

 Cldr Calendars

 v1.12.1

 [image: Logo]

 Table of contents

 	Cldr Calendars

 	License

 	Changelog for Cldr Calendars v1.12.1

 	Modules

 	Cldr.Calendar

 	Cldr.Calendar.Config

 	Cldr.Calendar.Duration

 	Cldr.Calendar.FiscalYear

 	Cldr.Calendar.Interval

 	Cldr.Calendar.Julian

 	Cldr.Calendar.Kday

 	Cldr.Calendar.Preference

 	Cldr.Calendar.Sigils

 	Cldr.Cldr.IncompatibleTimeZone

 	Cldr.IncompatibleCalendarError

 	Cldr.InvalidCalendarModule

 	Cldr.InvalidDateOrder

 	Exceptions

 	Cldr.Cldr.IncompatibleTimeZone

 	Cldr.IncompatibleCalendarError

 	Cldr.InvalidCalendarModule

 	Cldr.InvalidDateOrder

Cldr Calendars
[image: Build Status]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
My wife's jealousy is getting ridiculous. The other day she looked at my calendar and wanted to know who May was.
-- Rodney Dangerfield

Introduction
Calendars are curious things. For centuries people from all cultures have sought to impose human order on the astronomical movements of the earth and moon. Today, despite much of the world converting on the Gregorian calendar, there remain many derivative and alternative ways for humans to organize the passage of time.
Cldr Calendars builds on Elixir's standard Calendar module to provide additional calendars and calendar functionality intended to be of practical use. In particular Cdlr Calendars:
	Provides support for configurable month-based and week-based calendars that are in common use as Fiscal Year calendars for countries and organizations around the world. See Cldr.Calendar.new/3

	Supports localisation of common calendar terms such as day of the week and month of the year using the CLDR data that is available for over 500 locales. See Cldr.Calendar.localize/3

	Supports locale-specific knowledge of what is a weekend or a workday. See Cldr.Calendar.weekend/1, Cldr.Calendar.weekend?/2, Cldr.Calendar.weekdays/1 and Cldr.Calendar.weekday?/2.

	Provides convenient Date.Range calculators for years, quarters, months and weeks for calendars and provides the means to move to the next and previous period in a calendar where a period may be a year, quarter, month, week or day.

	Supports adding or substracting periods to dates and date ranges. See Cldr.Calendar.plus/3 and Cldr.Calendar.minus/3

	Includes pre-defined calendars for Gregorian (compatible with the builtin Calendar module), ISOWeek and National Retail Federation (NRF) calendars

	Includes returning a calendar configured to reflect the first_day_of_week and min_days_in_first_week for a given territory lor locale. See Cldr.Calendar.calendar_for_locale/2.

	Includes functions to find the first, last, nearest and nth days of the week from a date. For example, find the 2nd Tuesday in November.

See the documentation for Cldr.Calendar for the main public API.
Cldr Calendars Installation
Add ex_cldr_calendars to your deps in mix.exs.
def deps do
 [
 {:ex_cldr_calendars, "~> 1.7"}
 ...
]
end
Getting Started
Let's say you work for Cisco Systems. Your learn that the financial year ends on the last Saturday of July. To make things easy you'd like to compare the results of this financial year to last finanical year. And you'd like to know how many days are left this quarter in order to achieve your sales targets.
Here's how we do that:
Define a calendar that represents Cisco's financial year
Each calendar is defined as a module that implements both the Calendar and Cldr.Calendar behaviours. The details of how that is achieved isn't important at this stage. Its easy to define your own calendar module through some configuration parameters. Here's how we do that for Cisco:
defmodule Cldr.Calendar.CSCO do
 use Cldr.Calendar.Base.Week,
 first_or_last: :last,
 day_of_year_: 6,
 month_of_year_: 7
end
This configuration says that the calendar is defined as first_or_last: :last which means we are defining a calendar in terms of when it ends (you can of course also define a calendar in terms of when it starts by setting this to :first).
The :day_of_year day is Saturday, which is in Calendar speak, the sixth day of the week. Days of the week are numbered from 1 for Monday to 7 to Sunday.
The :month_of_year is July. Months are numbered from January being 1 to December being 12.
There we have it, a calendar that is based upon the definition of "ends on the last Saturday of July".
Dates in Cisco's calendar
You might be wondering, how to we represent dates in a customised calendar like this? Thanks to the flexibility of Elixir's standard Calendar module, we can leverage existing functions to build a date. Lets build a date which is the first day of Cisco's financial year for 2019.
{:ok, date} = Date.new(2019, 1, 1, Cldr.Calendar.CSCO)
{:ok, ~d[2019-W01-1 CSCO]}
That was easy. All dates are specified in the context of the specific calendar. We don't need to know what the equivalent Gregorian calendar date is. But we can find out if we want to:
iex> Date.convert date, Calendar.ISO
{:ok, ~D[2018-07-29]}
Which you will see is July 29th, 2018 - a Sunday. Since we specified that the :last day of the year is a Saturday this makes sense. You will also note that this is a date in 2018 as it should be. The year ends in July so it must start around 12 months earlier - in July of 2018.
This would also mean that the last day of Fiscal Year 2018 must be July 28th, 2018. Lets check:
iex> Cldr.Calendar.last_gregorian_day_of_year(2018, Cldr.Calendar.CSCO)
~d[2018-07-28 Gregorian]
Which you will see is the last Saturday in July for 2018.
Years, quarters, months, weeks and days
A common activity with calendars is selecting data in certain date ranges or iterating over those same ranges. Cldr Calendars makes that easy.
Want to know what is the first quarter of Cisco's financial year in 2019?
 iex> range = Cldr.Calendar.Interval.quarter 2019, 1, Cldr.Calendar.CSCO
 #DateRange<~d[2019-W01-1 CSCO], ~d[2019-W13-7 CSCO]>
A Date.Range.t is returned which can be enumerated with any of Elixir's Enum or Stream functions. The same applies for year, month, week and day.
Let's list all of the days Cisco's first quarter:
iex> Enum.map range, &Cldr.Calendar.date_to_string/1
["2019-W01-1", "2019-W01-2", "2019-W01-3", "2019-W01-4", "2019-W01-5",
 "2019-W01-6", "2019-W01-7", "2019-W02-1", "2019-W02-2", "2019-W02-3",
 "2019-W02-4", "2019-W02-5", "2019-W02-6", "2019-W02-7", "2019-W03-1",
 "2019-W03-2", "2019-W03-3", "2019-W03-4", "2019-W03-5", "2019-W03-6",
 "2019-W03-7", "2019-W04-1", "2019-W04-2", "2019-W04-3", "2019-W04-4",
 "2019-W04-5", "2019-W04-6", "2019-W04-7", "2019-W05-1", "2019-W05-2",
 "2019-W05-3", "2019-W05-4", "2019-W05-5", "2019-W05-6", "2019-W05-7",
 "2019-W06-1", "2019-W06-2", "2019-W06-3", "2019-W06-4", "2019-W06-5",
 "2019-W06-6", "2019-W06-7", "2019-W07-1", "2019-W07-2", "2019-W07-3",
 "2019-W07-4", "2019-W07-5", "2019-W07-6", "2019-W07-7", "2019-W08-1", ...]
But wait a minute, these don't look like familiar dates! Shouldn't they be formatted as "yyy-mm-dd"? The answer in this case is "no".
If you look carefully at where we asked for the date range for Cisco's first quarter of 2019 you will see %Date{calendar: Cldr.Calendar.CSCO, day: 7, month: 13, year: 2019} as the last date in the range. There is, of course, no such month as 13 in the Gregorian calendar. What's going on?
Week-based calendars
Cisco's calendar is an example of a "week-based" calendar. Such week-based calendars are examples of fiscal year calendars. In Cldr Calendar, any calendar that is defined in terms of "[first | last] [dayof_week] of [month_of_year]" is a week-based calendar. These calendars have a year of 52 weeks duration except in "leap years" that have 53 weeks.
The most well-known week-based calendar may be the ISO Week Calendar. How would we define that calendar in Cldr Calendars? Easy!
defmodule Cldr.Calendar.ISOWeek do
 use Cldr.Calendar.Base.Week,
 day: 1,
 min_days_in_first_week: 4
end
This says that the calendar starts on the first Monday in January. How do we know that? It's because
:month_of_year defaults to 1 (January) and :first_or_last defaults to :first.
Lets see what the first day of 2019 is in the ISOWeek calendar.
iex> date = Cldr.Calendar.first_day_of_year(2019, Cldr.Calendar.ISOWeek)
~d[2019-W01-1 ISOWeek]
As expected, the date is expressed in terms of the calendar Cldr.Calendar.ISOWeek. What's the equivalent Gregorian day?
iex> Date.convert(date, Calendar.ISO)
{:ok, ~D[2018-12-31]}
That's interesting. The first day of the 2019 year in the ISO Week calendar is actually December 31st, 2018. Why is that?
Week-based calendars can start or end on a given day of the week in a given month. But there is a third option: the given day of the week nearest to the start or end of the given month. This is indicated by the configuration parameter :min_days_in_first_week. For the ISO Week calendar we have min_days_in_first_week: 4. That means that at least 4 days of the first or last week have to be in the specified :month_of_year and then we select the nearest day of the week. Hence it is possible and even common for the gregorian start of the year for a week-based calendar to be up to 6 days before or after the Gregorian start of the year.
Whats the last week of 2019 in the ISO Week calendar?
 iex> date = Cldr.Calendar.Interval.week(2019, 52, Cldr.Calendar.ISOWeek)
 #DateRange<~d[2019-W52-1 ISOWeek], ~d[2019-W52-7 ISOWeek]>
You'll see that for week-based calendars the date is actually stored as year, week, day where the :month field of the Date.t is actually the week in the year and :day is the day in the week.
Month-based calendars
The Gregorian calendar is the canonical example of a month-based calendar. It starts on January 1st and ends on December 31st each year. But not all calendars start in January and end in December.
	The United States fiscal year starts on October 1st and ends on September 30th
	The United Kingdom fiscal year starts on April 1st and ends on March 31st
	The Australian fiscal year starts on July 1st and ends on June 30th

