscription.Plan.new!(Money.new(:USD, 200), :month, 3)
iex> subscription = Money.Subscription.new! plan, ~D[2018-01-01]
%Money.Subscription{
 created_at: #DateTime<2018-03-23 07:45:44.418916Z>,
 id: nil,
 plans: [
 {%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 200>,
 first_interval_starts: ~D[2018-01-01],
 next_interval_starts: ~D[2018-04-01]
 },
 %Money.Subscription.Plan{
 interval: :month,
 interval_count: 3,
 price: #Money<:USD, 200>
 }}
]
}

Change a subscription's plan
iex> new_plan = Money.Subscription.Plan.new!(Money.new(:USD, 150), :day, 30)
iex> Money.Subscription.change_plan! subscription, new_plan
%Money.Subscription{
 created_at: #DateTime<2018-03-23 07:47:48.593973Z>,
 id: nil,
 plans: [
 {%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 150>,
 first_interval_starts: ~D[2018-04-01],
 next_interval_starts: ~D[2018-05-01]
 },
 %Money.Subscription.Plan{
 interval: :day,
 interval_count: 30,
 price: #Money<:USD, 150>
 }},
 {%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 200>,
 first_interval_starts: ~D[2018-01-01],
 next_interval_starts: ~D[2018-04-01]
 },
 %Money.Subscription.Plan{
 interval: :month,
 interval_count: 3,
 price: #Money<:USD, 200>
 }}
]
}
Serializing to a database with Ecto
The companion package ex_money_sql provides functions for the serialization of Money data. See the README for further information.
Installation
Money can be installed by adding ex_money to your list of dependencies in mix.exs and then executing mix deps.get
def deps do
 [
 {:ex_money, "~> 5.0"},
 ...
]
end
Why yet another Money package?
	Fully localized formatting and rounding using ex_cldr

	Provides serialization to Postgres using a composite type and MySQL using a JSON type that keeps both the currency code and the amount together removing a source of potential error

	Uses the Decimal type in Elixir and the Postgres numeric type to preserve precision. For MySQL the amount is serialised as a string to preserve precision that might otherwise be lost if stored as a JSON numeric type (which is either an integer or a float)

	Includes a set of financial calculations (arithmetic and cash flow calculations) that follow solid rounding rules

Falsehoods programmers believe about prices
The github gist gives a good summary of the challenges of managing money in an application. The following described how Money handles each of these assertions.
1. You can store a price in a floating point variable.
Money operates and serialises in a arbitrary precision Decimal value.
2. All currencies are subdivided in 1/100th units (like US dollar/cents, euro/eurocents etc.).
Money leverages CLDR which defines the appropriate number of decimal places of a currency. As of CLDR version 32 there are:
	52 currencies with zero decimal digits
	241 currencies with two decimal digits
	6 currencies with three decimal digits
	and 1 currency with four decimal digits

3. All currencies are subdivided in decimal units (like dinar/fils)
4. All currencies currently in circulation are subdivided in decimal units. (to exclude shillings, pennies) (counter-example: MGA)
5. All currencies are subdivided. (counter-examples: KRW, COP, JPY... Or subdivisions can be deprecated.)
Money correctly manages the appropriate number of decimal places for a currency. It also round correctly when formatting a currency for output (different currencies have different rounding levels for cash or transactions).
6. Prices can't have more precision than the smaller sub-unit of the currency. (e.g. gas prices)
All Money calculations are done with decimal arithmetic to the maxium precision of 28 decimal digits.
7. For any currency you can have a price of 1. (ZWL)
Money makes no assumption about the value assigned as long as its a real number.
8. Every country has its own currency. (EUR is the best example, but also Franc CFA, etc.)
Money makes no assumptions about the linkage of currencies to territories.
9. No country uses another's country official currency as its official currency. (many countries use USD: Ecuador, Micronesia...)
10. Countries have only one currency.
Money doesn't link territories (countries) to a currency - it focuses only on the Money domain. The addon package cldr_territories does have knowledge of what curriencies are in effect throughout history for a given territory. See Cldr.Territory.info/1.
11. Countries have only one currency currently in circulation. (Panama officially uses both PAB and USD)
Money makes no assumptions about currencies in circulation.
12. I'll only deal with currencies currently in circulation anyway.
Money makes no assumptions about currencies in circulation.
13. All currencies have an ISO 4217 3-letter code. (The Transnistrian ruble has none, for example)
Money does validate currency codes against the ISO 4217 list. Custom currencies can be created in accordance with ISO 4217 using Cldr.Currency.new/2.
14. All currencies have a different name. (French franc, "nouveau franc")
Money has localised names for all ISO 4217 currencies in each of the over 500 locales defined by CLDR.
15. You always put the currency symbol after the price.
Money formats currency strings according to a format mask that is either defined by CLDR or user supplied.
16. You always put the currency symbol before the price.
Money formats currency strings according to a format mask that is either defined by CLDR or user supplied.
17. You always put the currency symbol either after, or before the price, never in the middle.
Money formats currency strings according to a format mask that is either defined by CLDR or user supplied.
18. There's only one currency symbol for any currency. (元, 角, 分 are increasing units of the Chinese renminbi.)
Money uses format masks defined by CLDR which, for the Chinese renminbi uses the "￥" symbol.
19. For a given currency, you always, but always, put the symbol in the same place.
Money makes no assumpions about symbol placement. The symbol can be places anywhere in a formatted string but is typically, for CLDR format masks, placed either before or after the formatted number.
20. OK. But if you only use the ISO 4217 currency codes, you always put it before the price. (Hint: it depends on the language.)
Same as for the answer to 19 above.
21. Before the price means on the left. (ILS)
Money formats according to a locale and correctly places symbols for languages written right-to-left.
22. You can always use a dot (or a comma, etc.) as a decimal separator.
The decimal separator is defined per locale according to the CLDR definitions.
23. You can always use a space (or a dot, or a comma, etc.) as a thousands separator.
The thousands (acutally grouping since not all locales format in thousands) separator is defined per locale according to the CLDR definitions.
24. You separate big prices by grouping numbers in triplets (thousands). (One writes ¥1 0000)
Grouping is done according the CLDR definitions. For many languages the grouping is in thousands. Some format other ways. For example in India numbers are formatted with the first group as a triplet and subsequent groups as doublets.
25. Prices at a single company will never range from five digits before the decimal to five digits after.
Money's default precision is 28 decimal digits. All arithmetic is done using arbitrary precision decimal arithemetic. No round is performed unless either explicitly requested or a money value is formatted for output. When formatting rounding is applied according the locale-specific rules.
26. Prices contains only digits and punctuation. (Germans can write 12,- €)
Money format masks can contain very flexible formatting masks. A set of formats is defined for each locale and a user-defined masks can also be defined.
27. A price can be at most 10^N for some value of N.
See the answer to 25.
28. Given two currencies, there is only one exchange rate between them at any given point in time.
Money supports an exchange rate mechansim, currency conversions and retrieval from external exchange rate services. It does not impose any constraint on underlying conversion tables.
29. Given two currencies, there is at least one exchange rate between them at any given point in time. (restriction on export of MAD, ARS, CNY, for example)
See the answer to 28.
30. And the final one: a standalone $ character is always pronounced dollar. (It's also the peso sign.)
This is outside the domain of Money.

Changelog
Money v5.5.5
This is the changelog for Money v5.5.5 released on August 15th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Allow either phoenix_html version 2.x or 3.x. Thanks to @seantanly for the PR. Closes #129.

Money v5.5.4
This is the changelog for Money v5.5.4 released on June 17th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Support t:Cldr.Number.Format.Options as an argument to Money.to_string/2. Thanks to @jeroenvisser101 for the PR. Closes #127.

Money v5.5.3
This is the changelog for Money v5.5.3 released on May 7th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fixes parsing money when a currency string has a "." in it such as "kr.". Thanks for the report to @Doerge. Closes #125.

Money v5.5.2
This is the changelog for Money v5.5.2 released on April 14th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix exception message when describing the requirement for a default backend configuration. Thanks to @holandes22 for the report. Closes #124.

Money v5.5.1
This is the changelog for Money v5.5.1 released on February 18th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix formatting a t:Money that has no :format_options key. That can happen if re-hydrating a t:Money using :erlang.binary_to_term/1 from an older version of ex_money that doesn't have the :format_options key in the struct. Thanks to @coladarci. Fixes #123.

Money v5.5.0
This is the changelog for Money v5.5.0 released on February 10th, 2021. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds format options to t:Money to allow per-money formatting options to be applied with the String.Chars protocol. Thanks to @morinap for the feature request.

	Adds Money.put_format_options/2

Money v5.4.1
This is the changelog for Money v5.4.1 released on January 7th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Update stream_data to remove stacktrace warning

	Use Cldr.default_backend!/0 instead of deprecated Cldr.default_backend/0 in tests. Closes #120. Thanks to @darwintantuco.

Money v5.4.0
This is the changelog for Money v5.4.0 released on November 1st, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add support for CLDR 38

Money v5.3.2
This is the changelog for Money v5.3.2 released on September 30th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix docs for Money.div!/2

	Update cldr_utils which implements a shim for Decimal to support both version 1.9 and 2.0.

Money v5.3.1
This is the changelog for Money v5.3.1 released on September 26th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Support nimble_parsec versions that match ~> 0.5 or ~> 1.0

Money v5.3.0
This is the changelog for Money v5.3.0 released on September 5th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix parsing money amounts to use Unicode definition of whitespace (set [:Zs:]). Thanks to @Sanjibukai for the report.

Enhancements
	Add Money.sum/2 to sum a list of Money, converting them if required.

Money v5.2.1
This is the changelog for Money v5.2.1 released on June 23rd, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Configure the Money.Application supervisor via the arguments to Money.Application.start/2 and configure defaults in mix.exs. This permits different restart strategies and names.

	Add Money.ExchangeRates.Supervisor.default_supervisor/0 to return the name of the default supervisor which is Money.Supervisor

	Change Money.ExchangeRates.Supervisor.stop/0 to become Money.ExchangeRates.Supervisor.stop/{0, 1} allowing the supervisor name to be passed in. The default is Money.ExchangeRates.Supervisor.default_supervisor/0

Bug Fixes
	Add back the name of the Application supervisor, Money.Supervisor. Thanks for the report of the regression to @jeroenvisser101. Fixes #117.

Money v5.2.0
This is the changelog for Money v5.2.0 released on May 30th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds a configuration option :verify_peer which is a boolean that determines whether to verify the client certificate for any exchange rate service API call. The default is true. This option should not be changed without a very clear understanding of the security implications. This option will remain undocumented but supported for now.

Bug fixes
	Handle expired certificate errors on the exchange rates API service and log them. Thanks to @coladarci. Fixes #116

Money v5.1.0
This is the changelog for Money v5.1.0 released on May 26th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Extract default currency from locale when calling Money.parse/2 on a money string. The updated docs now say:
	:default_currency is any valid currency code or false
that will used if no currency code, symbol or description is
indentified in the parsed string. The default is nil
which means that the default currency associated with
the :locale option will be used. If false then the
currency assocated with the :locale option will not be
used and an error will be returned if there is no currency
in the string being parsed.

	Add certificate verification for exchange rate retrieval

Money v5.0.2
This is the changelog for Money v5.0.2 released on April 29th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Update the application supervisor spec

Money v5.0.1
This is the changelog for Money v5.0.1 released on January 28th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Make nimble_parsec a required dependency since it is required for parsing money amounts. Thanks to @jonnystoten for the report.

Money v5.0.0
This is the changelog for Money v5.0.0 released on January 21st, 2020. For older changelogs please consult the release tag on GitHub
Breaking changes
	Elixir 1.10 introduces semantic sorting for stucts that depends on the availability of a compare/2 function that returns :lt, :eq or :gt. Therefore in this release of ex_money the functions compare/2 and compare!/2 are swapped with cmp/2 and cmp!/2 in order to conform with this expectation. Now compare/2 will return :eq, :lt or :gt. And cmp/2 return -1, 0 or 1.

	Deprecate Money.reduce/1 in favour of Money.normalize/1 to be consistent with Decimal versions 1.9 and later.

It is believed and tested that Money version 5.0.0 is compatible with all versions of Decimal from 1.6 up to the as-yet-unreleased 2.0.
Support of Elixir 1.10 Enum sorting
From Elixir verison 1.10.0, several functions in the Enum module can use the Money.compare/2 function to simplify sorting. For example:
iex> list = [Money.new(:USD, 100), Money.new(:USD, 200)]
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, Money
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:asc, Money}
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:desc, Money}
[#Money<:USD, 200>, #Money<:USD, 100>]
Note that Enum.sort/2 will sort money amounts even when the currencies are incompatible. In this case the order of the result is not predictable. It is the developers responsibility to filter the list to compatible currencies prior to sorting. This is a limitation of the Enum.sort/2 implementation.
Notes on Decimal version support
	ex_money version 5.0.0 is compatible with Decimal versions from 1.6 onwards. In Decimal version 2.0 the same changes to compare/2 and cmp/2 will occur and in Decimal version 1.9, Decimal.cmp/2 is deprecated. ex_money version 5.0.0 detects these different versions of Decimal and therefore remains compatability with Decimal back to version 1.6.

Money v4.4.2
This is the changelog for Money v4.4.2 released on January 2nd, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Remove calls to Code.ensure_compiled?/1 since it is deprecated in Elixir 1.10. Use instead Cldr.Config.ensure_compiled?/1 which is added as a private API in Cldr version 2.12.0. This version of Cldr now becomes the minimum version required.

	Remove spurious entries in .dialyzer_ignore_warnings - no entries are required and dialyzer is happy.

Money v4.4.1
This is the changelog for Money v4.4.1 released on November 10th, 2019. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fixes money parsing error. Thanks to @Doerge. Closes #112.

Money v4.4.0
This is the changelog for Money v4.4.0 released on November 6th, 2019. For older changelogs please consult the release tag on GitHub
Breaking Change
	Money.parse/2 until this release supported the :currency_filter option. It allowed for currencies to be filtered based upon their attributes (:all, :current, :historic, :tender, :annotated). When multiple attributes were passed in a list, a currency had to meet all of these attributes. From this release onwards, multiple attributes items are ored, not anded. It is expected this option is used extremely rarely and therefore of limited impact.

Enhancements
	Money.parse/2 now includes the option :default_currency which allows for parsing a number only (without a currency code) and it will be tagged with the :default_currency.
iex> Money.parse("100")
{:error,
 {Money.Invalid,
 "A currency code, symbol or description must be specified but was not found in \"100\""}}
iex> Money.parse("100", default_currency: :USD)
#Money<:USD, 100>

	Add :only and :except options to Money.parse/2 to specify which currency codes or currency attributes are permitted. :only and :except replace the option :currency_filter which is now deprecated. If provided, :currency_filter is interpreted as :only. An example:
iex> Money.parse("100 usd", only: :current, except: :USD)
{:error,
 {Money.UnknownCurrencyError,
 "The currency \"usd\" is unknown or not supported"}}

	Money.parse/2 now supports negative money amounts.
iex> Money.parse("chf -100")
#Money<:CHF, -100>

iex> Money.parse("(chf 100)")
#Money<:CHF, -100>

* The money parser has been rewritten using [nimble_parsec](https://hex,pm.packages/nimble_parsec)

Money v4.3.0

This is the changelog for Money v4.3.0 released on September 8th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Enhancements

* Adds a `Money` backend in the same spirit as other libraries that leverge [ex_cldr](https://hex,pm/packages/ex_cldr). Thanks to @Lostkobrakai. Closes #108. All of the functions in the `Money` module may also be called on a backend module `<backend>.Money.fun` without having to specify a backend module since this is implicit.

Bug Fixes

* `Money.new!/3` replaces `Money.new!/2` to accept options. Thanks to @Lostkobrakai. Closes #109.

Money v4.2.2

This is the changelog for Money v4.2.2 released on September 7th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Use `Keyword.get_lazy` when the default is `Cldr.default_backend/0` to avoid exceptions when no default backend is configured. Thanks to @Lostkobrakai. Closes #108.

