

 Cldr Messages

 v0.12.0

 [image: Logo]

 Table of contents

 	Cldr Messages

 	LICENSE

 	Changelog

 	ICU Message Specification

 	Modules

 	Cldr.Gettext.Interpolation

 	Cldr.Message

 	Cldr.Message.Backend

 	Cldr.Message.Interpreter

 	Cldr.Message.Parser

 	Cldr.Message.Sigil

 	Cldr.Message.BindError

 	Cldr.Message.ParseError

 	Cldr.Message.PositionalArgsNotPermitted

 	Exceptions

 	Cldr.Message.BindError

 	Cldr.Message.ParseError

 	Cldr.Message.PositionalArgsNotPermitted

Cldr Messages

[image: Build Status]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
Installation
def deps do
 [
 {:ex_cldr_messages, "~> 0.12.0"}
]
end
Documentation is at https://hexdocs.pm/cldr_messages.
Introduction
Implements the ICU Message Format for Elixir.
In any application that addresses audiences from different cultures, the need arises to support the presentation of user interfaces, messages, alerts and other content in the appropriate language for a user.
For nearly 30 years the go-to solution for this requirement in many computer langauges is gettext. There is a full-featured implementation for Elixir that is installed by default with Phoenix with over 10,000,000 downloads.
Given the maturity and widespread adoption of Gettext, why implement another format? Leveraging the content from the Unicode CLDR project we can address some of the shortcomings of Gettext. A good description of motivations and differences can be found in

 LICENSE - Cldr Messages v0.12.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/
 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
	Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS
 APPENDIX: How to apply the Apache License to your work.
 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.
 Copyright 2019 Kip Cole
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Changelog - Cldr Messages v0.12.0

Changelog

Cldr_Messages v0.12.0
This is the changelog for Cldr_Messages v0.12.0 released on January 1st, 2022. For older changelogs please consult the release tag on GitHub
Enhancements
The primary focus of this release is gettext integration. The effort is kindly driven by @maennchen and the majority of the work is his.
	Add Cldr.Message.format_to_iolist/3 which formats a binary message into an iolist. This helps with incrementally binding placeholders where some may be bound at compile time and others at runtime. It also makes integration with gettext simpler since this function returns a list of completed bindings and a list of bindings that were not found.

	Adds an implementation of Gettext.Interpolation to support gettext integration.

Cldr_Messages v0.11.0
This is the changelog for Cldr_Messages v0.11.0 released on May 23rd, 2021. For older changelogs please consult the release tag on GitHub
Enhancements
	Add Cldr.Message.bindings/1 to extract the names of variable bindings for a message

	Add option :allow_positional_args to Cldr.Message.format/3. The default is true.

	Add argument allow_positional_args? to Cldr.Message.Parser.parse/2

Cldr_Messages v0.10.0
This is the changelog for Cldr_Messages v0.10.0 released on April 8th, 2021. For older changelogs please consult the release tag on GitHub
Enhancements
	Use Cldr.default_backend!/0 if available

Cldr_Messages v0.9.0
This is the changelog for Cldr_Messages v0.9.0 released on November 18th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Supports number arguments to be either a number or a tuple of the form {number, keyword_list_of_formatting_options}. This provides an escape hatch for developers to influence formatting of the number beyond the textual format of the message. For example:

Uses the currency for the current locale
iex> Cldr.Message.format "this is {one, number, currency}", one: 1
{:ok, "this is $1.00"}

Forces the :MXP currency
iex> Cldr.Message.format "this is {one, number, currency}", one: {1, currency: :MXP}
{:ok, "this is MXP 1.00"}
Cldr_Messages v0.8.0
This is the changelog for Cldr_Messages v0.8.0 released on September 27th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Fix Cldr.Message.Print.to_string/2 to omit blank spaces at the end of lines when pretty printing.

Cldr_Messages v0.7.0
This is the changelog for Cldr_Messages v0.7.0 released on September 26th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Allow nimble_parsec versions ~> 0.5 or ~> 1.0

Cldr_Messages v0.6.0
This is the changelog for Cldr_Messages v0.6.0 released on September 26th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Add Cldr.Message.canonical_message/2 that converts a string message into a canonical form. This allows for fuzzy matching between two messages that may have different formatting (this is possible since the CLDR message format allows for non-formatting whitepsace in parts of the syntax).