Cldr Calendars allows month-based calendars to be defined based upon the first or last gregorian month of the year for that calendar.
Of course sometimes we also want to refer to weeks within a year although this is less common than refering to days within months. Nevertheless, a month-based calendar can also take advantage of :first_day and :min_days to determine how to calculate weeks for month-based calendars too.
Here's how we define each of the three example calendars above:
defmodule Cldr.Calendar.US do
 use Cldr.Calendar.Base.Month,
 month_of_year: 10, # The year starts in October
 min_days_in_first_week: 4, # The first week of the year is that with at least 4 days of October in it
 day_of_week: 7 # When referring to weeks, Sunday is the first day
end

defmodule Cldr.Calendar.UK do
 use Cldr.Calendar.Base.Month,
 month_of_year: 4 # The fiscal year starts in April
end

defmodule Cldr.Calendar.AU do
 use Cldr.Calendar.Base.Month,
 month_of_year: 7, # The fiscal year starts in July
 year: :ending # A year refers to the ending Gregorian year.
 # In this example, the Australian fiscal
 # year 2017 is the year that starts in July
 # 2016 and ends in June 2017
end
Beginning and ending gregorian years
When we talk about the Gregorian calendar we refer to the 12 months from January to December. However when we consider the various fiscal calendars, the Gregorian starting date and the Gregorian ending date will often be in different years.
In these cases, when we say "the 2019 US Fiscal Year" what does that mean? The US fiscal year starts in October. Now we need to know whether refering to the "the 2019 US Fiscal Year" means the year that ends in September 2019 or the year that starts in October 2019.
Some further examples are:
	The UK Fiscal Year starts in April. By convention, the Fiscal Year is the year that starts with April.

	The US Fiscal Year starts in October. By convention , the Fiscal Year is the year that has the ending October in it.

	The Australian Fiscal Year starts in July. By convention, the Fiscal Year is the year that ends in July.

	The National Retail Federation has a calendar that starts on the Saturday nearest the end of January. By convention, the Fiscal Year is the year of the starting Saturday.

To cater for these varying definitions of what a Fiscal Year means, a configuration option :year can be set to :majority (which is the default), :beginning and :ending.
	:majority means that the Fiscal Year is the year that has the most Gregorian months in it. This is the default.
	:beginning means that the Fiscal Year is the year in which the first Gregorian month is found.
	:ending means that the Fiscal Year is the year in which the last Gregorian month is found.

First lets consider the default :majority strategy. This strategy says that the Fiscal Year is that year in which the majority of Gregorian months are found.
 2018 2019 2020
 J F M A M J J A S O N D | J F M A M J J A S O N D | J F M A M J J A S O N D |
 | | |
Majority
 Starts Jan <--------------------->
 Starts Mar <----------------------->
 Starts Jun <----------------------->
 Starts Jul <----------------------->
 Starts Oct <----------------------->

 Ends Dec <--------------------->
 Ends Feb <----------------------->
 Ends May <----------------------->
 Ends Jun <----------------------->
 Ends Aug <----------------------->
From the diagram above we can define the following rules:
	For :starts calendars, we can say that the starting gregorian year is is the same as the fiscal year if the starting month is January through June inclusive. If the starting month is July through to December then the starting Gregorian year is the year prior to the fiscal year. Similarly, the ending Gregorian year is the next year for calendars that start in February through June and it's the fiscal year for calendars that start in July through December. Years that start in January end in January of the same year.

	For ":ends" calendars the rules are the opposite.