Money v4.2.1

This is the changelog for Money v4.2.1 released on September 2nd, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Fixes parsing of money amount that have a single digit amount. Closes #107. Thanks to @njwest

Money v4.2.0

This is the changelog for Money v4.2.0 released on 21 August, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Move the `Money.Migration` module to [ex_money_ecto](https://hex.pm/packages/ex_money_sql) where it belongs

Enhancements

* `Money.default_backend/0` will now either use the backend configured under the `:default_cldr_backend` key of `ex_money` or `Cldr.default_backend/0`. In either case an exeption will be raised if no default backend is configured.

Money v4.1.0

This is the changelog for Money v4.1.0 released on July 13th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Enhancements

* Adds `Money.abs/1`. Thanks to @jeremyjh.

* Improve `@doc` consistency using `## Arguments` not `## Options`.

Money v4.0.0

This is the changelog for Money v4.0.0 released on July 8th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Breaking Changes

* Functions related to the serialization of money types have been extracted to the library [ex_money_sql](https://hex.pm/packages/ex_money_sql). For applications using the dependency `ex_money` that *do not* require serialization no changes are required. For applications using serialization, the dependency should be changed to `ex_money_sql` (which in turn depends on `ex_money`).

* Supports Elixir 1.6 and later only

Money v3.4.4

This is the changelog for Money v3.4.4 released on June 2nd, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Enhancements

* Supports passing an `Cldr.Number.Formation.Options.t` as alternative to a `Keyword.t` for options to `Money.to_string/2`. Performance is doubled when using pre-validated options which is useful if formatting is being executed in a tight loop.

An example of this usage is:

 iex> money = Money.new(:USD, 100)
 # Apply any options required as a keyword list
 # Money will take care of managing the :currency option
 iex> options = []
 iex> {:ok, options} = Cldr.Number.Format.Options.validate_options(0, backend, options)
 iex> Money.to_string(money, options)

The `0` in `validate_options` is used to determine the sign of the amount because that can influence formatting - for example the accounting format often uses `(1234)` as its format. If you know your amounts are always positive, just use `0`.

If the use case may have both positive and negative amounts, generate two option sets (one with the positive number and one with the negative). Then use the appropriate option set. For example:

 iex> money = Money.new(:USD, 1234)
 # Add options as required
 # Money will take care of managing the :currency option
 iex> options = []
 iex> {:ok, positive_options} = Cldr.Number.Format.Options.validate_options(0, backend, options)
 iex> {:ok, negative_options} = Cldr.Number.Format.Options.validate_options(-1, backend, options)
 iex> if Money.cmp(money, Money.zero(:USD)) == :gt do
 ...> Money.to_string(money, positive_options)
 ...> else
 ...> Money.to_string(money, negative_options)
 ...> end

Money v3.4.3

This is the changelog for Money v3.4.3 released on June 2nd, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Ensure `Money.to_string!/2` properly raises

* Add specs for `Money.to_string/2` and `Money.to_string!/2`

Thanks to @rodrigues for the report and PR.

Money v3.4.2

This is the changelog for Money v3.4.2 released on April 16th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* `Money.put_fraction/2` now correctly allows setting the fraction to 0.

Enhancements

* `Money.round/2` allows setting `:currency_digits` to an integer number of digits in addition to the options `:iso`, `:cash` and `:accounting`. The default remains `:iso`.

* Improves the documentation for `Money.to_string/2`.

Money v3.4.1

This is the changelog for Money v3.4.1 released on April 5th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Fix `README.md` markdown formatting error. Thanks to @fireproofsocks for the report and @lostkobrakai for the fix. Closes #99.

Money v3.4.0

This is the changelog for Money v3.4.0 released on March 28th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Enhancements

* Updates to [CLDR version 35.0.0](http://cldr.unicode.org/index/downloads/cldr-35) released on March 27th 2019 through `ex_cldr` version 2.6.0.

Money v3.3.1

This is the changelog for Money v3.3.1 released on March 8th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Fix or silence dialyzer warnings

Money v3.3.0

This is the changelog for Money v3.3.0 released on February 24th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Enhancements

* Adds `Money.put_fraction/2`. This will set the fractional part of a money to the specified integer amount. Examples:
 iex> Money.put_fraction Money.new(:USD, "2.49"), 99
 #Money<:USD, 2.99>
 iex> Money.put_fraction Money.new(:USD, "2.49"), 999
 {:error,
 {Money.InvalidAmountError, "Rounding up to 999 is invalid for currency :USD"}}

Bug Fixes

* Parsing money strings now uses a more complete set of character definitions for decimal and grouping separators based upon the `characters.json` file of the "en" locale.

Money v3.2.4

This is the changelog for Money v3.2.4 released on February 13th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Updates to [ex_cldr_currencies version 2.1.2](https://hex.pm/packages/ex_cldr_currencies/2.1.2) which correctly removes duplicate currency strings when the same string referred to different currency codes. See the [changelog](https://github.com/kipcole9/cldr_currencies/blob/v2.1.2/CHANGELOG.md) for further detail.

Enhancements

* Adds a `:fuzzy` option to `Money.parse/2` that uses `String.jaro_distance/2` to help determine if the provided currency text can be resolved as a currency code. For example:
 iex> Money.parse("100 eurosports", fuzzy: 0.8)
 #Money<:EUR, 100>
 iex> Money.parse("100 eurosports", fuzzy: 0.9)
 {:error,
 {Money.Invalid, "Unable to create money from \"eurosports\" and \"100\""}}

Money v3.2.3

This is the changelog for Money v3.2.3 released on February 12th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Correctly parse money strings with unicode currency symbols like "€". Closes #95. Thanks to @crbelaus.

Money v3.2.2

This is the changelog for Money v3.2.2 released on February 10th, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Enhancements

* Improves parsing of money strings. Parsing now uses various strings that [CLDR](https://cldr.unicode.org) knows about. Some examples:

 iex> Money.parse "$au 12 346", locale: "fr"
 #Money<:AUD, 12346>
 iex> Money.parse "12 346 dollar australien", locale: "fr"
 #Money<:AUD, 12346>
 iex> Money.parse "A$ 12346", locale: "en"
 #Money<:AUD, 12346>
 iex> Money.parse "australian dollar 12346.45", locale: "en"
 #Money<:AUD, 12346.45>
 iex> Money.parse "AU$ 12346,45", locale: "de"
 #Money<:AUD, 12346.45>
 # Can also return the strings available for a given currency
 # and locale
 iex> Cldr.Currency.strings_for_currency :AUD, "de"
 ["aud", "au$", "australischer dollar", "australische dollar"]
 # Round trip formatting also seems to be ok
 iex> {:ok, string} = Cldr.Number.to_string 1234, Money.Cldr, currency: :AUD
 iex> Money.parse string
 #Money<:AUD, 1234.00>
Money v3.2.1

This is the changelog for Money v3.2.1 released on February 2nd, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Added `Money.Ecto.Composite.Type.cast/1` and `Money.Ecto.Map.Type.cast/1` for a `String.t` parameter. When a `String.t` is provided, `cast/1` will call `Money.parse/2` to create the `Money.t`.

* `Money.new/3` now uses the current locale on the default backend if no locale or backend is specified. This means that `Money.Ecto.Composite.Type.cast/1` and `Money.Ecto.Map.Type.cast/1` will be parsed using the locale that has been set for the current process in the default backend. As a result, a simple `type=text` form field can be used to input a money type (currency code and amount in a single string) that can then be cast to a `Money.t`.

Money v3.2.0

This is the changelog for Money v3.2.0 released on February 1st, 2019. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Correctly generate `migrations_path/1` function based upon whether `Ecto` is configured and which version

Enhancements

* Adds `Money.parse/2` which will parse a string comprising a currency code and an amount. It will return a `Money.t` or an error. This function may be helpful in supporting money input in HTML forms.

Money v3.1.0

This is the changelog for Money v3.1.0 released on December 30th, 2018. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

Bug Fixes

* Fix typo in `exchange_rates_retriever.ex`. Thanks to @lostkobrakai. Closes #91.

* Remove obsolete `cldr` compiler

* Changes the `sum` aggregate function for `money_with_currency` to be `STRICT` which means it handles `NULL` columns in the same way as the standard `SUM` function. Thanks to @lostkobrakai. Closes #88.

* Fixes documentation link errors

* Fix unhandled terminate typo error in exchange rates server. Thanks to @xavier. Closes #90.

Money v3.0.0

This is the changelog for Money v3.0.0 released on November 23rd, 2018. For older changelogs please consult the release tag on [GitHub](https://github.com/kipcole9/money/tags)

The primary purpose of this release is to support ex_cldr version 2.0

Breaking changes

* `Money.from_tuple/1` has been removed
* Uses [ex_cldr](https://hex.pm/packages/ex_cldr/2.0.0) version 2. Please see [the changelog](https://github.com/kipcole9/cldr/blob/v2.0.1/CHANGELOG.md#migrating-from-cldr-1x-to-cldr-version-2x) for configuration changes that are required.
* Requires a default_cldr_backend to be configured in `config.exs`. For example:
 config :ex_money,
...
default_cldr_backend: MyApp.Cldr
 end

License
Copyright 2017-2021 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Money

Money implements a set of functions to store, retrieve, convert and perform
arithmetic on a Money.t type that is composed of a currency code and
a decimal currency amount.
Money is very opinionated in the interests of serving as a dependable library
that can underpin accounting and financial applications.
This opinion expressed by ensuring that:
	Money must always have both a amount and a currency code.

	The currency code must always be valid.

	Money arithmetic can only be performed when both operands are of the
same currency.

	Money amounts are represented as a Decimal.

	Money is serialised to the database as a custom Postgres composite type
that includes both the amount and the currency. Therefore for Ecto
serialization Postgres is assumed as the data store. Serialization is
entirely optional and Ecto is not a package dependency.

	All arithmetic functions work in fixed point decimal. No rounding
occurs automatically (unless expressly called out for a function).

	Explicit rounding obeys the rounding rules for a given currency. The
rounding rules are defined by the Unicode consortium in its CLDR
repository as implemented by the hex package ex_cldr. These rules
define the number of fractional digits for a currency and the rounding
increment where appropriate.

 Anchor for this section

 Summary

 Types

 amount()

 currency_code()

 t()

 Money is composed of an atom representation of an ISO4217 currency code and
a Decimal representation of an amount.

 Functions

 abs(money)

 The absolute value of a Money amount.
Returns a Money type with a positive sign for the amount.

 add(arg1, money_b)

 Add two Money values.

 add!(money_1, money_2)

 Add two Money values and raise on error.

 cmp(money_1, money_2)

 Compares two Money values numerically. If the first number is greater
than the second #Integer<1> is returned, if less than Integer<-1> is
returned. Otherwise, if both numbers are equal Integer<0> is returned.

 cmp!(money_1, money_2)

 Compares two Money values numerically and raises on error.

 compare(money1, money2)

 Compares two Money values numerically. If the first number is greater
than the second :gt is returned, if less than :lt is returned, if both
numbers are equal :eq is returned.

 compare!(money_1, money_2)

 Compares two Money values numerically and raises on error.

 cross_rate(from, to, rates \\ Money.ExchangeRates.latest_rates())

 Returns the effective cross-rate to convert from one currency
to another.

 cross_rate!(from, to_currency, rates \\ Money.ExchangeRates.latest_rates())

 Returns the effective cross-rate to convert from one currency
to another.

 div(money, number)

 Divide a Money value by a number.

 div!(money, number)

 Divide a Money value by a number and raise on error.

 equal?(arg1, arg2)

 Returns a boolean indicating if two Money values are equal

 from_float(currency_code, amount, options \\ [])

 Returns a %Money{} struct from a currency code and a float amount, or
an error tuple of the form {:error, {exception, message}}.

 from_float!(currency_code, amount, options \\ [])

 Returns a %Money{} struct from a currency code and a float amount, or
raises an exception if the currency code is invalid.

 from_integer(amount, currency, options \\ [])

 Convert an integer representation of money into a Money struct.

 get_env(key, default, atom)

 known_currencies()

 See Cldr.known_currencies/0.

 known_current_currencies()

 See Money.Currency.known_current_currencies/0.

 known_historic_currencies()

 See Money.Currency.known_historic_currencies/0.

 known_tender_currencies()

 See Money.Currency.known_tender_currencies/0.

 mult(money, number)

 Multiply a Money value by a number.

 mult!(money, number)

 Multiply a Money value by a number and raise on error.

 new(currency_code, amount, options \\ [])

 Returns a %Money{} struct from a currency code and a currency amount or
an error tuple of the form {:error, {exception, message}}.

 new!(currency_code, amount, options \\ [])

 Returns a %Money{} struct from a currency code and a currency amount. Raises an
exception if the current code is invalid.

 normalize(money)

 Normalizes the underlying decimal amount in a
given Money.t()

 parse(string, options \\ [])

 Parse a string and return a Money.t or an error.

 put_format_options(money, options)

 Add format options to a t:Money.

 put_fraction(money, fraction \\ 0)

 Set the fractional part of a Money.

 reduce(money)

 deprecated

 round(money, opts \\ [])

 Round a Money value into the acceptable range for the requested currency.

 split(money, parts)

 Split a Money value into a number of parts maintaining the currency's
precision and rounding and ensuring that the parts sum to the original
amount.

 sub(arg1, money_b)

 Subtract one Money value struct from another.

 sub!(a, b)

 Subtract one Money value struct from another and raise on error.

 sum(money_list, rates \\ %{})

 Sum a list of monies that may be in different
currencies.

 to_currency(money, to_currency, rates \\ Money.ExchangeRates.latest_rates())

 Convert money from one currency to another.

 to_currency!(money, to_currency, rates \\ Money.ExchangeRates.latest_rates())

 Convert money from one currency to another and raises on error

 to_decimal(money)

 Returns the amount part of a Money type as a Decimal

 to_integer_exp(money, opts \\ [])

 Returns a tuple comprising the currency code, integer amount,
exponent and remainder

 to_string(money, options \\ [])

 Returns a formatted string representation of a Money{}.

 to_string!(money, options \\ [])

 Returns a formatted string representation of a Money.t or raises if
there is an error.

 validate_currency(currency_code)

 See Cldr.validate_currency/1.

 zero(money_or_currency, options \\ [])

 Return a zero amount t:Money in the given currency.

 Anchor for this section

Types

 Link to this type

 amount()

 View Source

 Specs

 amount() :: float() | integer() | Decimal.t() | String.t()

 Link to this type

 currency_code()

 View Source

 Specs

 currency_code() :: atom() | String.t()

 Link to this type

 t()

 View Source

 Specs

 t() :: %Money{
 amount: Decimal.t(),
 currency: atom(),
 format_options: Keyword.t()
}

Money is composed of an atom representation of an ISO4217 currency code and
a Decimal representation of an amount.

 Anchor for this section

Functions

 Link to this function

 abs(money)

 View Source

 Specs

 abs(money :: t()) :: t()

The absolute value of a Money amount.
Returns a Money type with a positive sign for the amount.

 Arguments

	money is any valid Money.t type returned
by Money.new/2

 Returns

	a Money.t

 Example

iex> m = Money.new("USD", -100)
iex> Money.abs(m)
#Money<:USD, 100>

 Link to this function

 add(arg1, money_b)

 View Source

 Specs

 add(money_1 :: t(), money_2 :: t()) ::
 {:ok, t()} | {:error, {module(), String.t()}}

Add two Money values.

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	{:ok, money} or

	{:error, reason}

 Example

iex> Money.add Money.new(:USD, 200), Money.new(:USD, 100)
{:ok, Money.new(:USD, 300)}

iex> Money.add Money.new(:USD, 200), Money.new(:AUD, 100)
{:error, {ArgumentError, "Cannot add monies with different currencies. " <>
 "Received :USD and :AUD."}}

 Link to this function

 add!(money_1, money_2)

 View Source

 Specs

 add!(money_1 :: t(), money_2 :: t()) :: t() | no_return()

Add two Money values and raise on error.

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	a Money.t struct or

	raises an exception

 Examples

iex> Money.add! Money.new(:USD, 200), Money.new(:USD, 100)
#Money<:USD, 300>

Money.add! Money.new(:USD, 200), Money.new(:CAD, 500)
** (ArgumentError) Cannot add two %Money{} with different currencies. Received :USD and :CAD.