	Add documentation for some of the key functions. Much more documentation required before 1.0 release.

Cldr_Messages v0.5.0
This is the changelog for Cldr_Messages v0.5.0 released on September 22nd, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds compile time checking that bindings are provided to the format/3 macro wherever possible

	Supports later versions of ex_cldr and friends, ex_money as well as Elixir 1.11 without warnings

Cldr_Messages v0.4.0
This is the changelog for Cldr_Messages v0.4.0 released on August 29th, 2019. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Conditionally compile functions that depend on optional dependencies

Cldr_Messages v0.3.0
This is the changelog for Cldr_Messages v0.3.0 released on August 29th, 2019. For older changelogs please consult the release tag on GitHub
Breaking Changes
	Standardize on the Cldr.Message.format/3 as the public api. Cldr.Message.to_string/3 is removed.

Enhancements
	Add the macro <backend>.Cldr.Message.format/3 to parse messages at compile time as a way to optiise performance at runtime. To use it add import <backend>.Cldr.Message to your module and use format/3. An example:

defmodule SomeModule do
 import MyApp.Cldr.Message

 def my_function do
 format("this is a string with a param {param}", param: 3)
 end
end
	Add Cldr.Message.format_to_list/3 formats to an io_list

Bug Fixes
	Fix dialyzer warnings. There are some warnings from combinators that will require nimble_parsec version 0.5.2 to be published before they are resolved.

Cldr_Messages v0.2.0
This is the changelog for Cldr_Messages v0.2.0 released on August 27th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Uses Cldr.Number.to_string/3 to format simple arguments that are numeric (integer, float and decimal). This gives a localised number format. An example:

iex> Cldr.Message.to_string "You have {number} jelly beans", number: 1234
"You have 1,234 jelly beans"
	Similarly applies localized formatting for dates, times, datetimes.

Cldr_Messages v0.1.0
This is the changelog for Cldr_Messages v0.1.0 released on August 26th, 2019. For older changelogs please consult the release tag on GitHub
	Initial release. This release implements Cldr.Message.to_string/3 and Cldr.Message.format/3

This initial release is the basis for building a complete message localization solution as an alternative to Gettext. There is a long way to go until that is accomplished.

 ICU Message Specification - Cldr Messages v0.12.0

ICU Message Specification

Messages are user-visible strings, often with variable elements like names,
numbers and dates. Message strings are typically translated into the different
languages of a UI, and translators move around the variable elements according
to the grammar of the target language.
For this to work in many languages, a message has to be written and translated
as a single unit, typically a string with placeholder syntax for the variable
elements. If the user-visible string were concatenated directly from fragments
and formatted elements, then translators would not be able to rearrange the
pieces, and they would have a hard time translating each of the string
fragments.
This document is an edited version of the official ICU documentation edited
to reflect the implementation in ex_cldr_messages.
Format Overview
The ICU Message Format uses message "pattern" strings with
variable-element placeholders enclosed in {curly braces}. The
argument syntax can include formatting details, otherwise a
default format is used.
Complex Argument Types
Certain types of arguments select among several choices which are nested
Message Format pattern strings. Keeping these choices together in one message
pattern string facilitates translation in context, by one single translator.
(Commercial translation systems often distribute different messages to different
translators.)
	 Use a "plural" argument to select sub-messages based on a numeric value,
together with the plural rules for the specified language.
	 Use a "select" argument to select sub-messages via a fixed set of keywords.
	 Use of the old "choice" argument type is discouraged. It cannot handle
plural rules for many languages, and is clumsy for simple selection.