Calendar Creation
Since calendars defined in Cldr.Calendar are intended to be compatible and converible to other Calendars supporting Elixir's Calendar behaviour, the configuration of calendars needs to be encapsulated.
The simplest way to is to define a module that uses either Cldr.Calendar.Base.Week or Cldr.Calendar.Base.Month. This is how we have been defining calendar modules in the examples so far.
A calendar module can also be created at run time. It is semantically identical to defining a static module but the module is built at run time rather than compile time. New calendars are created with the function Cldr.Calendar.new/3. For example:
iex> Cldr.Calendar.new :my_new_calendar, :week, first_or_last: :first, day_of_week: 1, min_days_in_first_week: 7
{:ok, :my_new_calendar}
Calendar functions are now available on the module :my_new_calendar.
iex> :my_new_calendar.
__config__/0
date_from_iso_days/1
date_to_iso_days/3
date_to_string/3
datetime_to_string/11
day_of_era/3
day_of_week/3
day_of_year/3
...
CAUTION Since the runtime creation of new calendars creates a new module and therefore a new atom, this function has the potential to surface an attack vector that could exhaust the atom table and crash the BEAM. It is strongly recommended calendars be defined statically where possible. Never trust unfiltered user input to create a calendar.
Fiscal Calendars for Territories
Cldr Calendars can create a fiscal year calendar for many territories (countries) based upon data from the CIA world fact book. To create a fiscal year calendar for a territory use the Cldr.Calendar.FiscalYear.calendar_for/1 function.
 iex> Cldr.Calendar.FiscalYear.calendar_for("IS")
 {:ok, Cldr.Calendar.FiscalYear.IS}

 iex> Cldr.Calendar.FiscalYear.calendar_for("ZZ")
 {:error, {Cldr.UnknownTerritoryError, "The territory \"ZZ\" is unknown"}}

 iex> Cldr.Calendar.FiscalYear.calendar_for(:AF)
 {:error, {Cldr.UnknownCalendarError, "Fiscal calendar is unknown for :AF"}}
Sigil ~d
Cldr Calendars provides a convenince sigil for the creation of dates in calendars. Note that it is necessary to import the Cldr.Calendar.Sigils module before using the ~d sigil.
 iex> import Cldr.Calendar.Sigils

 # Create a date in the default Cldr.Calendar.Gregorian
 iex> ~d[2019-01-01]
 ~d[2019-01-01 Gregorian]

 # Inbuilt calendars can be referred to by their shortened form
 iex> ~d[2019-01-01 NRF]
 ~d[2019-W01-1 NRF]

 # Create a calendar and define a date in it
 iex> Cldr.Calendar.new FiscalAU, :month, month_of_year: 7
 {:ok, FiscalAU}
 iex> ~d[2019-01-01 FiscalAU]
 ~d[2019-01-01 FiscalAU]
Date localization
Cldr Calendars is able to localize parts of a date include the era,
quarter, month and day_of_week. The CLDR
provides the underlying data. The function Cldr.Calendar.localize/3
provides the required functionality. Some examples are:
 iex> Cldr.Calendar.localize ~D[2019-01-01], :era
 "AD"

 iex> Cldr.Calendar.localize ~D[2019-01-01], :day_of_week
 "Tue"

 iex> Cldr.Calendar.localize ~D[0001-01-01], :day_of_week
 "Mon"

 iex> Cldr.Calendar.localize ~D[2019-06-01], :era
 "AD"

 iex> Cldr.Calendar.localize ~D[2019-06-01], :quarter
 "Q2"

 iex> Cldr.Calendar.localize ~D[2019-06-01], :month
 "Jun"

 iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week
 "Sat"

 iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week, format: :wide
 "Saturday"

 iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week, format: :narrow
 "S"

 iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week, locale: "ar"
 "السبت"
Calendar Intervals (date ranges)
Intervals representing parts of a calendar can be created and compared. Since intervals are represented as a Date.Range they can also be enumerated with the Map and Stream functions.
Intervals can be created for a year, quarter, month, week and day. For example:
 iex> Cldr.Calendar.Interval.year(2019)
 #DateRange<~d[2019-01-01 Gregorian], ~d[2019-12-31 Gregorian]>

 iex> Cldr.Calendar.Interval.month(2019, 3)
 #DateRange<~d[2019-03-01 Gregorian], ~d[2019-03-31 Gregorian]>

 iex> Cldr.Calendar.Interval.month(2019, 3, Cldr.Calendar.NRF)
 #DateRange<~d[2019-W10-1 NRF], ~d[2019-W13-7 NRF]>

 iex> Cldr.Calendar.Interval.week(2019, 5, Cldr.Calendar.NRF)
 #DateRange<~d[2019-W05-1 NRF], ~d[2019-W05-7 NRF]>

 iex> Cldr.Calendar.Interval.quarter(2019, 3)
 #DateRange<~d[2019-07-01 Gregorian], ~d[2019-09-30 Gregorian]>
Comparing Calendar Intervals
Intervals can also be compared to each other and using the taxonomy of Allen's Interval Algebra a comparison will return one of 13 different relationship types between two calendar intervals:
	Relation	Converse
	:precedes	:preceded_by
	:meets	:met_by
	:overlaps	:overlapped_by
	:finished_by	:finishes
	:contains	:during
	:starts	:started_by
	:equals	:equals

Some examples:
 iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-01]),
 ...> Cldr.Calendar.Interval.day(~D[2019-01-02])
 :meets

 iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-01]),
 ...> Cldr.Calendar.Interval.day(~D[2019-01-03])
 :precedes

 iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-03]),
 ...> Cldr.Calendar.Interval.day(~D[2019-01-01])
 :preceded_by

 iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-02]),
 ...> Cldr.Calendar.Interval.day(~D[2019-01-01])
 :met_by

 iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-02]),
 ...> Cldr.Calendar.Interval.day(~D[2019-01-02])
 :equals
Durations
A duration is calculated as the difference in time in calendar units: years, months, days, hours, minutes, seconds and microseconds.
This is useful to support formatting a string for users in easy-to-understand terms. For example 11 months, 3 days and 4 minutes is a lot easier to understand than 28771440 seconds.
The package ex_cldr_units can be optionally configured to provide localized formatting of durations.
If configured, the following providers must be configured in the appropriate CLDR backend module. For example:
defmodule MyApp.Cldr do
 use Cldr,
 locales: ["en", "ja"],
 providers: [Cldr.Calendar, Cldr.Number, Cldr.Unit, Cldr.List]
end
To create a duration, use Cldr.Calendar.Duration.new/2 providing two dates, times or datetimes. The first date must occur before the second date. Datetimes must be in the same time zone. To format a duration into a string use Cldr.Calendar.Duration.to_string/2.
An example is:
iex> {:ok, duration} = Cldr.Calendar.Duration.new(~D[2019-01-01], ~D[2019-12-31])
iex> Cldr.Calendar.Duration.to_string(duration)
"11 months and 30 days"
A duration can also be created from a Date.Range.t and CalendarInterval.t. CalendarInterval.t is defined by the wonderful calendar_interval library.
iex> Cldr.Calendar.Duration.new Date.range(~D[2020-01-01], ~D[2020-12-31])
{:ok,
 %Cldr.Calendar.Duration{
 day: 30,
 hour: 0,
 microsecond: 0,
 minute: 0,
 month: 11,
 second: 0,
 year: 0
 }}

iex> use CalendarInterval
CalendarInterval

iex> Cldr.Calendar.Duration.new ~I"2020-01/12"
{:ok,
 %Cldr.Calendar.Duration{
 day: 30,
 hour: 0,
 microsecond: 0,
 minute: 0,
 month: 11,
 second: 0,
 year: 0
 }}
A duration can be added to a date. Adding to times and datetimes is not currenlty supported. An example is:
iex> {:ok, duration} = Cldr.Calendar.Duration.new(~D[2019-01-01], ~D[2019-12-31])
iex> Cldr.Calendar.plus ~D[2019-01-01], duration
~D[2019-12-31]
Configuring a Cldr backend for localization
In order to localize date parts a backend module must be defined. This
is a module which hosts the CLDR data for a set of locales. The detailed
information for configuring a backend is documented here.
For a simple configuration the following steps may be used:
	Create a backend module.
defmodule MyApp.Cldr do
use Cldr,
 locales: ["en", "fr", "jp", "ar"],
 providers: [Cldr.Calendar, Cldr.Number]
end

	Optionally configure this backend as the system default in your config.exs.
config :ex_cldr,
default_backend: MyApp.Cldr

	When creating a calendar a default backend may also be defined for this calendar.
defmodule MyCalendar do
use Cldr.Calendar.Base.Month,
 month_of_year: 4,
 cldr_backend: MyApp.Cldr
end

It is also possible to pass the name of a backend module to the Cldr.Calendar.localize/3 function by specifying the :backend option with a backend module name.
Inspecting calendar dates
The examples in this readme reflect inspecting dates as they are in Elixir 1.10. For earlier releases of Elixir add this code to your project:
if Version.compare(System.version(), "1.10.0-dev") == :lt do
 defimpl Inspect, for: Date do
 def inspect(date, opts) do
 Cldr.Calendar.inspect(date, opts)
 end
 end
end
You will get a warning indicating that the existing implementation is being overwritten. This is expected.