 Link to this function

 cmp(money_1, money_2)

 View Source

 Specs

 cmp(money_1 :: t(), money_2 :: t()) ::
 -1 | 0 | 1 | {:error, {module(), String.t()}}

Compares two Money values numerically. If the first number is greater
than the second #Integer<1> is returned, if less than Integer<-1> is
returned. Otherwise, if both numbers are equal Integer<0> is returned.

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	 -1 | 0 | 1 or

	{:error, {module(), String.t}}

 Examples

iex> Money.cmp Money.new(:USD, 200), Money.new(:USD, 100)
1

iex> Money.cmp Money.new(:USD, 200), Money.new(:USD, 200)
0

iex> Money.cmp Money.new(:USD, 200), Money.new(:USD, 500)
-1

iex> Money.cmp Money.new(:USD, 200), Money.new(:CAD, 500)
{:error,
 {ArgumentError,
 "Cannot compare monies with different currencies. Received :USD and :CAD."}}

 Link to this function

 cmp!(money_1, money_2)

 View Source

Compares two Money values numerically and raises on error.

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	 -1 | 0 | 1 or

	raises an exception

 Examples

Money.cmp! Money.new(:USD, 200), Money.new(:CAD, 500)
** (ArgumentError) Cannot compare monies with different currencies. Received :USD and :CAD.

 Link to this function

 compare(money1, money2)

 View Source

 Specs

 compare(money_1 :: t(), money_2 :: t()) ::
 :gt | :eq | :lt | {:error, {module(), String.t()}}

Compares two Money values numerically. If the first number is greater
than the second :gt is returned, if less than :lt is returned, if both
numbers are equal :eq is returned.

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	 :gt | :eq | :lt or

	{:error, {module(), String.t}}

 Examples

iex> Money.compare Money.new(:USD, 200), Money.new(:USD, 100)
:gt

iex> Money.compare Money.new(:USD, 200), Money.new(:USD, 200)
:eq

iex> Money.compare Money.new(:USD, 200), Money.new(:USD, 500)
:lt

iex> Money.compare Money.new(:USD, 200), Money.new(:CAD, 500)
{:error,
 {ArgumentError,
 "Cannot compare monies with different currencies. Received :USD and :CAD."}}

 Link to this function

 compare!(money_1, money_2)

 View Source

Compares two Money values numerically and raises on error.

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	 :gt | :eq | :lt or

	raises an exception

 Examples

Money.compare! Money.new(:USD, 200), Money.new(:CAD, 500)
** (ArgumentError) Cannot compare monies with different currencies. Received :USD and :CAD.

 Link to this function

 cross_rate(from, to, rates \\ Money.ExchangeRates.latest_rates())

 View Source

 Specs

 cross_rate(
 t() | currency_code(),
 currency_code(),
 Money.ExchangeRates.t() | {:ok, Money.ExchangeRates.t()}
) :: {:ok, Decimal.t()} | {:error, {module(), String.t()}}

Returns the effective cross-rate to convert from one currency
to another.

 Arguments

	from is any Money.t struct returned by Cldr.Currency.new/2 or a valid
 currency code

	to_currency is a valid currency code into which the money is converted

	rates is a Map of currency rates where the map key is an upcased
atom or string and the value is a Decimal conversion factor. The default is the
latest available exchange rates returned from Money.ExchangeRates.latest_rates()

 Examples

Money.cross_rate(Money.new(:USD, 100), :AUD, %{USD: Decimal.new(1), AUD: Decimal.new("0.7345")})
{:ok, #Decimal<0.7345>}

Money.cross_rate Money.new(:USD, 100), :ZZZ, %{USD: Decimal.new(1), AUD: Decimal.new(0.7345)}
** (Cldr.UnknownCurrencyError) Currency :ZZZ is not known

 Link to this function

 cross_rate!(from, to_currency, rates \\ Money.ExchangeRates.latest_rates())

 View Source

 Specs

 cross_rate!(
 t() | currency_code(),
 currency_code(),
 Money.ExchangeRates.t() | {:ok, Money.ExchangeRates.t()}
) :: Decimal.t() | no_return()

Returns the effective cross-rate to convert from one currency
to another.

 Arguments

	from is any Money.t struct returned by Cldr.Currency.new/2 or a valid
 currency code

	to_currency is a valid currency code into which the money is converted

	rates is a Map of currency rates where the map key is an upcased
atom or string and the value is a Decimal conversion factor. The default is the
latest available exchange rates returned from Money.ExchangeRates.latest_rates()

 Examples

iex> Money.cross_rate!(Money.new(:USD, 100), :AUD, %{USD: Decimal.new(1), AUD: Decimal.new("0.7345")})
#Decimal<0.7345>

iex> Money.cross_rate!(:USD, :AUD, %{USD: Decimal.new(1), AUD: Decimal.new("0.7345")})
#Decimal<0.7345>

Money.cross_rate Money.new(:USD, 100), :ZZZ, %{USD: Decimal.new(1), AUD: Decimal.new("0.7345")}
** (Cldr.UnknownCurrencyError) Currency :ZZZ is not known

 Link to this function

 div(money, number)

 View Source

 Specs

 div(t(), Cldr.Math.number_or_decimal()) ::
 {:ok, t()} | {:error, {module(), String.t()}}

Divide a Money value by a number.

 Arguments

	money is any valid Money.t types returned
by Money.new/2

	number is an integer, float or Decimal.t

Note that dividing one %Money{} by another is not supported.

 Returns

	{:ok, money} or

	{:error, reason}

 Example

iex> Money.div Money.new(:USD, 200), 2
{:ok, Money.new(:USD, 100)}

iex> Money.div(Money.new(:USD, 200), "xx")
{:error, {ArgumentError, "Cannot divide money by \"xx\""}}

 Link to this function

 div!(money, number)

 View Source

 Specs

 div!(t(), Cldr.Math.number_or_decimal()) :: t() | none()

Divide a Money value by a number and raise on error.

 Arguments

	money is any valid Money.t types returned
by Money.new/2

	number is an integer, float or Decimal.t

 Returns

	a Money.t struct or

	raises an exception

 Examples

iex> Money.div!(Money.new(:USD, 200), 2)
#Money<:USD, 100>

iex> Money.div!(Money.new(:USD, 200), "xx")
** (ArgumentError) Cannot divide money by "xx"

 Link to this function

 equal?(arg1, arg2)

 View Source

 Specs

 equal?(money_1 :: t(), money_2 :: t()) :: boolean()

Returns a boolean indicating if two Money values are equal

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	true or false

 Example

iex> Money.equal?(Money.new(:USD, 200), Money.new(:USD, 200))
true

iex> Money.equal?(Money.new(:USD, 200), Money.new(:USD, 100))
false

 Link to this function

 from_float(currency_code, amount, options \\ [])

 View Source

 (since 2.0.0)

 Specs

 from_float(float() | currency_code(), float() | currency_code(), Keyword.t()) ::
 t() | {:error, {module(), String.t()}}

Returns a %Money{} struct from a currency code and a float amount, or
an error tuple of the form {:error, {exception, message}}.
Floats are fraught with danger in computer arithmetic due to the
unexpected loss of precision during rounding. The IEEE754 standard
indicates that a number with a precision of 16 digits should
round-trip convert without loss of fidelity. This function supports
numbers with a precision up to 15 digits and will error if the
provided amount is outside that range.
Note that Money cannot detect lack of precision or rounding errors
introduced upstream. This function therefore should be used with
great care and its use should be considered potentially harmful.

 Arguments

	currency_code is an ISO4217 three-character upcased binary or atom

	amount is a float

	options is a keyword list of options passed
to Money.new/3. The default is [].

 Examples

iex> Money.from_float 1.23456, :USD
#Money<:USD, 1.23456>

iex> Money.from_float 1.234567890987656, :USD
{:error,
 {Money.InvalidAmountError,
 "The precision of the float 1.234567890987656 is " <>
 "greater than 15 which could lead to unexpected results. " <>
 "Reduce the precision or call Money.new/2 with a Decimal or String amount"}}

 Link to this function

 from_float!(currency_code, amount, options \\ [])

 View Source

 (since 2.0.0)

 Specs

 from_float!(currency_code(), float(), Keyword.t()) :: t() | no_return()

Returns a %Money{} struct from a currency code and a float amount, or
raises an exception if the currency code is invalid.
See Money.from_float/2 for further information.
Note that Money cannot detect lack of precision or rounding errors
introduced upstream. This function therefore should be used with
great care and its use should be considered potentially harmful.

 Arguments

	currency_code is an ISO4217 three-character upcased binary or atom

	amount is a float

	options is a keyword list of options passed
to Money.new/3. The default is [].

 Examples

iex> Money.from_float!(:USD, 1.234)
#Money<:USD, 1.234>

Money.from_float!(:USD, 1.234567890987654)
#=> ** (Money.InvalidAmountError) The precision of the float 1.234567890987654 is greater than 15 which could lead to unexpected results. Reduce the precision or call Money.new/2 with a Decimal or String amount
 (ex_money) lib/money.ex:293: Money.from_float!/2

 Link to this function

 from_integer(amount, currency, options \\ [])

 View Source

 Specs

 from_integer(integer(), currency_code(), Keyword.t()) ::
 t() | {:error, module(), String.t()}

Convert an integer representation of money into a Money struct.
This is the inverse operation of Money.to_integer_exp/1. Note
that the ISO definition of currency digits (subunit) is always
used. This is, in some cases like the Colombian Peso (COP)
different to the CLDR definition.

 Options

	integer is an integer representation of a mooney item including
any decimal digits. ie. 20000 would interpreted to mean $200.00

	currency is the currency code for the integer. The assumed
decimal places is derived from the currency code.

	options is a keyword list of options passed to Money.new/3

 Returns

	A t:Money struct or

	{:error, {Cldr.UnknownCurrencyError, message}}

 Examples

iex> Money.from_integer(20000, :USD)
#Money<:USD, 200.00>

iex> Money.from_integer(200, :JPY)
#Money<:JPY, 200>

iex> Money.from_integer(20012, :USD)
#Money<:USD, 200.12>

iex> Money.from_integer(20012, :COP)
#Money<:COP, 200.12>

 Link to this function

 get_env(key, default, atom)

 View Source

 Link to this function

 known_currencies()

 View Source

See Cldr.known_currencies/0.

 Link to this function

 known_current_currencies()

 View Source

See Money.Currency.known_current_currencies/0.

 Link to this function

 known_historic_currencies()

 View Source

See Money.Currency.known_historic_currencies/0.

 Link to this function

 known_tender_currencies()

 View Source

See Money.Currency.known_tender_currencies/0.

 Link to this function

 mult(money, number)

 View Source

 Specs

 mult(t(), Cldr.Math.number_or_decimal()) ::
 {:ok, t()} | {:error, {module(), String.t()}}

Multiply a Money value by a number.

 Arguments

	money is any valid Money.t type returned
by Money.new/2

	number is an integer, float or Decimal.t

Note that multipling one %Money{} by another is not supported.

 Returns

	{:ok, money} or

	{:error, reason}

 Example

iex> Money.mult(Money.new(:USD, 200), 2)
{:ok, Money.new(:USD, 400)}

iex> Money.mult(Money.new(:USD, 200), "xx")
{:error, {ArgumentError, "Cannot multiply money by \"xx\""}}

 Link to this function

 mult!(money, number)

 View Source

 Specs

 mult!(t(), Cldr.Math.number_or_decimal()) :: t() | none()

Multiply a Money value by a number and raise on error.

 Arguments

	money is any valid Money.t types returned
by Money.new/2

	number is an integer, float or Decimal.t

 Returns

	a Money.t or

	raises an exception

 Examples

iex> Money.mult!(Money.new(:USD, 200), 2)
#Money<:USD, 400>

Money.mult!(Money.new(:USD, 200), :invalid)
** (ArgumentError) Cannot multiply money by :invalid

 Link to this function

 new(currency_code, amount, options \\ [])

 View Source

 Specs

 new(amount() | currency_code(), amount() | currency_code(), Keyword.t()) ::
 t() | {:error, {module(), String.t()}}

Returns a %Money{} struct from a currency code and a currency amount or
an error tuple of the form {:error, {exception, message}}.

 Arguments

	currency_code is an ISO4217 three-character upcased binary or atom

	amount is an integer, string or Decimal

	options is a keyword list of options

 Options

	:locale is any known locale. The locale is used to normalize any
binary (String) amounts to a form that can be consumed by Decimal.new/1.
This consists of removing any localised grouping characters and replacing
the localised decimal separator with a ".".
The default is Cldr.get_locale/0.

	:backend is any module() that includes use Cldr and therefore
is a Cldr backend module(). The default is Money.default_backend/0.

	Any other options are considered as formatting options to
be applied by default when calling Money.to_string/2.

Note that the currency_code and amount arguments can be supplied in
either order,

 Examples

iex> Money.new(:USD, 100)
#Money<:USD, 100>

iex> Money.new(100, :USD)
#Money<:USD, 100>

iex> Money.new("USD", 100)
#Money<:USD, 100>

iex> Money.new("thb", 500)
#Money<:THB, 500>

iex> Money.new("EUR", Decimal.new(100))
#Money<:EUR, 100>

iex> Money.new(:EUR, "100.30")
#Money<:EUR, 100.30>

iex> Money.new(:EUR, "100.30", fractional_digits: 4)
#Money<:EUR, 100.30>

iex> Money.new(:XYZZ, 100)
{:error, {Money.UnknownCurrencyError, "The currency :XYZZ is invalid"}}

iex> Money.new("1.000,99", :EUR, locale: "de")
#Money<:EUR, 1000.99>

iex> Money.new 123.445, :USD
{:error,
 {Money.InvalidAmountError,
 "Float amounts are not supported in new/2 due to potenial " <>
 "rounding and precision issues. If absolutely required, " <>
 "use Money.from_float/2"}}

 Link to this function

 new!(currency_code, amount, options \\ [])

 View Source

 Specs

 new!(amount() | currency_code(), amount() | currency_code(), Keyword.t()) ::
 t() | no_return()

Returns a %Money{} struct from a currency code and a currency amount. Raises an
exception if the current code is invalid.

 Arguments

	currency_code is an ISO4217 three-character upcased binary or atom

	amount is an integer, float or Decimal

 Examples

Money.new!(:XYZZ, 100)
** (Money.UnknownCurrencyError) Currency :XYZZ is not known
 (ex_money) lib/money.ex:177: Money.new!/2

 Link to this function

 normalize(money)

 View Source

 (since 5.0.0)

 Specs

 normalize(t()) :: t()

Normalizes the underlying decimal amount in a
given Money.t()
This will normalize the coefficient and exponent of the
decimal amount in a standard way that may aid in
native comparison of %Money.t() items.

 Example

iex> x = %Money{currency: :USD, amount: %Decimal{sign: 1, coef: 42, exp: 0}}
#Money<:USD, 42>
iex> y = %Money{currency: :USD, amount: %Decimal{sign: 1, coef: 4200000000, exp: -8}}
#Money<:USD, 42.00000000>
iex> x == y
false
iex> y = Money.normalize(x)
#Money<:USD, 42>
iex> x == y
true

 Link to this function

 parse(string, options \\ [])

 View Source

 (since 3.2.0)

 Specs

 parse(String.t(), Keyword.t()) :: t() | {:error, {module(), String.t()}}

Parse a string and return a Money.t or an error.
The string to be parsed is required to have a currency
code and an amount. The currency code may be placed
before the amount or after, but not both.
Parsing is strict. Additional text surrounding the
currency code and amount will cause the parse to
fail.

 Arguments

	string is a string to be parsed

	options is a keyword list of options that is
passed to Money.new/3 with the exception of
the options listed below

 Options

	:backend is any module() that includes use Cldr and therefore
is a Cldr backend module(). The default is Money.default_backend()

	:locale is any valid locale returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2
The default is <backend>.get_locale()

	:only is an atom or list of atoms representing the
currencies or currency types to be considered for a match.
The equates to a list of acceptable currencies for parsing.
See the notes below for currency types.

	:except is an atom or list of atoms representing the
currencies or currency types to be not considered for a match.
This equates to a list of unacceptable currencies for parsing.
See the notes below for currency types.

	:fuzzy is a float greater than 0.0 and less than or
equal to 1.0 which is used as input to the
String.jaro_distance/2 to determine is the provided
currency string is close enough to a known currency
string for it to identify definitively a currency code.
It is recommended to use numbers greater than 0.8 in
order to reduce false positives.