It is tempting to cover only a minimal part of a message string with a complex
argument (e.g., plural). However, this is difficult for translators for two
reasons: 1. They might have trouble understanding how the sentence fragments in
the argument sub-messages interact with the rest of the sentence, and 2. They
will not know whether and how they can shrink or grow the extent of the part of
the sentence that is inside the argument to make the whole message work for
their language.
Recommendation: If possible, use complex arguments as the outermost
structure of a message, and write full sentences in their sub-messages. If
you have nested select and plural arguments, place the select arguments
(with their fixed sets of choices) on the outside and nest the plural
arguments (hopefully at most one) inside.
For example:
"{gender_of_host, select, "
 "female {"
 "{num_guests, plural, offset:1 "
 "=0 {{host} does not give a party.}"
 "=1 {{host} invites {guest} to her party.}"
 "=2 {{host} invites {guest} and one other person to her party.}"
 "other {{host} invites {guest} and # other people to her party.}}}"
 "male {"
 "{num_guests, plural, offset:1 "
 "=0 {{host} does not give a party.}"
 "=1 {{host} invites {guest} to his party.}"
 "=2 {{host} invites {guest} and one other person to his party.}"
 "other {{host} invites {guest} and # other people to his party.}}}"
 "other {"
 "{num_guests, plural, offset:1 "
 "=0 {{host} does not give a party.}"
 "=1 {{host} invites {guest} to their party.}"
 "=2 {{host} invites {guest} and one other person to their party.}"
 "other {{host} invites {guest} and # other people to their party.}}}}"
Note: In a plural argument like in the example above, if the English message
has both =0 and =1 (up to =offset+1) then it does not need a "one"
variant because that would never be selected. It does always need an "other"
variant.
Note: The translation system and the translator together need to add
"one", "few" etc. if and as necessary per target
language.
Quoting/Escaping
If syntax characters occur in the text portions, then they need to be quoted by
enclosing the syntax in pairs of ASCII apostrophes. A pair of ASCII apostrophes
always represents one ASCII apostrophe, similar to %% in printf representing one %,
although this rule still applies inside quoted text. ("This '{isn''t}' obvious" → "This {isn't} obvious")
	 Recommendation: Use the real apostrophe (single quote) character ’ (U+2019)
for human-readable text, and use the ASCII apostrophe ' (U+0027) only in
program syntax, like quoting in Message Format. See the annotations for
U+0027 Apostrophe in The Unicode Standard.

Argument formatting
Arguments are formatted according to their type, using the default ex_cldr
formatters for those types, unless otherwise specified. For unknown types the
the function to_string/0 will be called. Formatters are supported for:
	Numbers (integer, float and Decimal) through ex_cldr_numbers
	Dates, Times and DateTimes through ex_cldr_dates_times
	Units of measure through ex_cldr_units
	Money through ex_money

There are also several ways to control the formatting.
Predefined styles (recommended)
You can specify the arg_style to be one of the predefined values short, medium,
long, full (to get one of the standard forms for dates / times) and integer,
currency, percent (for number formatting).
Format the parameters separately (recommended)
You can format the parameter as you need before calling Cldr.Message.format/3, and
then passing the resulting string as a parameter to Cldr.Message.format/3.
This offers maximum control, and is preferred to using custom format objects
(see below).
String patterns (discouraged)
These can be used for numbers, dates, and times, but they are locale-sensitive,
and they therefore would need to be localized by your translators, which adds
complexity to the localization, and placeholder details are often not accessible
by translators. If such a pattern is not localized, then users see confusing
formatting. Consider using skeletons instead of patterns in your message
strings.
Allowing translators to localize date patterns is error-prone, as translators
might make mistakes (resulting in invalid CLDR date formatter syntax).
Also, CLDR provides curated patterns for many locales, and using your own pattern means
that you don't benefit from that CLDR data and the results will likely be
inconsistent with the rest of the patterns that CLDR uses.
It is also a bad internationalization practice, because most companies only
translate into "generic" versions of the languages (French, or Spanish, or
Arabic). So the translated patterns get used in tens of countries. On the other
hand, skeletons are localized according to the locale, which
should include regional variants (e.g., “fr-CA”).
Message Format Syntax
ex_cldr_messages prepares strings for display to users, with optional arguments (variables/placeholders). The arguments can occur in any order, which is necessary for translation into languages with different grammars.
A message is constructed from a pattern string with arguments in {curly braces} which will be replaced by formatted values.
	Arguments can be named (using identifiers) or numbered (using small ASCII-digit integers).

	An argument might not specify any format type. In this case, a Number value is formatted with a default (for the locale) Number Format, a Date value is formatted with a default (for the locale) Date Format, and so on for a Unit, Money and Curency. For any other value its to_string/0 is called.