License
Copyright 2018-2019 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Changelog for Cldr Calendars v1.12.1
This is the changelog for Cldr Calendars v1.12.1 released on April 7th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix a bug that prevented durations being created from times (as apposed to dates and datetimes)

Changelog for Cldr Calendars v1.12.0
This is the changelog for Cldr Calendars v1.12.0 released on November 8th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Rename Cldr.Calendar.Preference.calendar_for_locale/1 to Cldr.Calendar.Preference.calendar_from_locale/1

	Rename Cldr.Calendar.Preference.calendar_for_territory/1 to Cldr.Calendar.Preference.calendar_from_territory/1

	Add Cldr.Calendar.calendar_from_territory/1

	Add Cldr.Calendar.calendar_from_locale/1,2

Changelog for Cldr Calendars v1.11.0
This is the changelog for Cldr Calendars v1.11.0 released on November 1st, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add support for CLDR 38

Changelog for Cldr Calendars v1.10.1
This is the changelog for Cldr Calendars v1.10.1 released on September 26th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Add a shim for default_backend/0 that delegates to Cldr.default_backend/0 or Cldr.default_backend!/0 depending on ex_cldr release. Releases from 2.18.0 use Cldr.default_backend!/0.

Changelog for Cldr Calendars v1.10.0
This is the changelog for Cldr Calendars v1.10.0 released on August 29th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Supports upcoming Elixir 1.11.0. The Calendar callback for day_of_week/3 has been changed to day_of_week/4 to allow for a different start day of week. Since Cldr Calendars already supports defining calendars with different start days of the week (ie other than Monday), the impementation only supports the :default parameter. Thanks to @lostkobrakai for the report. Closes Cldr Dates Times issue #17.

Changelog for Cldr Calendars v1.9.0
This is the changelog for Cldr Calendars v1.9.0 released on June 7th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add Cldr.Calendar.plus/{3,4} that allows adding a Cldr.Calendar.Duration to a Calendar.date. Support for adding durations to datetimes is not yet available.

	Add support for datetimes to Cldr.Calendar.Duration.new/2

	Add support for Date.Range.t and CalendarInterval.t to Cldr.Calendar.Duration.new/1

Bug Fixes
	More complete test coverage on durations with some additional corner case fixes

Changelog for Cldr Calendars v1.8.1
This is the changelog for Cldr Calendars v1.8.1 released on June 4th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix duration calculation when the year and month are the same and the day of the last date is greater than the day of the first date

Changelog for Cldr Calendars v1.8.0
This is the changelog for Cldr Calendars v1.8.0 released on May 4th, 2020. For older changelogs please consult the release tag on GitHub
Breaking Change (that you might notice but probably won't)
	The min_days_in_first_week for the calendar Cldr.Calendar.Gregorian is changed to be 1 rather than the previous value of 4. This only affects week-related processing for the calendar. The reason for the change is that the majority of territories have a preference for 1 for min_days_in_first_week so Cldr.Calendar.Gregorian more closely aligns to majority expectations.

Breaking changes (that you shouldn't notice)
	The return result from Cldr.Calendar.new/3 may return {:module_already_exists, module}. It previously returned {:already_exists, module}

Bug Fixes
	Use backend.get_locale/0 instead of Cldr.get_locale/0 for all options

	Ensure that the default values for a locale's min_days and first_day_of_week are correctly applied in Cldr.Calendar.new/3. Any values passed as options take precedence over those defined for a locale.

Enhancements
	Add Cldr.Calendar.calendar_for_locale/2 which will create (or return) a gregorian-based calendar configured for the supplied locale. This typically means applying the correct values for min_days and first_day_of_week. For now all calendars created in this way are Gregorian monthly calendars.

	Add Cldr.Calendar.Preference.calendar_for_locale/1 which returns the appropriate calendar for a locale based upon locale preferences and configured calendars. Unlike Cldr.Calendar.calendar_for_locale/2, this function may return non-Gregorian calendars. For example, for the locale fa-IR it will return Cldr.Calendar.Persian (if ex_cldr_calendars_persian is configured) because that is the locale preference.

	Add Cldr.Calendar.Preference.calendar_for_territory/1 provides the same result as Cldr.Calendar.Preference.calendar_for_locale/2 except that argument is a territory code.

	Add Cldr.Calendar.Preference.preferences_for_territory/1

	Add Cldr.Calendar.validate_calendar/1 which returns {:ok, calendar} if the argument is a Cldr.Calendar calendar module or {:error, {exception, reason}} if not.

Changelog for Cldr Calendars v1.7.1
This is the changelog for Cldr Calendars v1.7.1 released on January 26th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix doc link in MyApp.Cldr.Calendar.strftime_options!/2

Changelog for Cldr Calendars v1.7.0
This is the changelog for Cldr Calendars v1.7.0 released on January 2nd, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Remove call to deprecated Code.ensure_compiled?/1 in Elixir 1.10

Changelog for Cldr Calendars v1.6.0
This is the changelog for Cldr Calendars v1.6.0 released on December 9th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds support for localizing Persian, Coptic and Ethiopic calendar localization. These calendars are published separately but they rely upon localization support from this package.

Changelog for Cldr Calendars v1.5.1
This is the changelog for Cldr Calendars v1.5.1 released on November 10th, 2019. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix Cldr.Calendar.next/3 and Cldr.Calendar.previous/3 for months with week-based calendars. Thanks to @bglusman for the report. Closes #3. Note that the use of the :coerce option is recommended in most cases.

Changelog for Cldr Calendars v1.5.0
This is the changelog for Cldr Calendars v1.5.0 released on November 3rd, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds MyApp.Cldr.Calendar.strftime_options!/2 to return a keyword list of options that can be applied to NimbleStrftime.format/3

Changelog for Cldr Calendars v1.4.0
This is the changelog for Cldr Calendars v1.4.0 released on September 14th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adjusts <calendar>.add/3 to <calendar>.add/5 so that it takes individual date and time elements and not formal structs. This is consistent with other calendar behaviours.

Changelog for Cldr Calendars v1.3.0
This is the changelog for Cldr Calendars v1.3.0 released on September 1st, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
Adds <calendar>.add/3 to add :quarter or :week to a naive datetime. This adds to the existing support for :year and :month.
Changelog for Cldr Calendars v1.2.0
This is the changelog for Cldr Calendars v1.2.0 released on August 31st, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds Cldr.Calendar.Duration to create a duration struct defining the difference between two dates, times or date_times as a calendar difference in years, months, days, hours, minutes, seconds and microseconds. See Cldr.Calendar.Duration.new/2 and Cldr.Calendar.Duration.to_string/1.