	:default_currency is any valid currency code or false
that will used if no currency code, symbol or description is
indentified in the parsed string. The default is nil
which means that the default currency associated with
the :locale option will be used. If false then the
currency assocated with the :locale option will not be
used and an error will be returned if there is no currency
in the string being parsed.

 Returns

	a Money.t if parsing is successful or

	{:error, {exception, reason}} if an error is
detected.

 Notes

The :only and :except options accept a list of
currency codes and/or currency types. The following
types are recognised.
If both :only and :except are specified,
the :except entries take priority - that means
any entries in :except are removed from the :only
entries.
	:all, the default, considers all currencies

	:current considers those currencies that have a :to
date of nil and which also is a known ISO4217 currency

	:historic is the opposite of :current

	:tender considers currencies that are legal tender

	:unannotated considers currencies that don't have
"(some string)" in their names. These are usually
financial instruments.

 Examples

iex> Money.parse("USD 100")
#Money<:USD, 100>

iex> Money.parse "USD 100,00", locale: "de"
#Money<:USD, 100.00>

iex> Money.parse("100 USD")
#Money<:USD, 100>

iex> Money.parse("100 eurosports", fuzzy: 0.8)
#Money<:EUR, 100>

iex> Money.parse("100", default_currency: :EUR)
#Money<:EUR, 100>

iex> Money.parse("100 eurosports", fuzzy: 0.9)
{:error, {Money.UnknownCurrencyError, "The currency \"eurosports\" is unknown or not supported"}}

iex> Money.parse("100 afghan afghanis")
#Money<:AFN, 100>

iex> Money.parse("100", default_currency: false)
{:error, {Money.Invalid,
 "A currency code, symbol or description must be specified but was not found in \"100\""}}

iex> Money.parse("USD 100 with trailing text")
{:error, {Money.ParseError, "Could not parse \"USD 100 with trailing text\"."}}

 Link to this function

 put_format_options(money, options)

 View Source

 (since 5.5.0)

 Specs

 put_format_options(t(), Keyword.t()) :: t()

Add format options to a t:Money.

 Arguments

	money is any valid t:Money type returned
by Money.new/2

	options is a keyword list of options. These
options are used when calling Money.to_string/2.
The default is []

 Link to this function

 put_fraction(money, fraction \\ 0)

 View Source

Set the fractional part of a Money.

 Arguments

	money is a %Money{} struct

	fraction is an integer amount that will be set
as the fraction of the money

 Notes

The fraction can only be set if it matches the number of
decimal digits for the currency associated with the money.
Therefore, for a currency with 2 decimal digits, the
maximum for fraction is 99.

 Examples

iex> Money.put_fraction Money.new(:USD, "2.49"), 99
#Money<:USD, 2.99>

iex> Money.put_fraction Money.new(:USD, "2.49"), 0
#Money<:USD, 2.0>

iex> Money.put_fraction Money.new(:USD, "2.49"), 999
{:error,
 {Money.InvalidAmountError, "Rounding up to 999 is invalid for currency :USD"}}

 Link to this function

 reduce(money)

 View Source

 This function is deprecated. Use Money.normalize/1 instead..

 Link to this function

 round(money, opts \\ [])

 View Source

 Specs

 round(t(), Keyword.t()) :: t()

Round a Money value into the acceptable range for the requested currency.

 Arguments

	money is a %Money{} struct

	opts is a keyword list of options

 Options

	:rounding_mode that defines how the number will be rounded. See
Decimal.Context. The default is :half_even which is also known
as "banker's rounding"

	:currency_digits which determines the rounding increment.
The valid options are :cash, :accounting and :iso or
an integer value representing the rounding factor. The
default is :iso.

 Notes

There are two kinds of rounding applied:
	Round to the appropriate number of fractional digits

	Apply an appropriate rounding increment. Most currencies
round to the same precision as the number of decimal digits, but some
such as :CHF round to a minimum such as 0.05 when its a cash
amount. The rounding increment is applied when the option
:currency_digits is set to :cash

 Examples

iex> Money.round Money.new("123.73", :CHF), currency_digits: :cash
#Money<:CHF, 123.75>

iex> Money.round Money.new("123.73", :CHF), currency_digits: 0
#Money<:CHF, 124>

iex> Money.round Money.new("123.7456", :CHF)
#Money<:CHF, 123.75>

iex> Money.round Money.new("123.7456", :JPY)
#Money<:JPY, 124>

 Link to this function

 split(money, parts)

 View Source

 Specs

 split(t(), non_neg_integer()) :: {t(), t()}

Split a Money value into a number of parts maintaining the currency's
precision and rounding and ensuring that the parts sum to the original
amount.

 Arguments

	money is a %Money{} struct

	parts is an integer number of parts into which the money is split

Returns a tuple {dividend, remainder} as the function result
derived as follows:
	Round the money amount to the required currency precision using
Money.round/1

	Divide the result of step 1 by the integer divisor

	Round the result of the division to the precision of the currency
using Money.round/1

	Return two numbers: the result of the division and any remainder
that could not be applied given the precision of the currency.

 Examples

Money.split Money.new(123.5, :JPY), 3
{¥41, ¥1}

Money.split Money.new(123.4, :JPY), 3
{¥41, ¥0}

Money.split Money.new(123.7, :USD), 9
{$13.74, $0.04}

 Link to this function

 sub(arg1, money_b)

 View Source

 Specs

 sub(money_1 :: t(), money_2 :: t()) ::
 {:ok, t()} | {:error, {module(), String.t()}}

Subtract one Money value struct from another.

 Options

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	{:ok, money} or

	{:error, reason}

 Example

iex> Money.sub Money.new(:USD, 200), Money.new(:USD, 100)
{:ok, Money.new(:USD, 100)}

 Link to this function

 sub!(a, b)

 View Source

 Specs

 sub!(money_1 :: t(), money_2 :: t()) :: t() | none()

Subtract one Money value struct from another and raise on error.
Returns either {:ok, money} or {:error, reason}.

 Arguments

	money_1 and money_2 are any valid Money.t types returned
by Money.new/2

 Returns

	a Money.t struct or

	raises an exception

 Examples

iex> Money.sub! Money.new(:USD, 200), Money.new(:USD, 100)
#Money<:USD, 100>

Money.sub! Money.new(:USD, 200), Money.new(:CAD, 500)
** (ArgumentError) Cannot subtract monies with different currencies. Received :USD and :CAD.

 Link to this function

 sum(money_list, rates \\ %{})

 View Source

 (since 5.3.0)

 Specs

 sum([t(), ...], Money.ExchangeRates.t()) ::
 {:ok, t()} | {:error, {module(), String.t()}}

Sum a list of monies that may be in different
currencies.

 Arguments

	money_list is a list of any valid Money.t types returned
by Money.new/2

	rates is a map of exchange rates. The default is %{}.
Money.ExchangeRates.latest_rates/0 can be used to return
the latest known exchange rates which can then applied as
the rates parameter.

 Returns

	{:ok, money} representing the sum of the maybe
converted money amounts. The currency of the sum is
the currency of the first Money in the money_list.

	{:error, {exception, reason}} describing an error.

 Examples

iex> Money.sum [Money.new(:USD, 100), Money.new(:USD, 200), Money.new(:USD, 50)]
{:ok, Money.new(:USD, 350)}

iex> Money.sum [Money.new(:USD, 100), Money.new(:USD, 200), Money.new(:AUD, 50)]
{:error,
 {Money.ExchangeRateError, "No exchange rate is available for currency :AUD"}}

iex> rates = %{AUD: Decimal.new(2), USD: Decimal.new(1)}
iex> Money.sum [Money.new(:USD, 100), Money.new(:USD, 200), Money.new(:AUD, 50)], rates
{:ok, Money.from_float(:USD, 325.0)}

 Link to this function

 to_currency(money, to_currency, rates \\ Money.ExchangeRates.latest_rates())

 View Source

 Specs

 to_currency(
 t(),
 currency_code(),
 Money.ExchangeRates.t()
 | {:ok, Money.ExchangeRates.t()}
 | {:error, {module(), String.t()}}
) :: {:ok, t()} | {:error, {module(), String.t()}}

Convert money from one currency to another.

 Arguments

	money is any Money.t struct returned by Cldr.Currency.new/2

	to_currency is a valid currency code into which the money is converted

	rates is a Map of currency rates where the map key is an upcased
atom or string and the value is a Decimal conversion factor. The default is the
latest available exchange rates returned from Money.ExchangeRates.latest_rates()

 Converting to a currency defined in a locale

To convert a Money to a currency defined by a locale,
Cldr.Currency.currency_from_locale/1 can be called with
a t:Cldr.LanguageTag.t() parameter. It will return
the currency configured for that locale.

 Examples

iex> Money.to_currency(Money.new(:USD, 100), :AUD,
...> %{USD: Decimal.new(1), AUD: Decimal.from_float(0.7345)})
{:ok, Money.new(:AUD, "73.4500")}

iex> Money.to_currency(Money.new("USD", 100), "AUD",
...> %{"USD" => Decimal.new(1), "AUD" => Decimal.from_float(0.7345)})
{:ok, Money.new(:AUD, "73.4500")}

iex> Money.to_currency(Money.new(:USD, 100), :AUDD,
...> %{USD: Decimal.new(1), AUD: Decimal.from_float(0.7345)})
{:error, {Cldr.UnknownCurrencyError, "The currency :AUDD is invalid"}}

iex> Money.to_currency(Money.new(:USD, 100), :CHF,
...> %{USD: Decimal.new(1), AUD: Decimal.from_float(0.7345)})
{:error, {Money.ExchangeRateError,
 "No exchange rate is available for currency :CHF"}}

 Link to this function

 to_currency!(money, to_currency, rates \\ Money.ExchangeRates.latest_rates())

 View Source

 Specs

 to_currency!(
 t(),
 currency_code(),
 Money.ExchangeRates.t()
 | {:ok, Money.ExchangeRates.t()}
 | {:error, {module(), String.t()}}
) :: t() | no_return()

Convert money from one currency to another and raises on error

 Arguments

	money is any t:Money.t() struct returned by Cldr.Currency.new/2

	to_currency is a valid currency code into which the money is converted

	rates is a Map of currency rates where the map key is an upcased
atom or string and the value is a Decimal conversion factor. The default is the
latest available exchange rates returned from Money.ExchangeRates.latest_rates()

 Examples

iex> Money.to_currency! Money.new(:USD, 100), :AUD,
...> %{USD: Decimal.new(1), AUD: Decimal.from_float(0.7345)}
#Money<:AUD, 73.4500>

iex> Money.to_currency! Money.new("USD", 100), "AUD",
...> %{"USD" => Decimal.new(1), "AUD" => Decimal.from_float(0.7345)}
#Money<:AUD, 73.4500>

=> Money.to_currency! Money.new(:USD, 100), :ZZZ,
 %{USD: Decimal.new(1), AUD: Decimal.from_float(0.7345)}
** (Cldr.UnknownCurrencyError) Currency :ZZZ is not known

 Link to this function

 to_decimal(money)

 View Source

 Specs

 to_decimal(money :: t()) :: Decimal.t()

Returns the amount part of a Money type as a Decimal

 Arguments

	money is any valid Money.t type returned
by Money.new/2

 Returns

	a Decimal.t

 Example

iex> m = Money.new("USD", 100)
iex> Money.to_decimal(m)
#Decimal<100>

 Link to this function

 to_integer_exp(money, opts \\ [])

 View Source

Returns a tuple comprising the currency code, integer amount,
exponent and remainder
Some services require submission of money items as an integer
with an implied exponent that is appropriate to the currency.
Rather than return only the integer, Money.to_integer_exp
returns the currency code, integer, exponent and remainder.
The remainder is included because to return an integer
money with an implied exponent the Money has to be rounded
potentially leaving a remainder.

 Options

	money is any Money.t struct returned by Cldr.Currency.new/2

 Notes

	Since the returned integer is expected to have the implied fractional
digits the Money needs to be rounded which is what this function does.

 Example

iex> m = Money.new(:USD, "200.012356")
#Money<:USD, 200.012356>
iex> Money.to_integer_exp(m)
{:USD, 20001, -2, Money.new(:USD, "0.002356")}

iex> m = Money.new(:USD, "200.00")
#Money<:USD, 200.00>
iex> Money.to_integer_exp(m)
{:USD, 20000, -2, Money.new(:USD, "0.00")}

 Link to this function

 to_string(money, options \\ [])

 View Source

 Specs

 to_string(t(), Keyword.t() | Cldr.Number.Format.Options.t()) ::
 {:ok, String.t()} | {:error, {atom(), String.t()}}

Returns a formatted string representation of a Money{}.
Formatting is performed according to the rules defined by CLDR. See
Cldr.Number.to_string/2 for formatting options. The default is to format
as a currency which applies the appropriate rounding and fractional digits
for the currency.

 Arguments

	money is any valid Money.t type returned
by Money.new/2

	options is a keyword list of options or a %Cldr.Number.Format.Options{} struct

 Returns

	{:ok, string} or

	{:error, reason}

 Options

	:backend is any CLDR backend module. The default is
Money.default_backend().

	Any other options are passed to Cldr.Number.to_string/3

 Examples

iex> Money.to_string Money.new(:USD, 1234)
{:ok, "$1,234.00"}

iex> Money.to_string Money.new(:JPY, 1234)
{:ok, "¥1,234"}

iex> Money.to_string Money.new(:THB, 1234)
{:ok, "THB 1,234.00"}

iex> Money.to_string Money.new(:THB, 1234, fractional_digits: 4)
{:ok, "THB 1,234.0000"}

iex> Money.to_string Money.new(:USD, 1234), format: :long
{:ok, "1,234 US dollars"}

 Link to this function

 to_string!(money, options \\ [])

 View Source

 Specs

 to_string!(t(), Keyword.t() | Cldr.Number.Format.Options.t()) ::
 String.t() | no_return()

Returns a formatted string representation of a Money.t or raises if
there is an error.
Formatting is performed according to the rules defined by CLDR. See
Cldr.Number.to_string!/2 for formatting options. The default is to format
as a currency which applies the appropriate rounding and fractional digits
for the currency.

 Arguments

	money is any valid Money.t type returned
by Money.new/2

	options is a keyword list of options or a %Cldr.Number.Format.Options{} struct

 Options

	:backend is any CLDR backend module. The default is
Money.default_backend().

	Any other options are passed to Cldr.Number.to_string/3

 Examples

iex> Money.to_string! Money.new(:USD, 1234)
"$1,234.00"

iex> Money.to_string! Money.new(:JPY, 1234)
"¥1,234"

iex> Money.to_string! Money.new(:THB, 1234)
"THB 1,234.00"

iex> Money.to_string! Money.new(:USD, 1234), format: :long
"1,234 US dollars"

 Link to this function

 validate_currency(currency_code)

 View Source

See Cldr.validate_currency/1.

 Link to this function

 zero(money_or_currency, options \\ [])

 View Source

Return a zero amount t:Money in the given currency.

 Arguments

	money_or_currency is either a t:Money or
a currency code

	options is a keyword list of options passed
to Money.new/3. The default is [].

 Example

iex> Money.zero(:USD)
#Money<:USD, 0>

iex> money = Money.new(:USD, 200)
iex> Money.zero(money)
#Money<:USD, 0>

iex> Money.zero :ZZZ
{:error, {Cldr.UnknownCurrencyError, "The currency :ZZZ is invalid"}}

Money.Application

 Anchor for this section

 Summary

 Functions

 start(type, args)

 Callback implementation for Application.start/2.

 Anchor for this section

Functions

 Link to this function

 start(type, args)

 View Source

Callback implementation for Application.start/2.

Money.Currency

Functions to return lists of known, historic and
legal tender currencies.

 Anchor for this section

 Summary

 Functions

 currency_for_code(code)

 known_current_currencies()

 Returns the list of currently active ISO 4217 currency codes.

 known_historic_currencies()

 Returns the list of historic ISO 4217 currency codes.

 known_tender_currencies()

 Returns the list of legal tender ISO 4217 currency codes.

 Anchor for this section

Functions

 Link to this function

 currency_for_code(code)

 View Source

 Link to this function

 known_current_currencies()

 View Source

Returns the list of currently active ISO 4217 currency codes.