	An argument might specify a "simple" type for which the specified Format object is created, cached and used.

	An argument might have a "complex" type with nested MessageFormat sub-patterns. During formatting, one of these sub-messages is selected according to the argument value and recursively formatted.

When formatting, Cldr.Message.format/3 takes a collection of argument values and writes an output string. The argument values may be passed as a list (when the pattern contains only numbered arguments) or as a Map (which works for both named and numbered arguments).
Each argument is matched with one of the input values by list index or map key and formatted according to its pattern specification. A numbered pattern argument is matched with a map key that contains that number as an ASCII-decimal-digit string (without leading zero).
Patterns and Their Interpretation
Message Format uses patterns of the following form:
 message = messageText (argument messageText)*
 argument = noneArg | simpleArg | complexArg
 complexArg = choiceArg | pluralArg | selectArg | selectordinalArg

 noneArg = '{' argNameOrNumber '}'
 simpleArg = '{' argNameOrNumber ',' argType [',' argStyle] '}'
 choiceArg = '{' argNameOrNumber ',' "choice" ',' choiceStyle '}'
 pluralArg = '{' argNameOrNumber ',' "plural" ',' pluralStyle '}'
 selectArg = '{' argNameOrNumber ',' "select" ',' selectStyle '}'
 selectordinalArg = '{' argNameOrNumber ',' "selectordinal" ',' pluralStyle '}'

 choiceStyle: see ChoiceFormat
 pluralStyle: see PluralFormat
 selectStyle: see SelectFormat

 argNameOrNumber = argName | argNumber
 argName = [^[[:Pattern_Syntax:][:Pattern_White_Space:]]]+
 argNumber = '0' | ('1'..'9' ('0'..'9')*)

 argType = "number" | "date" | "time" | "spellout" | "ordinal" | "duration"
 argStyle = "short" | "medium" | "long" | "full" | "integer" | "currency" | "percent" | argStyleText
Messages can contain quoted literal strings including syntax characters. A quoted literal string begins with an ASCII apostrophe and a syntax character (usually a {curly brace}) and continues until the next single apostrophe. A double ASCII apostrophe inside or outside of a quoted string represents one literal apostrophe.
Quotable syntax characters are the {curly braces} in all message parts, plus the # sign in a message immediately inside a pluralStyle, and the '|' symbol in a messageText immediately inside a choiceStyle.
In argStyleText, every single ASCII apostrophe begins and ends quoted literal text, and unquoted {curly braces} must occur in matched pairs.
Recommendation: Use the real apostrophe (single quote) character \u2019 for human-readable text, and use the ASCII apostrophe (\u0027 ') only in program syntax, like quoting in MessageFormat. See the annotations for U+0027 Apostrophe in The Unicode Standard.
The choice argument type is deprecated. Use plural arguments for proper plural selection, and select arguments for simple selection among a fixed set of choices.
Examples
See the examples in the README

 Cldr.Gettext.Interpolation - Cldr Messages v0.12.0

Cldr.Gettext.Interpolation

 Cldr.Message - Cldr Messages v0.12.0

Cldr.Message

Implements the ICU Message Format
with functions to parse and interpolate messages.

 Anchor for this section

 Summary

 Types

 arguments()

 bindings()

 message()

 options()

 Functions

 bindings(message)

 Extract the binding names from an ICU message.

 canonical_message(message, options \\ [])

 Formats a message into a canonical form.

 canonical_message!(message, options \\ [])

 Formats a message into a canonical form
or raises if the message cannot be parsed.

 format(message, bindings \\ [], options \\ [])

 Format a message in the ICU Message Format
into a string.

 format!(message, args \\ [], options \\ [])

 format_list(message, args, options)

 See Cldr.Message.Interpreter.format_list/3.

 format_list!(message, args, options)

 See Cldr.Message.Interpreter.format_list!/3.

 format_to_iolist(message, bindings \\ [], options \\ [])

 Format a message in the ICU Message Format
into an iolist.

 jaro_distance(message1, message2, options \\ [])

 Returns the Jaro distance
between two messages.

 jaro_distance!(message1, message2, options \\ [])

 Returns the Jaro distance
between two messages or raises.

 t(message)

 Returns the translation of the given ICU-formatted
message string.

 t(message, bindings)

 Returns the translation of the given ICU-formatted
message string.