	Changes sigil_d/2 from a function to a macro so that dates are created at compile time

Changelog for Cldr Calendars v1.1.0
This is the changelog for Cldr Calendars v1.1.0 released on August 30th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds <calendar>.add/3 to add :year or :month to a naive datetime. This function supports the library calendar_interval allowing intervals to be used with ex_cldr_calendars[https://hex.pm/packages/ex_cldr_calendars]. The mid-term objective is to add add/3 to the Calendar behaviour and thereby also simplify the interface to CalendarInterval.

	Changes the output of to_string/1 to consistently use the full name of the calendar module, not an appreviated name.

Changelog for Cldr Calendars v1.0.0
This is the changelog for Cldr Calendars v1.0.0 released on June 16th, 2019. For older changelogs please consult the release tag on GitHub
Breaking changes
	The format produced by inspecting a Date (or DateTime or NaiveDateTime) has changed. The parsing of dates in sigil_d (the ~d sigil) has also changed in order to facilitate roundtrip conversions. Previously a date would inspect as (using the NRF calendar) ~d[2019-W01-1]NRF. It now inspects as ~d[2019-W01-1 NRF]. The same approach is used for all calendars. See the examples in Cldr.Calendar.Sigils. This change is applicable to Elixir 1.10 and later.

	The calendar configuration option :min_days has been renamed :min_days_in_first_week. The configuration option :day has been renamed to :day_of_week and the option :month has been renamed to :month_of_year. An exception will be raised if existing calendars are not updated.

	An exception will be raised if a calendar is configured with an unknown option.

Enhancements
	Implements inspect_date/4, inspect_datetime/11, inspect_naive_datetime/8 and inspect_time/5 for all Cldr.Calendar calendars. This implementation supports the revised Inspect protocol implementation for Date, Time, DateTime and NaiveDateTime structs. The purpose of that change is to allow customer calendars to be inspected. This change is applicable to Elixir 1.10 and later.

	Adds Cldr.Calendar.week_of_month/1 and Cldr.Calendar callback week_of_month/4 to return the week of a month. The weeks are calculated on the basis of the calendar configuration. As a result, the week of the month, like the week of the year, may be in a different Gregorian year and month compared to the specified date.

	Adds Cldr.Calendar.weeks_in_year/1 to return the number of weeks in a year.

	Adds a calendar configuration where weeks start on the first day of the year. This configuration is valid only for :month based calendars. The configuration option day: :first triggers this behaviour. This configuration can result in the last week of the year being less than 7 days.

	Adds Cldr.Calendar.inspect/2 that can be used as an :inspect_fun option in Inspect.Opts for Elixir version 1.9. It will not be required for Elixir 1.10 and later since this commit introduces inspect_* callbacks for Date, Time, DateTime and NaiveDateTime. An :inspect_fun can be configured in IEx by:

iex> IEx.configure(inspect: [inspect_fun: &Cldr.Calendar.inspect/2])
:ok
Bug Fixes
	Ensure that Cldr.Calendar callbacks return a Calendar.ISO calendar if called with one (either as part of a date or as a separate argument).

	Ensure the return calendar types of a an Interval are Calendar.ISO is the date provided is Calendar.ISO

	Fix Cldr.Calendar.plus/4 for :months when the month wraps into the previous year(s)

	Fix sigil_d to correctly parse ISO Week dates that have only a single digit day

Changelog for Cldr Calendars v0.9.0
This is the changelog for Cldr Calendars v0.9.0 released on June 9th, 2019. For older changelogs please consult the release tag on GitHub
Breaking changes
	Depends on Elixir 1.8 and above since it requires recent Calendar functionality.

Changelog for Cldr Calendars v0.8.0
This is the changelog for Cldr v0.8.0 released on June 8th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds option :type to Cldr.Calendar.localize/3. This determines the format type to be localized. The valid types are :format (the default) or :stand_alone.

	Add Cldr.Calendar.day_periods/2 to support localization of the day periods of a time

	Add Cldr.Calendar.default_calendar/0. Returns Cldr.Calendar.Gregorian

	Add Cldr.Calendar.default_cldr_calendar/0. Returns :gregorian

Changelog for Cldr Calendars v0.7.0
This is the changelog for Cldr Calendars v0.7.0 released on June 1st, 2019. For older changelogs please consult the release tag on GitHub
Breaking Changes
	Moved year/1, quarter/1, month/1, week/1 and day/1 to a new module Cldr.Calendar.Interval

Enhancements
	Adds Cldr.Calendar.Interval.compare/2 to compare two intervals (date ranges) using Allen's Interval Algebra taxonomy.

	Defaults the calendar to Cldr.Calendar.Gregorian for Cldr.Calendar.Interval.year/2, Cldr.Calendar.Interval.quarter/3, Cldr.Calendar.Interval.month/3, Cldr.Calendar.Interval.week/3 and Cldr.Calendar.Interval.day/3

Changelog for Cldr Calendars v0.6.0
This is the changelog for Cldr Calendars v0.6.0 released on April 28th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Remove the need for nimble_csv as a dependency

Changelog for Cldr Calendars v0.5.0
This is the changelog for Cldr Calendars v0.5.0 released on April 21th, 2019. For older changelogs please consult the release tag on GitHub
Breaking changes
	Cldr.Calendar.localize/3 for :days_of_week now returns a list of 2-tuples that are of the format {day_of_week, day_name}.

Enhancements
	Add Cldr.Calendar.localize/6 which localises numbers as part of a date without parameter checking. This is considered a private implementation for now.

Changelog for Cldr Calendars v0.4.1
This is the changelog for Cldr Calendars v0.4.1 released on April 19th, 2019. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fix calculation of days_in_month for the last month in long year of a week-based calendar

Changelog for Cldr Calendars v0.4.0
This is the changelog for Cldr Calendars v0.4.0 released on April 19th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds Cldr.Calendar.interval_stream/3 which returns a stream function that when enumerated generates a list of dates with a specified precision of either :years, :quarters, :months, :weeks or :days. This function has the same arguments and generates the same results as Cldr.Calendar.interval/3 except it generates the results lazily.

	Adds :days_of_week option to Cldr.Calendar.localize/3 which returns a list of the localized names of the days of the week in calendar order.

	Adds calendar_base/0 to identify whether the calendar is week or month based.

Bug Fixes
	Fix Cldr.Calendar.day_of_week/1 for week-based calendars

Changelog for Cldr Calendars v0.3.0
This is the changelog for Cldr Calendars v0.3.0 released on April 16th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds Cldr.Calendar.interval/3 which generates an enumerable list of dates with a specified precision of either :years, :quarters, :months, :weeks or :days.