 Example:

iex> Money.Currency.known_current_currencies
[:AED, :AFN, :ALL, :AMD, :ANG, :AOA, :ARS, :AUD, :AWG, :AZN, :BAM, :BBD, :BDT,
 :BGN, :BHD, :BIF, :BMD, :BND, :BOB, :BOV, :BRL, :BSD, :BTN, :BWP, :BYN, :BZD,
 :CAD, :CDF, :CHE, :CHF, :CHW, :CLF, :CLP, :CNY, :COP, :COU, :CRC, :CUC, :CUP,
 :CVE, :CZK, :DJF, :DKK, :DOP, :DZD, :EGP, :ERN, :ETB, :EUR, :FJD, :FKP, :GBP,
 :GEL, :GHS, :GIP, :GMD, :GNF, :GTQ, :GYD, :HKD, :HNL, :HRK, :HTG, :HUF, :IDR,
 :ILS, :INR, :IQD, :IRR, :ISK, :JMD, :JOD, :JPY, :KES, :KGS, :KHR, :KMF, :KPW,
 :KRW, :KWD, :KYD, :KZT, :LAK, :LBP, :LKR, :LRD, :LSL, :LYD, :MAD, :MDL, :MGA,
 :MKD, :MMK, :MNT, :MOP, :MRU, :MUR, :MVR, :MWK, :MXN, :MXV, :MYR, :MZN, :NAD,
 :NGN, :NIO, :NOK, :NPR, :NZD, :OMR, :PAB, :PEN, :PGK, :PHP, :PKR, :PLN, :PYG,
 :QAR, :RON, :RSD, :RUB, :RWF, :SAR, :SBD, :SCR, :SDG, :SEK, :SGD, :SHP, :SLL,
 :SOS, :SRD, :SSP, :STN, :SVC, :SYP, :SZL, :THB, :TJS, :TMT, :TND, :TOP, :TRY,
 :TTD, :TWD, :TZS, :UAH, :UGX, :USD, :USN, :UYI, :UYU, :UYW, :UZS, :VES, :VND,
 :VUV, :WST, :XAF, :XAG, :XAU, :XBA, :XBB, :XBC, :XBD, :XCD, :XDR, :XOF, :XPD,
 :XPF, :XPT, :XSU, :XTS, :XUA, :XXX, :YER, :ZAR, :ZMW, :ZWL]

 Link to this function

 known_historic_currencies()

 View Source

Returns the list of historic ISO 4217 currency codes.

 Example:

iex> Money.Currency.known_historic_currencies
[:ADP, :AFA, :ALK, :AOK, :AON, :AOR, :ARA, :ARL, :ARM, :ARP, :ATS, :AZM, :BAD,
 :BAN, :BEC, :BEF, :BEL, :BGL, :BGM, :BGO, :BOL, :BOP, :BRB, :BRC, :BRE, :BRN,
 :BRR, :BRZ, :BUK, :BYB, :BYR, :CLE, :CNH, :CNX, :CSD, :CSK, :CYP, :DDM, :DEM,
 :ECS, :ECV, :EEK, :ESA, :ESB, :ESP, :FIM, :FRF, :GEK, :GHC, :GNS, :GQE, :GRD,
 :GWE, :GWP, :HRD, :IEP, :ILP, :ILR, :ISJ, :ITL, :KRH, :KRO, :LTL, :LTT, :LUC,
 :LUF, :LUL, :LVL, :LVR, :MAF, :MCF, :MDC, :MGF, :MKN, :MLF, :MRO, :MTL, :MTP,
 :MVP, :MXP, :MZE, :MZM, :NIC, :NLG, :PEI, :PES, :PLZ, :PTE, :RHD, :ROL, :RUR,
 :SDD, :SDP, :SIT, :SKK, :SRG, :STD, :SUR, :TJR, :TMM, :TPE, :TRL, :UAK, :UGS,
 :USS, :UYP, :VEB, :VEF, :VNN, :XEU, :XFO, :XFU, :XRE, :YDD, :YUD, :YUM, :YUN,
 :YUR, :ZAL, :ZMK, :ZRN, :ZRZ, :ZWD, :ZWR]

 Link to this function

 known_tender_currencies()

 View Source

Returns the list of legal tender ISO 4217 currency codes.

 Example:

iex> Money.Currency.known_tender_currencies
[:ADP, :AED, :AFA, :AFN, :ALK, :ALL, :AMD, :ANG, :AOA, :AOK, :AON, :AOR, :ARA,
 :ARL, :ARM, :ARP, :ARS, :ATS, :AUD, :AWG, :AZM, :AZN, :BAD, :BAM, :BAN, :BBD,
 :BDT, :BEC, :BEF, :BEL, :BGL, :BGM, :BGN, :BGO, :BHD, :BIF, :BMD, :BND, :BOB,
 :BOL, :BOP, :BOV, :BRB, :BRC, :BRE, :BRL, :BRN, :BRR, :BRZ, :BSD, :BTN, :BUK,
 :BWP, :BYB, :BYN, :BYR, :BZD, :CAD, :CDF, :CHE, :CHF, :CHW, :CLE, :CLF, :CLP,
 :CNH, :CNX, :CNY, :COP, :COU, :CRC, :CSD, :CSK, :CUC, :CUP, :CVE, :CYP, :CZK,
 :DDM, :DEM, :DJF, :DKK, :DOP, :DZD, :ECS, :ECV, :EEK, :EGP, :ERN, :ESA, :ESB,
 :ESP, :ETB, :EUR, :FIM, :FJD, :FKP, :FRF, :GBP, :GEK, :GEL, :GHC, :GHS, :GIP,
 :GMD, :GNF, :GNS, :GQE, :GRD, :GTQ, :GWE, :GWP, :GYD, :HKD, :HNL, :HRD, :HRK,
 :HTG, :HUF, :IDR, :IEP, :ILP, :ILR, :ILS, :INR, :IQD, :IRR, :ISJ, :ISK, :ITL,
 :JMD, :JOD, :JPY, :KES, :KGS, :KHR, :KMF, :KPW, :KRH, :KRO, :KRW, :KWD, :KYD,
 :KZT, :LAK, :LBP, :LKR, :LRD, :LSL, :LTL, :LTT, :LUC, :LUF, :LUL, :LVL, :LVR,
 :LYD, :MAD, :MAF, :MCF, :MDC, :MDL, :MGA, :MGF, :MKD, :MKN, :MLF, :MMK, :MNT,
 :MOP, :MRO, :MRU, :MTL, :MTP, :MUR, :MVP, :MVR, :MWK, :MXN, :MXP, :MXV, :MYR,
 :MZE, :MZM, :MZN, :NAD, :NGN, :NIC, :NIO, :NLG, :NOK, :NPR, :NZD, :OMR, :PAB,
 :PEI, :PEN, :PES, :PGK, :PHP, :PKR, :PLN, :PLZ, :PTE, :PYG, :QAR, :RHD, :ROL,
 :RON, :RSD, :RUB, :RUR, :RWF, :SAR, :SBD, :SCR, :SDD, :SDG, :SDP, :SEK, :SGD,
 :SHP, :SIT, :SKK, :SLL, :SOS, :SRD, :SRG, :SSP, :STD, :STN, :SUR, :SVC, :SYP,
 :SZL, :THB, :TJR, :TJS, :TMM, :TMT, :TND, :TOP, :TPE, :TRL, :TRY, :TTD, :TWD,
 :TZS, :UAH, :UAK, :UGS, :UGX, :USD, :USN, :USS, :UYI, :UYP, :UYU, :UYW, :UZS,
 :VEB, :VEF, :VES, :VND, :VNN, :VUV, :WST, :XAF, :XAG, :XAU, :XBA, :XBB, :XBC,
 :XBD, :XCD, :XDR, :XEU, :XFO, :XFU, :XOF, :XPD, :XPF, :XPT, :XRE, :XSU, :XTS,
 :XUA, :XXX, :YDD, :YER, :YUD, :YUM, :YUN, :YUR, :ZAL, :ZAR, :ZMK, :ZMW, :ZRN,
 :ZRZ, :ZWD, :ZWL, :ZWR]

Money.Financial

A set of financial functions, primarily related to discounted cash flows.
Some of the algorithms are from finance formulas

 Anchor for this section

 Summary

 Functions

 future_value(flows, interest_rate)

 Calculates the future value for a list of cash flows and an interest rate.

 future_value(money, interest_rate, periods)

 Calculates the future value for a present value, an interest rate
and a number of periods.

 interest_rate(present_value, future_value, periods)

 Calculates the effective interest rate for a given present value,
a future value and a number of periods.

 internal_rate_of_return(flows)

 Calculates the interal rate of return for a given list of cash flows.

 net_present_value(flows, interest_rate)

 Calculates the net present value of an initial investment, a list of
cash flows and an interest rate.

 net_present_value(flows, interest_rate, investment)

 Calculates the net present value of an initial investment, a recurring
payment, an interest rate and a number of periods

 net_present_value(future_value, interest_rate, periods, investment)

 payment(present_value, interest_rate, periods)

 Calculates the payment for a given loan or annuity given a
present value, an interest rate and a number of periods.

 periods(present_value, future_value, interest_rate)

 Calculates the number of periods between a present value and
a future value with a given interest rate.

 present_value(flows, interest_rate)

 Calculates the present value for a list of cash flows and an interest rate.

 present_value(money, interest_rate, periods)

 Calculates the present value for future value, an interest rate
and a number of periods

 Anchor for this section

Functions

 Link to this function

 future_value(flows, interest_rate)

 View Source

 Specs

 future_value([{number(), Money.t()}], number()) :: Money.t()

Calculates the future value for a list of cash flows and an interest rate.
	flows is a list of tuples representing a cash flow. Each flow is
represented as a tuple of the form {period, %Money{}}

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

 Example

iex> Money.Financial.future_value([{4, Money.new(:USD, 10000)}, {5, Money.new(:USD, 10000)}, {6, Money.new(:USD, 10000)}], 0.13)
#Money<:USD, 34068.99999999999999999999999>

iex> Money.Financial.future_value [{0, Money.new(:USD, 5000)},{1, Money.new(:USD, 2000)}], 0.12
#Money<:USD, 7600.000000000000000000000000>

 Link to this function

 future_value(money, interest_rate, periods)

 View Source

 Specs

 future_value(Money.t(), number(), number()) :: Money.t()

Calculates the future value for a present value, an interest rate
and a number of periods.
	present_value is a %Money{} representation of the present value

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

	periods in an integer number of periods

 Examples

iex> Money.Financial.future_value Money.new(:USD, 10000), 0.08, 1
#Money<:USD, 10800.00>

iex> Money.Financial.future_value Money.new(:USD, 10000), 0.04, 2
#Money<:USD, 10816.0000>

iex> Money.Financial.future_value Money.new(:USD, 10000), 0.02, 4
#Money<:USD, 10824.32160000>

 Link to this function

 interest_rate(present_value, future_value, periods)

 View Source

 Specs

 interest_rate(Money.t(), Money.t(), number()) :: Decimal.t()

Calculates the effective interest rate for a given present value,
a future value and a number of periods.
	present_value is a %Money{} representation of the present value

	future_value is a %Money{} representation of the future value

	periods is an integer number of a period

 Examples

iex> Money.Financial.interest_rate Money.new(:USD, 10000), Money.new(:USD, 10816), 2
#Decimal<0.04>

iex> Money.Financial.interest_rate Money.new(:USD, 10000), Money.new(:USD, "10824.3216"), 4
#Decimal<0.02>

 Link to this function

 internal_rate_of_return(flows)

 View Source

 Specs

 internal_rate_of_return([{integer(), Money.t()}]) :: number()

Calculates the interal rate of return for a given list of cash flows.
	flows is a list of tuples representing a cash flow. Each flow is
represented as a tuple of the form {period, %Money{}}

 Link to this function

 net_present_value(flows, interest_rate)

 View Source

 Specs

 net_present_value([{integer(), Money.t()}], number()) :: Money.t()

Calculates the net present value of an initial investment, a list of
cash flows and an interest rate.
	flows is a list of tuples representing a cash flow. Each flow is
represented as a tuple of the form {period, %Money{}}

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

	investment is a %Money{} struct representing the initial investment

 Example

iex> flows = [{0, Money.new(:USD, 5000)},{1, Money.new(:USD, 2000)},{2, Money.new(:USD, 500)},{3, Money.new(:USD,10_000)}]
iex> Money.Financial.net_present_value flows, 0.08, Money.new(:USD, 100)
#Money<:USD, 15118.84367220444038002337042>
iex> Money.Financial.net_present_value flows, 0.08
#Money<:USD, 15218.84367220444038002337042>

 Link to this function

 net_present_value(flows, interest_rate, investment)

 View Source

 Specs

 net_present_value([{integer(), Money.t()}], number(), Money.t()) :: Money.t()

 net_present_value(Money.t(), number(), number()) :: Money.t()

Calculates the net present value of an initial investment, a recurring
payment, an interest rate and a number of periods
	investment is a %Money{} struct representing the initial investment

	future_value is a %Money{} representation of the future value

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

	periods in an integer number of a period

 Example

iex> Money.Financial.net_present_value Money.new(:USD, 10000), 0.13, 2
#Money<:USD, 7831.466833737959119743127888>

iex> Money.Financial.net_present_value Money.new(:USD, 10000), 0.13, 2, Money.new(:USD, 100)
#Money<:USD, 7731.466833737959119743127888>

 Link to this function

 net_present_value(future_value, interest_rate, periods, investment)

 View Source

 Specs

 net_present_value(Money.t(), number(), number(), Money.t()) :: Money.t()

 Link to this function

 payment(present_value, interest_rate, periods)

 View Source

 Specs

 payment(Money.t(), float(), number()) :: Money.t()

Calculates the payment for a given loan or annuity given a
present value, an interest rate and a number of periods.
	present_value is a %Money{} representation of the present value

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

	periods is an integer number of periods

 Example

iex> Money.Financial.payment Money.new(:USD, 100), 0.12, 20
#Money<:USD, 13.38787800396606622792492299>

 Link to this function

 periods(present_value, future_value, interest_rate)

 View Source

 Specs

 periods(Money.t(), Money.t(), float()) :: Decimal.t()

Calculates the number of periods between a present value and
a future value with a given interest rate.
	present_value is a %Money{} representation of the present value

	future_value is a %Money{} representation of the future value

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

 Example

iex> Money.Financial.periods Money.new(:USD, 1500), Money.new(:USD, 2000), 0.005
#Decimal<57.68013595323872502502238648>

 Link to this function

 present_value(flows, interest_rate)

 View Source

 Specs

 present_value([{integer(), Money.t()}], number()) :: Money.t()

Calculates the present value for a list of cash flows and an interest rate.
	flows is a list of tuples representing a cash flow. Each flow is
represented as a tuple of the form {period, %Money{}}

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

 Example

iex> Money.Financial.present_value([{4, Money.new(:USD, 10000)}, {5, Money.new(:USD, 10000)}, {6, Money.new(:USD, 10000)}], 0.13)
#Money<:USD, 16363.97191111964880256655144>

iex> Money.Financial.present_value [{0, Money.new(:USD, -1000)},{1, Money.new(:USD, -4000)}], 0.1
#Money<:USD, -4636.363636363636363636363636>

 Link to this function

 present_value(money, interest_rate, periods)

 View Source

 Specs

 present_value(Money.t(), number(), number()) :: Money.t()

Calculates the present value for future value, an interest rate
and a number of periods
	future_value is a %Money{} representation of the future value

	interest_rate is a float representation of an interest rate. For
example, 12% would be represented as 0.12

	periods in an integer number of periods

 Examples

iex> Money.Financial.present_value Money.new(:USD, 100), 0.08, 2
#Money<:USD, 85.73388203017832647462277092>

iex> Money.Financial.present_value Money.new(:USD, 1000), 0.10, 20
#Money<:USD, 148.6436280241436864020760472>

Money.Sigil

 Anchor for this section

 Summary

 Functions

 sigil_M(amount, currency)

 Implements the sigil ~M for Money

 validate_currency!(currency)

 Anchor for this section

Functions

 Link to this function

 sigil_M(amount, currency)

 View Source

 Specs

 sigil_M(binary(), list()) :: Money.t() | {:error, {Exception.t(), String.t()}}

Implements the sigil ~M for Money
The lower case ~m variant does not exist as interpolation and excape
characters are not useful for Money sigils.