 Anchor for this section

Types

 Link to this type

 arguments()

 View Source

 Specs

 arguments() :: bindings()

 Link to this type

 bindings()

 View Source

 Specs

 bindings() :: list() | map()

 Link to this type

 message()

 View Source

 Specs

 message() :: binary()

 Link to this type

 options()

 View Source

 Specs

 options() :: Keyword.t()

 Anchor for this section

Functions

 Link to this function

 bindings(message)

 View Source

Extract the binding names from an ICU message.

 Arguments

	message is a CLDR message in binary or
parsed form.

 Returns

	A list of binding names as strings or

	{:error, {exception, reason}}

 Examples

 iex> Cldr.Message.bindings "This {variable} is in the message"
 ["variable"]

 Link to this function

 canonical_message(message, options \\ [])

 View Source

Formats a message into a canonical form.
This allows for messages to be compared
directly, or using Cldr.Message.jaro_distance/3.

 Arguments

	message is a CLDR message in binary form.

	options is a keyword list of options. The
default is [].

 Options

	:trim determines if the message is trimmed
of whitespace before formatting. The default is
true.

	:pretty determines if the message if
formatted with indentation to aid readability.
The default is false.

 Returns

	{ok, canonical_message} where canonical_message
is a string or

	{:error, {exception, reason}}

 Examples

iex> Cldr.Message.canonical_message "{greeting } to you!"
{:ok, "{greeting} to you!"}

 Link to this function

 canonical_message!(message, options \\ [])

 View Source

Formats a message into a canonical form
or raises if the message cannot be parsed.
This allows for messages to be compared
directly, or using Cldr.Message.jaro_distance/3.

 Arguments

	message is a CLDR message in binary form.

	options is a keyword list of options. The
default is [].

 Options

	:trim determines if the message is trimmed
of whitespace before formatting. The default is
true.

	:pretty determines if the message if
formatted with indentation to aid readability.
The default is false.

 Returns

	canonical_message as a string or

	raises an exception

 Examples

iex> Cldr.Message.canonical_message! "{greeting } to you!"
"{greeting} to you!"

 Link to this function

 format(message, bindings \\ [], options \\ [])

 View Source

 Specs

 format(String.t(), bindings(), options()) ::
 {:ok, String.t()} | {:error, {module(), String.t()}}

Format a message in the ICU Message Format
into a string.
The ICU Message Format uses message "pattern" strings with
variable-element placeholders enclosed in {curly braces}. The
argument syntax can include formatting details, otherwise a
default format is used.

 Arguments

	bindings is a list or map of arguments that
are used to replace placeholders in the message.

	options is a keyword list of options.

 Options

	backend is any Cldr backend. That is, any module that
contains use Cldr.

	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a t:Cldr.LanguageTag struct. The default is Cldr.get_locale/0.

	:trim determines if the message is trimmed
of whitespace before formatting. The default is
false.

	:allow_positional_args determines if position arguments
are permitted. Positional arguments are in the format
{0} in the message. The default is true.

	All other aptions are passed to the to_string/2
function of a formatting module.

 Returns

	{:ok, formatted_mesasge} or

	{:error, {module, reason}}

 Examples

iex> Cldr.Message.format "{greeting} to you!", greeting: "Good morning"
{:ok, "Good morning to you!"}

 Link to this function

 format!(message, args \\ [], options \\ [])

 View Source

 Specs

 format!(String.t(), bindings(), options()) :: String.t() | no_return()

 Link to this function

 format_list(message, args, options)

 View Source

See Cldr.Message.Interpreter.format_list/3.

 Link to this function

 format_list!(message, args, options)

 View Source

See Cldr.Message.Interpreter.format_list!/3.

 Link to this function

 format_to_iolist(message, bindings \\ [], options \\ [])

 View Source

 Specs

 format_to_iolist(String.t(), bindings(), options()) ::
 {:ok, list(), list(), list()}
 | {:error, list(), list(), list()}
 | {:error, {module(), binary()}}

Format a message in the ICU Message Format
into an iolist.
The ICU Message Format uses message "pattern" strings with
variable-element placeholders enclosed in {curly braces}. The
argument syntax can include formatting details, otherwise a
default format is used.