Examples:
iex> import Cldr.Calendar.Sigils
Cldr.Calendar.Sigils

iex> d = ~d[2019-01-31]
%Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 1, year: 2019}

iex> d2 = ~d[2019-05-31]
%Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 5, year: 2019}

iex> Cldr.Calendar.interval d, 3, :months
[
 %Date{calendar: Cldr.Calendar.Gregorian, day: 28, month: 2, year: 2019},
 %Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 3, year: 2019},
 %Date{calendar: Cldr.Calendar.Gregorian, day: 30, month: 4, year: 2019}
]

iex> Cldr.Calendar.interval d, d2, :months
[
 %Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 1, year: 2019},
 %Date{calendar: Cldr.Calendar.Gregorian, day: 28, month: 2, year: 2019},
 %Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 3, year: 2019},
 %Date{calendar: Cldr.Calendar.Gregorian, day: 30, month: 4, year: 2019},
 %Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 5, year: 2019}
]
Changelog for Cldr Calendars v0.2.0
This is the changelog for Cldr Calendars v0.2.0 released on April 14th, 2019. For older changelogs please consult the release tag on GitHub
Breaking Changes
	All calendars now return {year, month, day} tuples from date_from_iso_days/1. Previously in some cases they returned a Date.t

	first_day_of_year/1 and last_day_of_year/1, first_gregorian_day_of_year/1 and last_gregorian_day_of_year/1 now all return a Date.t or an error tuple. Previously the returned result types were inconsistent.

	Remove first_gregorian_day_of_year/1 and last_gregorian_day_of_year/1 from Cldr.Calendar callbacks.

Enhancements
	Adds Cldr.Calendar.Julian implementing the Julian calendar. This calendar does not implement week/2, week_of_year/3 or iso_week_of_year/3.

Bug Fixes
	Fixes calculating negative offsets for months in a week-based calendar. Thanks to @bglusman. Closes #2.

Changelog for Cldr Calendars v0.1.0
This is the changelog for Cldr Calendars v0.1.0 released on April 5th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Initial release. See the README for a description of this project.

Cldr.Calendar behaviour

Calendar functions for calendars compatible with
Elixir's Calendar behaviour.
Cldr.Calendar supports the creation of calendars
that are variations on the proleptic Cldr.Calendar.Gregorian
calendar. It also adds additional functions, defined
by the Cldr.Calendar behaviour, to support these
derived calendars.
The common purpose of these derived calendars is
to support the creation and use of financial year
calendars that are commonly used in business.
There are two general types of calendars supported:
	month calendars that mirror the monthly structure
of the proleptic Cldr.Calendar.Gregorian calendar but which are
deemed to start the year in a month other than January.

	week calendars that are defined to have a 52 week
structure (53 weeks in a long year). These calendars
can be configured to start or end on the first, last or
nearest day to the beginning or end of a Cldr.Calendar.Gregorian
month. The main intent behind this structure is to
have each year start and end on the same day of the
week with a consistent 13-week quarterly structure than
enables a more straight forware comparison with
same-period-last-year financial performance.

 Anchor for this section

 Summary

 Types

 calendar()

 Specifies the type of a calendar.

 calendar_type()

 Specifies the type of a calendar

 day_of_week()

 Specifies the days of the week as integers.

 interval_relation()

 The types of relationship between two Date.Range intervals

 iso_day_number()

 Represents the number of days since the
calendar epoch.

 precision()

 The precision for date intervals

 quarter()

 Specifies the quarter of year for a calendar date.

 week()

 Specifies the week of year for a calendar date.

 Functions

 calendar_for_locale(locale, options \\ [])

 Returns a calendar configured according to
the preferences defined for a locale.

 calendar_for_territory(territory, config \\ [])

 Returns a calendar configured according to
the preferences defined for a territory.

 calendar_from_locale(locale)

 Return the calendar module for a locale.

 calendar_from_locale(locale, backend \\ Cldr.default_backend!())

 calendar_from_territory(territory)

 Returns the calendar module preferred for
a territory.

 calendar_module?(module)

 Returns a boolean indicating if a module
is a Cldr.Calendar module

 current(date, atom)

 Returns the current date or date range for
a date period (year, quarter, month, week
or day).

 date_from_iso_days(iso_day_number, calendar)

 Returns a date represented by a number of
days since the start of the epoch.

 date_from_tuple(arg, calendar)

 Returns a Date.t from a date tuple of
{year, month, day} and a calendar.

 date_to_iso_days(date)

 Returns the number of days since the start
of the epoch.

 date_to_string(date)

 Formats a date into a string representation

 day_of_era(date)

 Returns the {day_of_era, era} for
a date.

 day_of_week(date)

 See Date.day_of_week/1.

 day_of_year(date)

 Returns the day of the year
for a date.

 days_in_month(date)

 See Date.days_in_month/1.

 default_calendar()

 Returns the default calendar.

 first_day_for_locale(locale)

 Returns the first day of a week for a given
locale.

 first_day_for_locale(locale, options \\ [])

 first_day_for_territory(territory)

 first_day_of_year(map)

 Returns the first date of a year
for a Date.t.

 first_day_of_year(year, calendar)

 Returns the first date of a year
in a calendar.

 first_gregorian_day_of_year(map)

 first_gregorian_day_of_year(year, calendar)

 Returns the gregorian date of the first day of of a year
for a calendar.

 friday()

 Returns the ordinal day number representing
Friday.

 inspect(term, opts \\ [])

 An inspect_fun/2 that can be configured in
Inspect.Opts supporting inspection of user-defined
calendars.

 interval(date_from, count, precision)

 Returns an Enumerable list of dates of a given precision
of either :years, :quarters, :months, :weeks or
:days

 interval_stream(date_from, count, precision)

 Returns an a Stream function than can be lazily
enumerated.

 iso_days_to_day_of_week(iso_day_number)

 Returns the day of the week for a given
iso_day_number

 iso_week_of_year(date)

 Returns the ISO week number for
a date.

 last_day_of_year(map)

 Returns the last date of a year
for a Date.t.

 last_day_of_year(year, calendar)

 Returns the last date of a year
for a calendar.

 last_gregorian_day_of_year(map)

 last_gregorian_day_of_year(year, calendar)

 Returns the gregorian date of the first day of a year
for a calendar.

 localize(date, part, options \\ [])

 Returns a localized string for a part of
a Date.t.

 min_days_for_locale(locale)

 Returns the minimum days in the first week of a year
for a given locale.

 min_days_for_locale(locale, options \\ [])

 min_days_for_territory(territory)

 minus(date, period, amount, options \\ [])

 Decrements a date or date range by an
integer amount of a date period (year,
quarter, month, week or day).

 modified_julian_day(date)

 Returns the Modified Julian Day of
a Date.t.

 monday()

 Returns the ordinal day number representing
Monday

 month_of_year(date)

 Returns the month number for
a date.

 months_in_year(date)

 See Date.months_in_year/1.

 new(calendar_module, calendar_type, config)

 Creates a new calendar based upon the provided configuration.

 next(date_or_date_range, date_part, options \\ [])

 Returns the next date or date range for
a date period (year, quarter, month, week
or day).

 plus(value, increment)

 Adds a duration to a date

 plus(date, duration, options)

 plus(date, period, increment, options \\ [])

 Increments a date or date range by an
integer amount of a date period (year,
quarter, month, week or day).

 previous(date_or_date_range, date_part, options \\ [])

 Returns the previous date or date range for
a date period (year, quarter, month, week
or day).

 quarter_of_year(date)

 Returns the quarter number for
a date.

 same_as_default?(config)

 saturday()

 Returns the ordinal day number representing
Saturday.

 sunday()

 Returns the ordinal day number representing
Sunday.