 Example

iex> import Money.Sigil
iex> ~M[1000]usd
#Money<:USD, 1000>
iex> ~M[1000.34]usd
#Money<:USD, 1000.34>

 Link to this function

 validate_currency!(currency)

 View Source

Money.ExchangeRates behaviour

Implements a behaviour and functions to retrieve exchange rates
from an exchange rate service.
Configuration for the exchange rate service is defined
in a Money.ExchangeRates.Config struct. A default
configuration is returned by Money.ExchangeRates.default_config/0.
The default configuration is:
config :ex_money,
 exchange_rate_service: false,
 exchange_rates_retrieve_every: 300_000,
 api_module: Money.ExchangeRates.OpenExchangeRates,
 callback_module: Money.ExchangeRates.Callback,
 preload_historic_rates: nil
 log_failure: :warn,
 log_info: :info,
 log_success: nil
These keys are are defined as follows:
	:exchange_rate_service is a boolean that determines whether to
automatically start the exchange rate retrieval service.
The default it false.

	:exchange_rates_retrieve_every defines how often the exchange
rates are retrieved in milliseconds. The default is 5 minutes
(300,000 milliseconds)

	:api_module identifies the module that does the retrieval of
exchange rates. This is any module that implements the
Money.ExchangeRates behaviour. The default is
Money.ExchangeRates.OpenExchangeRates

	:callback_module defines a module that follows the
Money.ExchangeRates.Callback behaviour whereby the function
rates_retrieved/2 is invoked after every successful retrieval
of exchange rates. The default is Money.ExchangeRates.Callback.

	:preload_historic_rates defines a date or a date range,
that will be requested when the exchange rate service starts up.
The date or date range should be specified as either a Date.t
or a Date.Range.t or a tuple of {Date.t, Date.t} representing
the from and to dates for the rates to be retrieved. The
default is nil meaning no historic rates are preloaded.

	:log_failure defines the log level at which api retrieval
errors are logged. The default is :warn

	:log_success defines the log level at which successful api
retrieval notifications are logged. The default is nil which
means no logging.

	:log_info defines the log level at which service startup messages
are logged. The default is :info.

	:retriever_options is available for exchange rate retriever
module developers as a place to add retriever-specific configuration
information. This information should be added in the init/1
callback in the retriever module. See Money.ExchangeRates.OpenExchangeRates.init/1
for an example.

Keys can also be configured to retrieve values from environment
variables. This lookup is done at runtime to facilitate deployment
strategies. If the value of a configuration key is
{:system, "some_string"} then "some_string" is interpreted as
an environment variable name which is passed to System.get_env/2.
An example configuration might be:
config :ex_money,
 exchange_rate_service: {:system, "RATE_SERVICE"},
 exchange_rates_retrieve_every: {:system, "RETRIEVE_EVERY"},
Open Exchange Rates
If you plan to use the provided Open Exchange Rates module
to retrieve exchange rates then you should also provide the additional
configuration key for app_id:
config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
or configure it via environment variable:
config :ex_money,
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
The default exchange rate retrieval module is provided in
Money.ExchangeRates.OpenExchangeRates which can be used
as a example to implement your own retrieval module for
other services.
Managing the configuration at runtime
During exchange rate service startup, the function init/1 is called
on the configuration exchange rate retrieval module. This module is
expected to return an updated configuration allowing a developer to
customise how the configuration is to be managed. See the implementation
at Money.ExchangeRates.OpenExchangeRates.init/1 for an example.

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 decode_rates(any)

 Decode the body returned from the API request and
return a map of rates. THe map of rates must have
an upcased atom key representing an ISO 4217 currency
code and the value must be a Decimal number.

 get_historic_rates(t, config)

 Invoked to return the historic exchange rates from the configured
exchange rate retrieval service.

 get_latest_rates(config)

 Invoked to return the latest exchange rates from the configured
exchange rate retrieval service.

 init(config)

 Given the default configuration, returns an updated configuration at runtime
during exchange rates service startup.

 Functions

 config()

 Returns the configuration for ex_money including the
configuration merged from the configured exchange rates
retriever module.

 default_config()

 Returns the default configuration for the exchange rates retriever.

 historic_rates(date)

 Return historic exchange rates.

 last_updated()

 Return the timestamp of the last successful retrieval of exchange rates or
{:error, reason} if no timestamp is known.

 latest_rates()

 Return the latest exchange rates.

 latest_rates_available?()

 Returns true if the latest exchange rates are available
and false otherwise.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %{required(Money.currency_code()) => Decimal.t()}

 Anchor for this section

Callbacks

 Link to this callback

 decode_rates(any)

 View Source

 Specs

 decode_rates(any()) :: map()

Decode the body returned from the API request and
return a map of rates. THe map of rates must have
an upcased atom key representing an ISO 4217 currency
code and the value must be a Decimal number.

 Link to this callback

 get_historic_rates(t, config)

 View Source

 Specs

 get_historic_rates(Date.t(), config :: Money.ExchangeRates.Config.t()) ::
 {:ok, map()} | {:error, binary()}

Invoked to return the historic exchange rates from the configured
exchange rate retrieval service.
	config is an %Money.ExchangeRataes.Config{} struct

Returns {:ok, map_of_historic_rates} or {:error, reason}

 Link to this callback

 get_latest_rates(config)

 View Source

 Specs

 get_latest_rates(config :: Money.ExchangeRates.Config.t()) ::
 {:ok, map()} | {:error, binary()}

Invoked to return the latest exchange rates from the configured
exchange rate retrieval service.
	config is an %Money.ExchangeRataes.Config{} struct

Returns {:ok, map_of_rates} or {:error, reason}

 Link to this callback

 init(config)

 View Source

 (optional)

 Specs

 init(config :: Money.ExchangeRates.Config.t()) :: Money.ExchangeRates.Config.t()

Given the default configuration, returns an updated configuration at runtime
during exchange rates service startup.
This callback is optional. If the callback is not defined, the default
configuration returned by Money.ExchangeRates.default_config/0 is used.
	config is the configuration returned by Money.ExchangeRates.default_config/0

The callback is expected to return a %Money.ExchangeRates.Config.t() struct
which may have been updated. The configuration key :retriever_options is
available for any service-specific configuration.

 Anchor for this section

Functions

 Link to this function

 config()

 View Source

Returns the configuration for ex_money including the
configuration merged from the configured exchange rates
retriever module.

 Link to this function

 default_config()

 View Source

Returns the default configuration for the exchange rates retriever.

 Link to this function

 historic_rates(date)

 View Source

 Specs

 historic_rates(Date.t()) :: {:ok, map()} | {:error, {Exception.t(), binary()}}

Return historic exchange rates.
	date is a date returned by Date.new/3 or any struct with the
elements :year, :month and :day.

Returns:
	{:ok, rates} if exchange rates are successfully retrieved. rates is a map of
exchange rates.

	{:error, reason} if no exchange rates can be returned.

Note; all dates are expected to be in the Calendar.ISO calendar
This function looks up the historic exchange rates in a an ETS table
called :exchange_rates. The actual retrieval of rates is requested
through Money.ExchangeRates.Retriever.historic_rates/1.

 Link to this function

 last_updated()

 View Source

 Specs

 last_updated() :: {:ok, DateTime.t()} | {:error, {Exception.t(), binary()}}

Return the timestamp of the last successful retrieval of exchange rates or
{:error, reason} if no timestamp is known.

 Example

Money.ExchangeRates.last_updated
#> {:ok,
 %DateTime{calendar: Calendar.ISO, day: 20, hour: 12, microsecond: {731942, 6},
 minute: 36, month: 11, second: 6, std_offset: 0, time_zone: "Etc/UTC",
 utc_offset: 0, year: 2016, zone_abbr: "UTC"}}

 Link to this function

 latest_rates()

 View Source

 Specs

 latest_rates() :: {:ok, map()} | {:error, {Exception.t(), binary()}}

Return the latest exchange rates.
Returns:
	{:ok, rates} if exchange rates are successfully retrieved. rates is a map of
exchange rates.

	{:error, reason} if no exchange rates can be returned.

This function looks up the latest exchange rates in a an ETS table
called :exchange_rates. The actual retrieval of rates is requested
through Money.ExchangeRates.Retriever.latest_rates/0.

 Link to this function

 latest_rates_available?()

 View Source

 Specs

 latest_rates_available?() :: boolean()

Returns true if the latest exchange rates are available
and false otherwise.

Money.ExchangeRates.Cache behaviour

Defines a cache behaviour and default inplementation
of a cache for exchange rates

 Anchor for this section

 Summary

 Callbacks

 historic_rates(t)

 Returns the exchange rates for a given
date.

 init()

 Initialize the cache when the exchange rates
retriever is started

 latest_rates()

 Retrieve the latest exchange rates from the
cache.

 store_historic_rates(map, t)

 Store the historic exchange rates for a given
date in the cache.

 store_latest_rates(map, t)

 Store the latest exchange rates in the cache.

 terminate()

 Terminate the cache when the retriver process
stops normally

 Functions

 cache()

 historic_rates(date)

 latest_rates()

 Anchor for this section

Callbacks

 Link to this callback

 historic_rates(t)

 View Source

 Specs

 historic_rates(Date.t()) :: {:ok, map()} | {:error, {Exception.t(), String.t()}}

Returns the exchange rates for a given
date.

 Link to this callback

 init()

 View Source

 Specs

 init() :: any()

Initialize the cache when the exchange rates
retriever is started

 Link to this callback

 latest_rates()

 View Source

 Specs

 latest_rates() :: {:ok, map()} | {:error, {Exception.t(), String.t()}}

Retrieve the latest exchange rates from the
cache.

 Link to this callback

 store_historic_rates(map, t)

 View Source

 Specs

 store_historic_rates(map(), Date.t()) :: :ok

Store the historic exchange rates for a given
date in the cache.

 Link to this callback

 store_latest_rates(map, t)

 View Source

 Specs

 store_latest_rates(map(), DateTime.t()) :: :ok

Store the latest exchange rates in the cache.

 Link to this callback

 terminate()

 View Source

 Specs

 terminate() :: any()

Terminate the cache when the retriver process
stops normally

 Anchor for this section

Functions

 Link to this function

 cache()

 View Source

 Link to this function

 historic_rates(date)

 View Source

 Link to this function

 latest_rates()

 View Source

Money.ExchangeRates.Cache.Dets

Money.ExchangeRates.Cache implementation for
:dets

 Anchor for this section

 Summary

 Functions

 get(key)

 historic_rates(date)

 Callback implementation for Money.ExchangeRates.Cache.historic_rates/1.

 init()

 Callback implementation for Money.ExchangeRates.Cache.init/0.

 last_updated()

 latest_rates()

 Callback implementation for Money.ExchangeRates.Cache.latest_rates/0.

 put(key, value)

 store_historic_rates(rates, date)

 Callback implementation for Money.ExchangeRates.Cache.store_historic_rates/2.

 store_latest_rates(rates, retrieved_at)

 Callback implementation for Money.ExchangeRates.Cache.store_latest_rates/2.

 terminate()

 Callback implementation for Money.ExchangeRates.Cache.terminate/0.

 Anchor for this section

Functions

 Link to this function

 get(key)

 View Source

 Link to this function

 historic_rates(date)

 View Source

Callback implementation for Money.ExchangeRates.Cache.historic_rates/1.

 Link to this function

 init()

 View Source

Callback implementation for Money.ExchangeRates.Cache.init/0.

 Link to this function

 last_updated()

 View Source

 Link to this function

 latest_rates()

 View Source

Callback implementation for Money.ExchangeRates.Cache.latest_rates/0.

 Link to this function

 put(key, value)

 View Source

 Link to this function

 store_historic_rates(rates, date)

 View Source

Callback implementation for Money.ExchangeRates.Cache.store_historic_rates/2.

 Link to this function

 store_latest_rates(rates, retrieved_at)

 View Source

Callback implementation for Money.ExchangeRates.Cache.store_latest_rates/2.

 Link to this function

 terminate()

 View Source

Callback implementation for Money.ExchangeRates.Cache.terminate/0.

Money.ExchangeRates.Cache.Ets

Money.ExchangeRates.Cache implementation for
:ets and :dets

 Anchor for this section

 Summary

 Functions

 get(key)

 historic_rates(date)

 Callback implementation for Money.ExchangeRates.Cache.historic_rates/1.

 init()

 Callback implementation for Money.ExchangeRates.Cache.init/0.

 last_updated()

 latest_rates()

 Callback implementation for Money.ExchangeRates.Cache.latest_rates/0.

 put(key, value)

 store_historic_rates(rates, date)

 Callback implementation for Money.ExchangeRates.Cache.store_historic_rates/2.

 store_latest_rates(rates, retrieved_at)

 Callback implementation for Money.ExchangeRates.Cache.store_latest_rates/2.

 terminate()

 Callback implementation for Money.ExchangeRates.Cache.terminate/0.

 Anchor for this section

Functions

 Link to this function

 get(key)

 View Source

 Link to this function

 historic_rates(date)

 View Source

Callback implementation for Money.ExchangeRates.Cache.historic_rates/1.

 Link to this function

 init()

 View Source

Callback implementation for Money.ExchangeRates.Cache.init/0.

 Link to this function

 last_updated()

 View Source

 Link to this function

 latest_rates()

 View Source

Callback implementation for Money.ExchangeRates.Cache.latest_rates/0.

 Link to this function

 put(key, value)

 View Source

 Link to this function

 store_historic_rates(rates, date)

 View Source

Callback implementation for Money.ExchangeRates.Cache.store_historic_rates/2.

 Link to this function

 store_latest_rates(rates, retrieved_at)

 View Source

Callback implementation for Money.ExchangeRates.Cache.store_latest_rates/2.

 Link to this function

 terminate()

 View Source

Callback implementation for Money.ExchangeRates.Cache.terminate/0.

Money.ExchangeRates.Cache.EtsDets

 Anchor for this section

 Summary

 Functions

 define_common_functions()

 Anchor for this section

Functions

 Link to this macro

 define_common_functions()

 View Source

 (macro)

Money.ExchangeRates.Callback behaviour

Default exchange rates retrieval callback module.
When exchange rates are successfully retrieved, the function
latest_rates_retrieved/2 or historic_rates_retrieved/2 is
called to perform any desired serialization or proocessing.

 Anchor for this section

 Summary

 Callbacks

 historic_rates_retrieved(map, t)

 Defines the behaviour to retrieve historic exchange rates from an external
data source.

 latest_rates_retrieved(map, t)

 Defines the behaviour to retrieve the latest exchange rates from an external
data source.

 Functions

 historic_rates_retrieved(rates, date)

 Callback function invoked when historic exchange rates are retrieved.

 latest_rates_retrieved(rates, retrieved_at)

 Callback function invoked when the latest exchange rates are retrieved.

 Anchor for this section

Callbacks

 Link to this callback

 historic_rates_retrieved(map, t)

 View Source

 Specs

 historic_rates_retrieved(%{}, Date.t()) :: :ok

Defines the behaviour to retrieve historic exchange rates from an external
data source.

 Link to this callback

 latest_rates_retrieved(map, t)

 View Source

 Specs

 latest_rates_retrieved(%{}, DateTime.t()) :: :ok

Defines the behaviour to retrieve the latest exchange rates from an external
data source.

 Anchor for this section

Functions

 Link to this function

 historic_rates_retrieved(rates, date)

 View Source

 Specs

 historic_rates_retrieved(%{}, Date.t()) :: :ok

Callback function invoked when historic exchange rates are retrieved.

 Link to this function

 latest_rates_retrieved(rates, retrieved_at)

 View Source

 Specs

 latest_rates_retrieved(%{}, DateTime.t()) :: :ok

Callback function invoked when the latest exchange rates are retrieved.