 Arguments

	bindings is a list or map of arguments that
are used to replace placeholders in the message.

	options is a keyword list of options.

 Options

	backend is any Cldr backend. That is, any module that
contains use Cldr.

	:locale is any valid locale name returned by Cldr.known_locale_names/0
or a t:Cldr.LanguageTag struct. The default is Cldr.get_locale/0.

	:trim determines if the message is trimmed
of whitespace before formatting. The default is
false.

	:allow_positional_args determines if position arguments
are permitted. Positional arguments are in the format
{0} in the message. The default is true.

	All other aptions are passed to the to_string/2
function of a formatting module.

 Returns

	{:ok, formatted_mesasge} or

	{:error, {module, reason}}

 Examples

iex> Cldr.Message.format_to_iolist "{greeting} to you!", greeting: "Good morning"
{:ok, ["Good morning", " to you!"], ["greeting"], []}

 Link to this function

 jaro_distance(message1, message2, options \\ [])

 View Source

Returns the Jaro distance
between two messages.
This allows for fuzzy matching of message
which can be helpful when a message string
is changed but the semantics remain the same.

 Arguments

	message1 is a CLDR message in binary form.

	message2 is a CLDR message in binary form.

	options is a keyword list of options. The
default is [].

 Options

	:trim determines if the message is trimmed
of whitespace before formatting. The default is
false.

 Returns

	{ok, distance} where distance is a float value between 0.0
(equates to no similarity) and 1.0 (is an
exact match) representing Jaro distance between message1
and message2 or

	{:error, {exception, reason}}

 Examples

iex> Cldr.Message.jaro_distance "{greetings} to you!", "{greeting} to you!"
{:ok, 0.9824561403508771}

 Link to this function

 jaro_distance!(message1, message2, options \\ [])

 View Source

Returns the Jaro distance
between two messages or raises.
This allows for fuzzy matching of message
which can be helpful when a message string
is changed but the semantics remain the same.

 Arguments

	message1 is a CLDR message in binary form.

	message2 is a CLDR message in binary form.

	options is a keyword list of options. The
default is [].

 Options

	:trim determines if the message is trimmed
of whitespace before formatting. The default is
false.

 Returns

	distance where distance is a float value between 0.0
(equates to no similarity) and 1.0 (is an
exact match) representing Jaro distance between message1
and message2 or

	raises an exception

 Examples

iex> Cldr.Message.jaro_distance! "{greetings} to you!", "{greeting} to you!"
0.9824561403508771

 Link to this macro

 t(message)

 View Source

 (macro)

Returns the translation of the given ICU-formatted
message string.
Any placeholders are replaced with the value of variables
already in scope at the time of compilation.
t/1 is a wrapper around the gettext/2 macro
which should therefore be imported from a Gettext
backend prior to calling t/1.

 Arguments

	message is an ICU format message string.

 Returns

	A translated string.

 Link to this macro

 t(message, bindings)

 View Source

 (macro)

Returns the translation of the given ICU-formatted
message string.
t/2 is a wrapper around the gettext/2 macro
which should therefore be imported from a Gettext
backend prior to calling t/2.

 Arguments

	message is an ICU format message string.

	bindings is a keyword list or map of bindings used
to replace placeholders in the message.

 Returns

	A translated string.

 Cldr.Message.Backend - Cldr Messages v0.12.0

Cldr.Message.Backend

 Anchor for this section

 Summary

 Functions

 define_message_module(config)

 expand_to_binary!(term, env)

 Expands the given message in the given env, raising if it doesn't expand to
a binary.

 quoted_message(parsed_message, backend, bindings, static_bindings)

 Anchor for this section

Functions

 Link to this function

 define_message_module(config)

 View Source

 Link to this function

 expand_to_binary!(term, env)

 View Source

 Specs

 expand_to_binary!(binary(), Macro.Env.t()) :: binary() | no_return()

Expands the given message in the given env, raising if it doesn't expand to
a binary.