 thursday()

 Returns the ordinal day number representing
Thursday.

 tuesday()

 Returns the ordinal day number representing
Tuesday.

 validate_calendar(calendar_module)

 Validates if the argument is a Cldr.Calendar
calendar module.

 wednesday()

 Returns the ordinal day number representing
Wednesday.

 week_of_month(date)

 Returns the {month, week_number}
for a date.

 week_of_year(date)

 Returns the {year, week_number}
for a date.

 weekday?(date, options \\ [])

 Returns whether a given date is a weekday.

 weekdays(territory)

 Returns a list of the days of the week that
are considered a weekend for a given
territory (country)

 weekend(territory)

 Returns a list of the days of the week that
are considered a weekend for a given
territory (country)

 weekend?(date, options \\ [])

 Returns whether a given date is a weekend day.

 weeks_in_year(map)

 Returns the number of weeks
in a year.

 weeks_in_year(year, calendar)

 weeks_to_days(n)

 Returns the number of days in n weeks

 Callbacks

 calendar_base()

 Returns the calendar basis.

 cldr_calendar_type()

 Returns the CLDR calendar type.

 days_in_year(year)

 Returns the number of days in a year

 iso_week_of_year(year, month, day)

 Returns a tuple of {year, week_in_year} for a given year, month or week, and day
for a a calendar.

 month(year, month)

 Returns a date range representing the days in a
given month for a calendar year.

 month_of_year(year, month, day)

 Returns the month for a given year, month or week, and day
for a a calendar.

 periods_in_year(year)

 Returns the number of periods (which are
months in a month calendar and weeks in a
week calendar) in a year

 plus(year, month, day, months_or_quarters, increment, options)

 Increments a Date.t or Date.Range.t by a specified positive
or negative integer number of periods (year, quarter, month,
week or day).

 quarter(year, quarter)

 Returns a date range representing the days in a
given quarter for a calendar year.

 week(year, week)

 Returns a date range representing the days in a
given week for a calendar year.

 week_of_month(arg1, week, arg3)

 Returns a tuple of {month, week_in_month} for a given year, month or week, and day
for a a calendar.

 week_of_year(year, month, day)

 Returns a tuple of {year, week_in_year} for a given year, month or week, and day
for a a calendar.

 weeks_in_year(year)

 Returns the number of weeks in a year

 year(year)

 Returns a date range representing the days in a
calendar year.

 Anchor for this section

Types

 Link to this type

 calendar()

 View Source

 Specs

 calendar() :: module()

Specifies the type of a calendar.
A calendar is a module that implements
the Calendar and Cldr.Calendar
behaviours.

 Link to this type

 calendar_type()

 View Source

 Specs

 calendar_type() :: :month | :week

Specifies the type of a calendar

 Link to this type

 day_of_week()

 View Source

 Specs

 day_of_week() :: 1..7

Specifies the days of the week as integers.
Days of the week are encoded as the integers 1 through
7 with 1 representig Monday and 7 representing Sunday.
Note that a calendar can be configured to start
on any day of the week. day_of_week is only a
way of encoding the days as an integer.

 Link to this type

 interval_relation()

 View Source

 Specs

 interval_relation() ::
 :precedes
 | :preceded_by
 | :meets
 | :met_by
 | :overlaps
 | :overlapped_by
 | :finished_by
 | :finishes
 | :contains
 | :during
 | :starts
 | :started_by
 | :equals

The types of relationship between two Date.Range intervals

 Link to this type

 iso_day_number()

 View Source

 Specs

 iso_day_number() :: integer()

Represents the number of days since the
calendar epoch.
The Calendar epoch is 0000-01-01
in the proleptic gregorian calendar.

 Link to this type

 precision()

 View Source

 Specs

 precision() :: :years | :quarters | :months | :weeks | :days

The precision for date intervals

 Link to this type

 quarter()

 View Source

 Specs

 quarter() :: 1..4

Specifies the quarter of year for a calendar date.

 Link to this type

 week()

 View Source

 Specs

 week() :: pos_integer()

Specifies the week of year for a calendar date.

 Anchor for this section

Functions

 Link to this function

 calendar_for_locale(locale, options \\ [])

 View Source

Returns a calendar configured according to
the preferences defined for a locale.

 Link to this function

 calendar_for_territory(territory, config \\ [])

 View Source

Returns a calendar configured according to
the preferences defined for a territory.

 Link to this function

 calendar_from_locale(locale)

 View Source

Return the calendar module for a locale.

 Arguments

	:locale is any locale or locale name validated
by Cldr.validate_locale/2. The default is
Cldr.get_locale() which returns the locale
set for the current process

 Returns

	{:ok, calendar_module} or

	{:error, {exception, reason}}

 Examples

iex> Cldr.Calendar.calendar_from_locale "en-US"
{:ok, Cldr.Calendar.US}

iex> Cldr.Calendar.calendar_from_locale "en-GB-u-ca-gregory"
{:ok, Cldr.Calendar.GB}

iex> Cldr.Calendar.calendar_from_locale "fa-IR"
{:ok, Cldr.Calendar.Persian}

iex> Cldr.Calendar.calendar_from_locale "fa-IR-u-ca-gregory"
{:ok, Cldr.Calendar.IR}

 Link to this function

 calendar_from_locale(locale, backend \\ Cldr.default_backend!())

 View Source

 Link to this function

 calendar_from_territory(territory)

 View Source

Returns the calendar module preferred for
a territory.

 Arguments

	territory is any valid ISO3166-2 code as
an String.t or upcased atom()

 Returns

	{:ok, calendar_module} or

	{:error, {exception, reason}}

 Examples

iex> Cldr.Calendar.calendar_from_territory :US
{:ok, Cldr.Calendar.US}

iex> Cldr.Calendar.calendar_from_territory :XX
{:error, {Cldr.UnknownTerritoryError, "The territory :XX is unknown"}}

 Notes

The overwhelming majority of territories have
:gregorian as their first preferred calendar
and therefore Cldr.Calendar.Gregorian or
a derivation of it will be returned for most
territories.
Returning any other calendar module would require:
	That another calendar is preferred over :gregorian
for a territory

	That a calendar module is available to support
that calendar.

As an example, Iran (territory :IR) prefers the
:persian calendar. If the optional library
ex_cldr_calendars_persian
is installed, the calendar module Cldr.Calendar.Persian will
be returned. If it is not installed, Cldr.Calendar.Gregorian
will be returned as :gregorian is the second preference
for :IR.

 Link to this function

 calendar_module?(module)

 View Source

Returns a boolean indicating if a module
is a Cldr.Calendar module

 Link to this function

 current(date, atom)

 View Source

Returns the current date or date range for
a date period (year, quarter, month, week
or day).

 Arguments

	date_or_date_range is any Date.t or
Date.Range.t

	period is :year, :quarter, :month,
:week or :day

 Returns

When a Date.t is passed, a Date.t is
returned. When a Date.Range.t is passed
a Date.Range.t is returned.

 Examples

iex> Cldr.Calendar.current ~D[2019-01-01], :day
~D[2019-01-01]

 Link to this function

 date_from_iso_days(iso_day_number, calendar)

 View Source

 Specs

 date_from_iso_days(Calendar.iso_days() | iso_day_number(), calendar()) ::
 Date.t()

Returns a date represented by a number of
days since the start of the epoch.
The start of the epoch is the date
0000-01-01.