Money.ExchangeRates.Config

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Money.ExchangeRates.Config{
 api_module: module() | nil,
 cache_module: module() | nil,
 callback_module: module() | nil,
 log_levels: map(),
 preload_historic_rates:
 Date.t() | Date.Range.t() | {Date.t(), Date.t()} | nil,
 retrieve_every: non_neg_integer() | nil,
 retriever_options: map() | nil,
 verify_peer: boolean()
}

Money.ExchangeRates.OpenExchangeRates

Implements the Money.ExchangeRates for the Open Exchange
Rates service.
Required configuration:
The configuration key :open_exchange_rates_app_id should be
set to your app_id. for example:
config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
or configure it via environment variable:
config :ex_money,
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
It is also possible to configure an alternative base url for this
service in case it changes in the future. For example:
config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
 open_exchange_rates_url: "https://openexchangerates.org/alternative_api"

 Anchor for this section

 Summary

 Functions

 decode_rates(body)

 Callback implementation for Money.ExchangeRates.decode_rates/1.

 get_historic_rates(date, config)

 Retrieves the historic exchange rates from Open Exchange Rates site.

 get_latest_rates(config)

 Retrieves the latest exchange rates from Open Exchange Rates site.

 init(default_config)

 Update the retriever configuration to include the requirements
for Open Exchange Rates. This function is invoked when the
exchange rate service starts up, just after the ets table
:exchange_rates is created.

 Anchor for this section

Functions

 Link to this function

 decode_rates(body)

 View Source

Callback implementation for Money.ExchangeRates.decode_rates/1.

 Link to this function

 get_historic_rates(date, config)

 View Source

Retrieves the historic exchange rates from Open Exchange Rates site.
	date is a date returned by Date.new/3 or any struct with the
elements :year, :month and :day.

	config is the retrieval configuration. When invoked from the
exchange rates services this will be the config returned from
Money.ExchangeRates.config/0

Returns:
	{:ok, rates} if the rates can be retrieved

	{:error, reason} if rates cannot be retrieved

Typically this function is called by the exchange rates retrieval
service although it can be called outside that context as
required.

 Link to this function

 get_latest_rates(config)

 View Source

 Specs

 get_latest_rates(Money.ExchangeRates.Config.t()) ::
 {:ok, map()} | {:error, String.t()}

Retrieves the latest exchange rates from Open Exchange Rates site.
	config is the retrieval configuration. When invoked from the
exchange rates services this will be the config returned from
Money.ExchangeRates.config/0

Returns:
	{:ok, rates} if the rates can be retrieved

	{:error, reason} if rates cannot be retrieved

Typically this function is called by the exchange rates retrieval
service although it can be called outside that context as
required.

 Link to this function

 init(default_config)

 View Source

Update the retriever configuration to include the requirements
for Open Exchange Rates. This function is invoked when the
exchange rate service starts up, just after the ets table
:exchange_rates is created.
	default_config is the configuration returned by Money.ExchangeRates.default_config/0

Returns the configuration either unchanged or updated with
additional configuration specific to this exchange
rates retrieval module.

Money.ExchangeRates.Retriever

Implements a GenServer to retrieve exchange rates from
a configured retrieveal module on a periodic or on demand basis.
By default exchange rates are retrieved from Open Exchange Rates.
The default period of execution is 5 minutes (300_000 milliseconds). The
period of retrieval is configured in config.exs or the appropriate
environment configuration. For example:
config :ex_money,
 retrieve_every: 300_000

 Anchor for this section

 Summary

 Functions

 certificate_store()

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 config()

 Return the current configuration of the Exchange Rates
Retrieval service

 delete()

 Delete the exchange rates retrieval service

 historic_rates(date)

 Forces retrieval of historic exchange rates for a single date

 historic_rates(from, to)

 Forces retrieval of historic exchange rates for a range of dates

 latest_rates()

 Forces retrieval of the latest exchange rates

 reconfigure(config)

 Updated the configuration for the Exchange Rate
Service

 restart()

 Restart the exchange rates retrieval service

 retrieve_rates(url, config)

 Retrieve exchange rates from an external HTTP
service.

 start(config \\ Money.ExchangeRates.config())

 Starts the exchange rates retrieval service

 stop()

 Stop the exchange rates retrieval service.

 Anchor for this section

Functions

 Link to this function

 certificate_store()

 View Source

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 config()

 View Source

Return the current configuration of the Exchange Rates
Retrieval service

 Link to this function

 delete()

 View Source

Delete the exchange rates retrieval service
The service can be started again with start/1

 Link to this function

 historic_rates(date)

 View Source

Forces retrieval of historic exchange rates for a single date
	date is a date returned by Date.new/3 or any struct with the
elements :year, :month and :day or

	a Date.Range.t created by Date.range/2 that specifies a
range of dates to retrieve

Returns:
	{:ok, rates} if exchange rates request is successfully sent.

	{:error, reason} if the request cannot be send.

Sends a message ot the exchange rate retrieval worker to request
historic rates for a specified date or range be retrieved and
stored.
This function does not return exchange rates, for that see
Money.ExchangeRates.latest_rates/0 or
Money.ExchangeRates.historic_rates/1.

 Link to this function

 historic_rates(from, to)

 View Source

Forces retrieval of historic exchange rates for a range of dates
	from is a date returned by Date.new/3 or any struct with the
elements :year, :month and :day.

	to is a date returned by Date.new/3 or any struct with the
elements :year, :month and :day.

Returns:
	{:ok, rates} if exchange rates request is successfully sent.

	{:error, reason} if the request cannot be send.

Sends a message to the exchange rate retrieval process for each
date in the range from..to to request historic rates be
retrieved.

 Link to this function

 latest_rates()

 View Source

Forces retrieval of the latest exchange rates
Sends a message ot the exchange rate retrieval worker to request
current rates be retrieved and stored.
Returns:
	{:ok, rates} if exchange rates request is successfully sent.

	{:error, reason} if the request cannot be send.

This function does not return exchange rates, for that see
Money.ExchangeRates.latest_rates/0 or
Money.ExchangeRates.historic_rates/1.

 Link to this function

 reconfigure(config)

 View Source

Updated the configuration for the Exchange Rate
Service

 Link to this function

 restart()

 View Source

Restart the exchange rates retrieval service

 Link to this function

 retrieve_rates(url, config)

 View Source

Retrieve exchange rates from an external HTTP
service.
This function is primarily intended for use by
an exchange rates api module.

 Link to this function

 start(config \\ Money.ExchangeRates.config())

 View Source

Starts the exchange rates retrieval service

 Link to this function

 stop()

 View Source

Stop the exchange rates retrieval service.
The service can be restarted with restart/0.

Money.ExchangeRates.Supervisor

Functions to manage the starting, stopping,
deleting and restarting of the Exchange
Rates Retriever.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 default_supervisor()

 Returns the name of the default supervisor
which is Money.Supervisor

 delete_retriever()

 Deleted the retriever child specification from
the exchange rates supervisor.

 restart_retriever()

 Restarts a stopped retriever.

 retriever_running?()

 Returns a boolean indicating of the
retriever process is configured and
running

 retriever_status()

 Returns the status of the exchange rates
retriever. The returned value is one of

 start_link()

 Starts the Exchange Rates supervisor and
optionally starts the exchange rates
retrieval service as well.

 start_link(options)

 start_retriever(config \\ ExchangeRates.config())

 Starts the exchange rates retriever

 stop(supervisor \\ default_supervisor())

 Stop the Money.ExchangeRates.Supervisor.

 stop_retriever()

 Stop the exchange rates retriever.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 default_supervisor()

 View Source

Returns the name of the default supervisor
which is Money.Supervisor

 Link to this function

 delete_retriever()

 View Source

Deleted the retriever child specification from
the exchange rates supervisor.
This is primarily of use if you want to change
the configuration of the retriever after it is
stopped and before it is restarted.
In this situation the sequence of calls would be:
iex> Money.ExchangeRates.Retriever.stop
iex> Money.ExchangeRates.Retriever.delete
iex> Money.ExchangeRates.Retriever.start(config)

 Link to this function

 restart_retriever()

 View Source

Restarts a stopped retriever.
See also Money.ExchangeRates.Retriever.stop/0

 Link to this function

 retriever_running?()

 View Source

Returns a boolean indicating of the
retriever process is configured and
running

 Link to this function

 retriever_status()

 View Source

Returns the status of the exchange rates
retriever. The returned value is one of:
	:running if the service is running. In this
state the valid action is Money.ExchangeRates.Service.stop/0
	:stopped if it is stopped. In this state
the valid actions are Money.ExchangeRates.Supervisor.restart_retriever/0
or Money.ExchangeRates.Supervisor.delete_retriever/0
	:not_started if it is not configured
in the supervisor and is not running. In
this state the only valid action is
Money.ExchangeRates.Supervisor.start_retriever/1

 Link to this function

 start_link()

 View Source

Starts the Exchange Rates supervisor and
optionally starts the exchange rates
retrieval service as well.

 Options

	:restart is a boolean value indicating
if the supervisor is to be restarted. This is
typically used to move the supervisor from its
default position under the ex_money supervision
tree to a different supervision tree. The default
is false

	:start_retriever is a boolean indicating
if the exchange rates retriever is to be started
when the supervisor is started. The default is
defined by the configuration key
:auto_start_exchange_rate_service

 Link to this function

 start_link(options)

 View Source

 Link to this function

 start_retriever(config \\ ExchangeRates.config())

 View Source

Starts the exchange rates retriever

 Arguments

	config is a %Money.ExchangeRages.Config{}
struct returned by Money.ExchangeRates.config/0
and adjusted as required. The default is
Money.ExchangeRates.config/0

 Link to this function

 stop(supervisor \\ default_supervisor())

 View Source

Stop the Money.ExchangeRates.Supervisor.
Unless ex_money is configured in mix.exs as
rumtime: false, the Money.ExchangeRates.Supervisor
is always started when ex_money starts even if the
config key :auto_start_exchange_rates_service is
set to false.
In some instances an application may require the
Money.ExchangeRates.Supervisor to be started under
a different supervision tree. In this case it is
required to call this function first before a new
configuration is started.
One use case is when the Exchange Rates service is
configured with either an API module, a Callback module
or a Cache module which uses Ecto and therefore its
a requirement that Ecto is started first.
See the README section on "Using Ecto or other applications
from within the callback module" for an eanple of how
to configure the supervisor in this case.

 Link to this function

 stop_retriever()

 View Source

Stop the exchange rates retriever.

Money.Subscription

Provides functions to create, upgrade and downgrade subscriptions
from one plan to another.
Since moving from one plan to another may require
prorating the payment stream at the point of transition,
this module is introduced to provide a single point of
calculation of the proration in order to give clear focus
to the issues of calculating the carry-over amount or
the carry-over period at the point of plan change.
Defining a subscription
A subscription records this current state and history of
all plans assigned over time to a subscriber. The definition
is deliberately minimal to simplify integration into applications
that have a specific implementation of a subscription.
A new subscription is created with Money.Subscription.new/3
which has the following attributes:
	plan which defines the initial plan for the subscription.
This option is required.

	effective_date which determines the effective date of
the inital plan. This option is required.

	options which include :created_at and :id with which
a subscription may be annotated

Changing a subscription plan
Changing a subscription plan requires the following
information be provided:
	A Subscription or the definition of the current plan

	The definition of the new plan

	The strategy for changing the plan which is either:
	to have the effective date of the new plan be after
the current interval of the current plan
	To change the plan immediately in which case there will
be a credit on the current plan which needs to be applied
to the new plan.

See Money.Subscription.change_plan/3
When the new plan is effective at the end of the current billing period
The first strategy simply finishes the current billing period before
the new plan is introduced and therefore no proration is required.
This is the default strategy.
When the new plan is effective immediately
If the new plan is to be effective immediately then any credit
balance remaining on the old plan needs to be applied to the
new plan. There are two options of applying the credit:
	Reduce the billing amount of the first period of the new plan
be the amount of the credit left on the old plan. This means
that the billing amount for the first period of the new plan
will be different (less) than the billing amount for subsequent
periods on the new plan.

	Extend the first period of the new plan by the interval amount
that can be funded by the credit amount left on the old plan. In
the situation where the credit amount does not fully fund an integral
interval the additional interval can be truncated or rounded up to the next
integral period.

Plan definition
This module, and Money in general, does not provide a full
billing or subscription solution - its focus is to support a reliable
means of calcuating the accounting outcome of a plan change only.
Therefore the plan definition required by Money.Subscription can be
any Map.t that includes the following fields:
	interval which defines the time interval for a plan. The value
can be one of day, week, month or year.

	interval_count which defines the number of intervals for the
current plan interval. This must be a positive integer.

	price which is a Money.t representing the price of the plan
to be paid each interval count.

Billing in advance
This module calculates all subscription changes on the basis
that billing is done in advance. This primarily affects the
calculation of plan credit when a plan changes. The assumption
is that the period from the start of the current interval to
the point of change has been consumed and therefore the credit
is based upon that period of the plan that has not yet been
consumed.
If the calculation was based upon "payment in arrears" then
the credit would actually be a debit since the part of the
current period consumed has not yet been paid.

 Anchor for this section

 Summary

 Types

 id()

 An id that uniquely identifies a subscription

 t()

 A Money.Subscription type

 Functions

 %Money.Subscription{}

 A struct defining a subscription

 cancel_pending_plan(subscription, options \\ [])

 Cancel a subscription's pending plan.

 change_plan(subscription_or_plan, new_plan, options \\ [])

 Change plan from the current plan to a new plan.

 change_plan!(subscription_or_plan, new_plan, options \\ [])

 Change plan from the current plan to a new plan.

 current_interval_start_date(subscription_or_changeset, options \\ [])

 Returns the first date of the current interval of a plan.

 current_plan(subscription, options \\ [])

 Retrieve the plan that is currently in affect.

 current_plan_start_date(subscription)

 Returns the start date of the current plan.

 days_remaining(plan, current_interval_started, effective_date, options \\ [])

 Returns number of days remaining in a plan interval.

 latest_plan(map)

 Returns the latest plan for a subscription.

 new(plan, effective_date, options \\ [])

 Creates a new subscription.

 new!(plan, effective_date, options \\ [])

 Creates a new subscription or raises an exception.

 next_interval_starts(plan, current_interval_started, options \\ [])

 Returns the next interval start date for a plan.

 plan_days(plan, current_interval_started, options \\ [])

 Returns number of days in a plan interval.

 plan_pending?(map, options \\ [])

 Returns a boolean indicating if there is a pending plan.

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 Specs

 id() :: term()

An id that uniquely identifies a subscription

 Link to this type

 t()

 View Source

 Specs

 t() :: %Money.Subscription{
 created_at: DateTime.t(),
 id: id(),
 plans: [{Money.Subscription.Change.t(), Money.Subscription.Plan.t()}]
}

A Money.Subscription type

 Anchor for this section

Functions

 Link to this function

 %Money.Subscription{}

 View Source

 (struct)

A struct defining a subscription
	:id any term that uniquely identifies this subscription

	:plans is a list of {change, plan} tuples that record the history
of plans assigned to this subscription

	:created_at records the DateTime.t when the subscription was created

 Link to this function

 cancel_pending_plan(subscription, options \\ [])

 View Source

 Specs

 cancel_pending_plan(t(), Keyword.t()) :: t()

Cancel a subscription's pending plan.
A pending plan arise when a a Subscription.change_plan/3 has
been executed but the effective date is in the future. Only
one plan may be pending at any one time so that if
Subscription.change_plan/3 is attemtped a second time an
error tuple will be returned.
Subscription.cancel_pending_plan/2
can be used to roll back the pending plan change.

 Arguments

	:subscription is any Money.Subscription.t

	:options is a Keyword.t

 Options

	:today is a Date.t that represents today.
The default is Date.utc_today

 Returns

	An updated Money.Subscription.t which may or may not
have had a pending plan. If it did have a pending plan
that plan is deleted. If there was no pending plan then
the subscription is returned unchanged.

 Link to this function

 change_plan(subscription_or_plan, new_plan, options \\ [])

 View Source

 Specs

 change_plan(
 subscription_or_plan :: t() | Money.Subscription.Plan.t(),
 new_plan :: Money.Subscription.Plan.t(),
 options :: Keyword.t()
) ::
 {:ok, Money.Subscription.Change.t() | t()} | {:error, {module(), String.t()}}

Change plan from the current plan to a new plan.

 Arguments

	subscription_or_plan is either a Money.Subscription.t or Money.Subscription.Plan.t
or a map with the same fields

	new_plan is a Money.Subscription.Plan.t or a map with at least the fields
interval, interval_count and price

	current_interval_started is a Date.t or other map with the fields year, month,
day and calendar

	options is a keyword list of options the define how the change is to be made

 Options

	:effective defines when the new plan comes into effect. The values are :immediately,
a Date.t or :next_period. The default is :next_period. Note that the date
applied in the case of :immediately is the date returned by Date.utc_today.