 Link to this function

 quoted_message(parsed_message, backend, bindings, static_bindings)

 View Source

 Cldr.Message.Interpreter - Cldr Messages v0.12.0

Cldr.Message.Interpreter

 Anchor for this section

 Summary

 Functions

 format_list(message, args \\ [], options \\ [])

 Formats a parsed ICU message into an iolist.

 format_list!(message, args \\ [], options \\ [])

 Anchor for this section

Functions

 Link to this function

 format_list(message, args \\ [], options \\ [])

 View Source

 Specs

 format_list(list(), Cldr.Message.arguments(), Cldr.Message.options()) ::
 {:ok, list(), list(), list()} | {:error, list(), list(), list()}

Formats a parsed ICU message into an iolist.

 Link to this function

 format_list!(message, args \\ [], options \\ [])

 View Source

 Specs

 format_list!(list(), Cldr.Message.arguments(), Cldr.Message.options()) ::
 list() | no_return()

 Cldr.Message.Parser - Cldr Messages v0.12.0

Cldr.Message.Parser

Implements a parser for the ICU Message format

 Anchor for this section

 Summary

 Functions

 message(binary, opts \\ [])

 Parses the given binary as message.

 parse(input, allow_positional_args? \\ true)

 parse!(input, allow_positional_args? \\ true)

 plural_message(binary, opts \\ [])

 Parses the given binary as plural_message.

 Anchor for this section

Functions

 Link to this function

 message(binary, opts \\ [])

 View Source

 Specs

 message(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: pos_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as message.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the message (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.

 Options

	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 Link to this function

 parse(input, allow_positional_args? \\ true)

 View Source

 Link to this function

 parse!(input, allow_positional_args? \\ true)

 View Source

 Link to this function

 plural_message(binary, opts \\ [])

 View Source

 Specs

 plural_message(binary(), keyword()) ::
 {:ok, [term()], rest, context, line, byte_offset}
 | {:error, reason, rest, context, line, byte_offset}
when line: {pos_integer(), byte_offset},
 byte_offset: pos_integer(),
 rest: binary(),
 reason: String.t(),
 context: map()

Parses the given binary as plural_message.
Returns {:ok, [token], rest, context, position, byte_offset} or
{:error, reason, rest, context, line, byte_offset} where position
describes the location of the plural_message (start position) as {line, offset_to_start_of_line}.
To column where the error occurred can be inferred from byte_offset - offset_to_start_of_line.

 Options

	:byte_offset - the byte offset for the whole binary, defaults to 0
	:line - the line and the byte offset into that line, defaults to {1, byte_offset}
	:context - the initial context value. It will be converted to a map

 Cldr.Message.Sigil - Cldr Messages v0.12.0

Cldr.Message.Sigil

Implements sigil ~M to canonicalize an
ICU message.
ICU messages allow for whitespace to be used to
format the message for developer and translator readability.
At the same time, gettext uses the message string
as a key when resolving translations.
Therefore a developer or translator that modifies
the message for readability may unintentionally
create a new message rather than replace the old one
simply because the message strings don't match exactly.
It is possible to use the fuzzy option to the task
mix gettext.extract however this may not be the desired
behaviour either.
The sigil ~M therefore introduces a way for the developer
to ensure the message is in a canonical format during
compilation and therefore both error check the message format
and ensure the message is in a canonical form irrespective
of developer formatting.

 Anchor for this section

 Summary

 Functions

 sigil_M(arg, modifiers)

 Handles the sigil ~M for ICU message strings.

 Anchor for this section

Functions

 Link to this macro

 sigil_M(arg, modifiers)

 View Source

 (macro)

Handles the sigil ~M for ICU message strings.
It returns a a canonically formatted string without
interpolations and without escape characters, except
for the escaping of the closing sigil character
itself.
A canonically formatted string is pretty-printed by
default returning a potentially multi-line
string. This is intended to produce a result which is
easier to comprehend for translators.
The modifier u can be applied to return
a non-pretty-printed string.

 Modifi

 Examples

iex> ~m(An ICU message)
"An ICU message"
However, if you want to re-use the sigil character itself on
the string, you need to escape it:
iex> ~M((\))
"()"