	:prorate which determines how to prorate the current plan into the new plan. The
options are :price which will reduce the price of the first period of the new plan
by the credit amount left on the old plan (this is the default). Or :period in which
case the first period of the new plan is extended by the interval amount of the new
plan that the credit on the old plan will fund.

	:round determines whether when prorating the :period it is truncated or rounded up
to the next nearest full interval_count. Valid values are :down, :half_up,
:half_even, :ceiling, :floor, :half_down, :up. The default is :up.

	:first_interval_started determines the anchor day for monthly billing. For
example if a monthly plan starts on January 31st then the next period will start
on February 28th (or 29th). The period following that should, however, be March 31st.
If subscription_or_plan is a Money.Subscription.t then the :first_interval_started
is automatically populated from the subscription. If :first_interval_started is
nil then the date defined by :effective is used.

 Returns

A Money.Subscription.Change.t with the following elements:
	:first_interval_starts which is the start date of the first interval for the new
plan

	:first_billing_amount is the amount to be billed, net of any credit, at
the :first_interval_starts

	:next_interval_starts is the start date of the next interval after the first intervalincluding any credit_days_applied

	:credit_amount is the amount of unconsumed credit of the current plan

	:credit_amount_applied is the amount of credit applied to the new plan. If
the :prorate option is :price (the default) then :first_billing_amount
is the plan :price reduced by the :credit_amount_applied. If the :prorate
option is :period then the :first_billing_amount is the plan price and
the :next_interval_date is extended by the :credit_days_applied
instead.

	:credit_days_applied is the number of days credit applied to the first
interval by adding days to the :first_interval_starts date.

	:credit_period_ends is the date on which any applied credit is consumed or nil

	:carry_forward is any amount of credit carried forward to a subsequent period.
If non-zero, this amount is a negative Money.t. It is non-zero when the credit
amount for the current plan is greater than the :price of the new plan. In
this case the :first_billing_amount is zero.

 Returns

	{:ok, updated_subscription} or

	{:error, {exception, message}}

 Examples

Change at end of the current period so no proration
iex> current = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 1)
iex> new = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 3)
iex> Money.Subscription.change_plan current, new, current_interval_started: ~D[2018-01-01]
{:ok, %Money.Subscription.Change{
 carry_forward: Money.zero(:USD),
 credit_amount: Money.zero(:USD),
 credit_amount_applied: Money.zero(:USD),
 credit_days_applied: 0,
 credit_period_ends: nil,
 next_interval_starts: ~D[2018-05-01],
 first_billing_amount: Money.new(:USD, 10),
 first_interval_starts: ~D[2018-02-01]
}}

Change during the current plan generates a credit amount
iex> current = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 1)
iex> new = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 3)
iex> Money.Subscription.change_plan current, new, current_interval_started: ~D[2018-01-01], effective: ~D[2018-01-15]
{:ok, %Money.Subscription.Change{
 carry_forward: Money.zero(:USD),
 credit_amount: Money.new(:USD, "5.49"),
 credit_amount_applied: Money.new(:USD, "5.49"),
 credit_days_applied: 0,
 credit_period_ends: nil,
 next_interval_starts: ~D[2018-04-15],
 first_billing_amount: Money.new(:USD, "4.51"),
 first_interval_starts: ~D[2018-01-15]
}}

Change during the current plan generates a credit period
iex> current = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 1)
iex> new = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 3)
iex> Money.Subscription.change_plan current, new, current_interval_started: ~D[2018-01-01], effective: ~D[2018-01-15], prorate: :period
{:ok, %Money.Subscription.Change{
 carry_forward: Money.zero(:USD),
 credit_amount: Money.new(:USD, "5.49"),
 credit_amount_applied: Money.zero(:USD),
 credit_days_applied: 50,
 credit_period_ends: ~D[2018-03-05],
 next_interval_starts: ~D[2018-06-04],
 first_billing_amount: Money.new(:USD, 10),
 first_interval_starts: ~D[2018-01-15]
}}

 Link to this function

 change_plan!(subscription_or_plan, new_plan, options \\ [])

 View Source

 Specs

 change_plan!(
 subscription_or_plan :: t() | Money.Subscription.Plan.t(),
 new_plan :: Money.Subscription.Plan.t(),
 options :: Keyword.t()
) :: Money.Subscription.Change.t() | no_return()

Change plan from the current plan to a new plan.
Retuns the plan or raises an exception on error.
See Money.Subscription.change_plan/3 for the description
of arguments, options and return.

 Link to this function

 current_interval_start_date(subscription_or_changeset, options \\ [])

 View Source

 Specs

 current_interval_start_date(
 t() | {Money.Subscription.Change.t(), Money.Subscription.Plan.t()} | map(),
 Keyword.t()
) :: Date.t()

Returns the first date of the current interval of a plan.

 Arguments

	:subscription_or_changeset is anyMoney.Subscription.t or
a {Change.t, Plan.t} tuple

	:options is a keyword list of options

 Options

	:today is a Date.t that represents today.
The default is Date.utc_today

 Returns

	The Date.t that is the first date of the current interval

 Link to this function

 current_plan(subscription, options \\ [])

 View Source

 Specs

 current_plan(t() | map(), Keyword.t()) :: Money.Subscription.Plan.t() | nil

Retrieve the plan that is currently in affect.
The plan in affect is not necessarily the first
plan in the list. We may have upgraded plans to
be in affect at some later time.

 Arguments

	subscription is a Money.Subscription.t or any
map that provides the field :plans

 Returns

	The Money.Subscription.Plan.t that is the plan currently in affect or
nil

 Link to this function

 current_plan_start_date(subscription)

 View Source

 Specs

 current_plan_start_date(t()) :: Date.t() | nil

Returns the start date of the current plan.

 Arguments

	subscription is a Money.Subscription.t or any
map that provides the field :plans

 Returns

	The start Date.t of the current plan

 Link to this function

 days_remaining(plan, current_interval_started, effective_date, options \\ [])

 View Source

 Specs

 days_remaining(Money.Subscription.Plan.t(), Date.t(), Date.t(), Keyword.t()) ::
 integer()

Returns number of days remaining in a plan interval.

 Arguments

	plan is any Money.Subscription.Plan.t

	current_interval_started is a Date.t

	effective_date is a Date.t after the
current_interval_started and before the end of
the plan_days

 Returns

The number of days remaining in a plan interval

 Examples

iex> plan = Money.Subscription.Plan.new! Money.new!(:USD, 100), :month, 1
iex> Money.Subscription.days_remaining plan, ~D[2018-01-01], ~D[2018-01-02]
30
iex> Money.Subscription.days_remaining plan, ~D[2018-02-01], ~D[2018-02-02]
27

 Link to this function

 latest_plan(map)

 View Source

 Specs

 latest_plan(t() | map()) ::
 {Money.Subscription.Change.t(), Money.Subscription.Plan.t()}

Returns the latest plan for a subscription.
The latest plan may not be in affect since
its start date may be in the future.

 Arguments

	subscription is a Money.Subscription.t or any
map that provides the field :plans

 Returns

	The Money.Subscription.Plan.t that is the most recent
plan - whether or not it is the currently active plan.

 Link to this function

 new(plan, effective_date, options \\ [])

 View Source

 Specs

 new(
 plan :: Money.Subscription.Plan.t(),
 effective_date :: Date.t(),
 Keyword.t()
) :: {:ok, t()} | {:error, {module(), String.t()}}

Creates a new subscription.

 Arguments

	plan is any Money.Subscription.Plan.t the defines the initial plan

	effective_date is a Date.t that represents the effective
date of the initial plan. This defines the start of the first interval

	options is a keyword list of options

 Options

	:id is any term that an application can use to uniquely identify
this subscription. It is not used in any function in this module.

	:created_at is a DateTime.t that records the timestamp when
the subscription was created. The default is DateTime.utc_now/0

 Returns

	{:ok, Money.Subscription.t} or

	{:error, {exception, message}}

 Link to this function

 new!(plan, effective_date, options \\ [])

 View Source

 Specs

 new!(
 plan :: Money.Subscription.Plan.t(),
 effective_date :: Date.t(),
 Keyword.t()
) :: t() | no_return()

Creates a new subscription or raises an exception.

 Arguments

	plan is any Money.Subscription.Plan.t the defines the initial plan

	effective_date is a Date.t that represents the effective
date of the initial plan. This defines the start of the first interval

	:options is a keyword list of options

 Options

	:id is any term that an application can use to uniquely identify
this subscription. It is not used in any function in this module.

	:created_at is a DateTime.t that records the timestamp when
the subscription was created. The default is DateTime.utc_now/0

 Returns

	A Money.Subscription.t or

	raises an exception

 Link to this function

 next_interval_starts(plan, current_interval_started, options \\ [])

 View Source

 Specs

 next_interval_starts(Money.Subscription.Plan.t(), Date.t(), Keyword.t()) ::
 Date.t()

Returns the next interval start date for a plan.

 Arguments

	plan is any Money.Subscription.Plan.t

	:current_interval_started is the Date.t that
represents the start of the current interval

 Returns

The next interval start date as a Date.t.

 Example

iex> plan = Money.Subscription.Plan.new!(Money.new!(:USD, 100), :month)
iex> Money.Subscription.next_interval_starts(plan, ~D[2018-03-01])
~D[2018-04-01]

iex> plan = Money.Subscription.Plan.new!(Money.new!(:USD, 100), :day, 30)
iex> Money.Subscription.next_interval_starts(plan, ~D[2018-02-01])
~D[2018-03-03]

 Link to this function

 plan_days(plan, current_interval_started, options \\ [])

 View Source

 Specs

 plan_days(Money.Subscription.Plan.t(), Date.t(), Keyword.t()) :: integer()

Returns number of days in a plan interval.

 Arguments

	plan is any Money.Subscription.Plan.t

	current_interval_started is any Date.t

 Returns

The number of days in a plan interval.

 Examples

iex> plan = Money.Subscription.Plan.new! Money.new!(:USD, 100), :month, 1
iex> Money.Subscription.plan_days plan, ~D[2018-01-01]
31
iex> Money.Subscription.plan_days plan, ~D[2018-02-01]
28
iex> Money.Subscription.plan_days plan, ~D[2018-04-01]
30

 Link to this function

 plan_pending?(map, options \\ [])

 View Source

 Specs

 plan_pending?(t(), Keyword.t()) :: boolean()

Returns a boolean indicating if there is a pending plan.
A pending plan is one where the subscription has changed
plans but the plan is not yet in effect. There can only
be one pending plan.

 Arguments

	:subscription is any Money.Subscription.t

	:options is a keyword list of options

 Options

	:today is a Date.t that represents the effective
date used to determine is there is a pending plan.
The default is Date.utc_today/1.

 Returns

	Either true or false

Money.Subscription.Change

Defines the structure of a plan changeset.
	:first_interval_starts which is the start date of the first interval for the new
plan

	:first_billing_amount is the amount to be billed, net of any credit, at
the :first_interval_starts

	:next_interval_starts is the start date of the next interval after the first interval including anycredit_days_applied*:credit_amountis the amount of unconsumed credit of the current plan *:credit_amount_appliedis the amount of credit applied to the new plan. If the:prorateoption is:price(the default) the:first_billing_amountis the plan:pricereduced by the:credit_amount_applied. If the:prorateoption is:periodthen the:first_billing_amountis the planprice and
the :next_interval_date is extended by the :credit_days_applied
instead.

	:credit_days_applied is the number of days credit applied to the first
interval by adding days to the :first_interval_starts date.

	:credit_period_ends is the date on which any applied credit is consumed or nil

	:carry_forward is any amount of credit carried forward to a subsequent period.
If non-zero this amount is a negative Money.t. It is non-zero when the credit
amount for the current plan is greater than the price of the new plan. In
this case the :first_billing_amount is zero.

 Anchor for this section

 Summary

 Types

 t()

 A plan change record struct.

 Functions

 %Money.Subscription.Change{}

 A struct defining the changes between two plans.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Money.Subscription.Change{
 carry_forward: Money.t(),
 credit_amount: Money.t(),
 credit_amount_applied: Money.t(),
 credit_days_applied: non_neg_integer(),
 credit_period_ends: Date.t(),
 first_billing_amount: Money.t(),
 first_interval_starts: Date.t(),
 next_interval_starts: Date.t()
}

A plan change record struct.

 Anchor for this section

Functions

 Link to this function

 %Money.Subscription.Change{}

 View Source

 (struct)

A struct defining the changes between two plans.

Money.Subscription.DateError exception

Money.Subscription.NoCurrentPlan exception

Money.Subscription.Plan

Defines a standard subscription plan data structure.

 Anchor for this section

 Summary

 Types

 interval()

 A plan interval type.

 interval_count()

 A integer interval count for a plan.

 t()

 A Subscription Plan

 Functions

 %Money.Subscription.Plan{}

 Defines the structure of a subscription plan.

 new(price, interval, interval_count \\ 1)

 Returns {:ok, Money.Subscription.Plan.t} or an {:error, reason}
tuple.

 new!(price, interval, interval_count \\ 1)

 Returns {:ok, Money.Subscription.Plan.t} or raises an
exception.

 Anchor for this section

Types

 Link to this type

 interval()

 View Source

 Specs

 interval() :: :day | :week | :month | :year

A plan interval type.

 Link to this type

 interval_count()

 View Source

 Specs

 interval_count() :: non_neg_integer()

A integer interval count for a plan.

 Link to this type

 t()

 View Source

 Specs

 t() :: %Money.Subscription.Plan{
 interval: interval(),
 interval_count: interval_count(),
 price: Money.t() | nil
}

A Subscription Plan

 Anchor for this section

Functions

 Link to this function

 %Money.Subscription.Plan{}

 View Source

 (struct)

Defines the structure of a subscription plan.

 Link to this function

 new(price, interval, interval_count \\ 1)

 View Source

 Specs

 new(Money.t(), interval(), interval_count()) ::
 {:ok, t()} | {:error, {module(), String.t()}}

Returns {:ok, Money.Subscription.Plan.t} or an {:error, reason}
tuple.

 Arguments

	:price is any Money.t

	:interval is the period of the plan. The valid intervals are
:day,:week,:monthor ':year.

	:interval_count is an integer count of the number of :intervals
of the plan. The default is 1

 Returns

A Money.Subscription.Plan.t

 Examples

iex> Money.Subscription.Plan.new Money.new(:USD, 100), :month, 1
{:ok,
 %Money.Subscription.Plan{
 interval: :month,
 interval_count: 1,
 price: Money.new(:USD, 100)
 }}

iex> Money.Subscription.Plan.new Money.new(:USD, 100), :month
{:ok,
 %Money.Subscription.Plan{
 interval: :month,
 interval_count: 1,
 price: Money.new(:USD, 100)
 }}

iex> Money.Subscription.Plan.new Money.new(:USD, 100), :day, 30
{:ok,
 %Money.Subscription.Plan{
 interval: :day,
 interval_count: 30,
 price: Money.new(:USD, 100)
 }}

iex> Money.Subscription.Plan.new 23, :day, 30
{:error, {Money.Invalid, "Invalid subscription plan definition"}}

 Link to this function

 new!(price, interval, interval_count \\ 1)

 View Source

 Specs

 new!(Money.t(), interval(), interval_count()) :: t() | no_return()

Returns {:ok, Money.Subscription.Plan.t} or raises an
exception.
Takes the same arguments as Money.Subscription.Plan.new/3.

 Example

iex> Money.Subscription.Plan.new! Money.new(:USD, 100), :day, 30
%Money.Subscription.Plan{
 interval: :day,
 interval_count: 30,
 price: Money.new(:USD, 100)
}

Money.Subscription.PlanError exception

Money.Subscription.PlanPending exception

Money.ExchangeRateError exception

Money.Invalid exception

Money.InvalidAmountError exception

Money.ParseError exception

Money.UnknownCurrencyError exception

Money.Subscription.DateError exception

Money.Subscription.NoCurrentPlan exception

Money.Subscription.PlanError exception

Money.Subscription.PlanPending exception

Money.ExchangeRateError exception

Money.Invalid exception

Money.InvalidAmountError exception

Money.ParseError exception

Money.UnknownCurrencyError exception

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