 Argumenets

	iso_days is an integer representing the
number of days since the start of the epoch.

	calendar is any module that implements
the Calendar and Cldr.Calendar behaviours

 Returns

	a Date.t()

 Example

iex> Cldr.Calendar.date_from_iso_days 737425, Calendar.ISO
~D[2019-01-01]

iex> Cldr.Calendar.date_from_iso_days 366, Calendar.ISO
~D[0001-01-01]

iex> Cldr.Calendar.date_from_iso_days 0, Calendar.ISO
~D[0000-01-01]

 Link to this function

 date_from_tuple(arg, calendar)

 View Source

Returns a Date.t from a date tuple of
{year, month, day} and a calendar.

 Arguments

	{year, month, day} is a tuple
representing a date

	calendar is any module implementing
the Calendar and Cldr.Calendar
behaviours

 Returns

	a Date.t

 Examples

iex> Cldr.Calendar.date_from_tuple {2019, 3, 25}, Cldr.Calendar.Gregorian
%Date{calendar: Cldr.Calendar.Gregorian, day: 25, month: 3, year: 2019}

iex> Cldr.Calendar.date_from_tuple {2019, 2, 29}, Cldr.Calendar.Gregorian
{:error, :invalid_date}

 Link to this function

 date_to_iso_days(date)

 View Source

 Specs

 date_to_iso_days(Date.t()) :: iso_day_number()

Returns the number of days since the start
of the epoch.
The start of the epoch is the date 0000-01-01.

 Argumenets

	date is any Date.t()

 Returns

	The integer number of days since the epoch
for the given date.

 Example

iex> Cldr.Calendar.date_to_iso_days ~D[2019-01-01]
737425

iex> Cldr.Calendar.date_to_iso_days ~D[0001-01-01]
366

iex> Cldr.Calendar.date_to_iso_days ~D[0000-01-01]
0

 Link to this function

 date_to_string(date)

 View Source

 Specs

 date_to_string(Date.t()) :: String.t()

Formats a date into a string representation
Note that the output is not decorated with
the calendar module name.

 Example

iex> Cldr.Calendar.date_to_string ~D[2019-12-04]
"2019-12-04"

iex> Cldr.Calendar.date_to_string ~D[2019-23-04 Cldr.Calendar.NRF]
"2019-W23-4"

 Link to this function

 day_of_era(date)

 View Source

 Specs

 day_of_era(Date.t()) :: {Calendar.day(), Calendar.era()}

Returns the {day_of_era, era} for
a date.

 Arguments

	date is any Date.t()

 Returns

	a the days since the start of the era and
the era of the year as a tuple

 Examples

iex> Cldr.Calendar.day_of_era ~D[2019-01-01]
{737060, 1}

iex> Cldr.Calendar.day_of_era Cldr.Calendar.first_day_of_year(2019, Cldr.Calendar.NRF)
{737093, 1}

iex> Cldr.Calendar.day_of_era Cldr.Calendar.last_day_of_year(2019, Cldr.Calendar.NRF)
{737456, 1}

 Link to this function

 day_of_week(date)

 View Source

See Date.day_of_week/1.

 Link to this function

 day_of_year(date)

 View Source

 Specs

 day_of_year(Date.t()) :: Calendar.day()

Returns the day of the year
for a date.

 Arguments

	date is any Date.t()

 Returns

	a the day of the year as an
integer

 Examples

iex> Cldr.Calendar.day_of_year ~D[2019-01-01]
1
iex> Cldr.Calendar.day_of_year ~D[2016-12-31]
366
iex> Cldr.Calendar.day_of_year ~D[2019-12-31]
365
iex> Cldr.Calendar.day_of_year ~D[2019-52-07 Cldr.Calendar.NRF]
365
iex> Cldr.Calendar.day_of_year ~D[2012-53-07 Cldr.Calendar.NRF]
372

 Link to this function

 days_in_month(date)

 View Source

See Date.days_in_month/1.

 Link to this function

 default_calendar()

 View Source

Returns the default calendar.

 Link to this function

 first_day_for_locale(locale)

 View Source

Returns the first day of a week for a given
locale.
Note that the first of the first week is commonly
not aligned with the first day of the year.

 Link to this function

 first_day_for_locale(locale, options \\ [])

 View Source

 Link to this function

 first_day_for_territory(territory)

 View Source

 Link to this function

 first_day_of_year(map)

 View Source

 Specs

 first_day_of_year(date :: Date.t()) :: Date.t()

Returns the first date of a year
for a Date.t.

 Arguments

	date is any Date.t()

 Returns

	a Date.t() or

	{:error, :invalid_date}

 Examples

iex> Cldr.Calendar.first_day_of_year ~D[2019-12-01]
~D[2019-01-01]

 Link to this function

 first_day_of_year(year, calendar)

 View Source

 Specs

 first_day_of_year(year :: Calendar.year(), calendar :: calendar()) :: Date.t()

Returns the first date of a year
in a calendar.

 Arguments

	year is any year

	calendar is any module that implements
the Calendar and Cldr.Calendar
behaviours

 Returns

	a Date.t() or

	{:error, :invalid_date}

 Examples

iex> Cldr.Calendar.first_day_of_year 2019, Cldr.Calendar.Gregorian
%Date{calendar: Cldr.Calendar.Gregorian, day: 1, month: 1, year: 2019}

iex> Cldr.Calendar.first_day_of_year 2019, Cldr.Calendar.NRF
%Date{calendar: Cldr.Calendar.NRF, day: 1, month: 1, year: 2019}

 Link to this function

 first_gregorian_day_of_year(map)

 View Source

 Link to this function

 first_gregorian_day_of_year(year, calendar)

 View Source

 Specs

 first_gregorian_day_of_year(Calendar.year(), calendar()) ::
 Date.t() | {:error, :invalid_date}

Returns the gregorian date of the first day of of a year
for a calendar.

 Arguments

	year is any integer year number

	calendar is any module that implements the Calendar and
Cldr.Calendar behaviours or Calendar.ISO

 Examples

iex> Cldr.Calendar.first_gregorian_day_of_year 2019, Cldr.Calendar.Gregorian
%Date{calendar: Cldr.Calendar.Gregorian, day: 1, month: 1, year: 2019}

iex> Cldr.Calendar.first_gregorian_day_of_year 2019, Cldr.Calendar.NRF
%Date{calendar: Cldr.Calendar.Gregorian, day: 3, month: 2, year: 2019}

iex> Cldr.Calendar.first_gregorian_day_of_year ~D[2019-12-01]
~D[2019-01-01]

 Link to this function

 friday()

 View Source

 Specs

 friday() :: 5

Returns the ordinal day number representing
Friday.

 Link to this function

 inspect(term, opts \\ [])

 View Source

 Specs

 inspect(term(), list()) :: Inspect.Algebra.t()

An inspect_fun/2 that can be configured in
Inspect.Opts supporting inspection of user-defined
calendars.
This function can be configured in IEx for Elixir version 1.9
and later by:
IEx.configure(inspect: [inspect_fun: &Cldr.Calendar.inspect/2])
:ok

 Link to this function

 interval(date_from, count, precision)

 View Source

 Specs

 interval(
 date_from :: Date.t(),
 date_to_or_count :: Date.t() | non_neg_integer(),
 precision()
) :: [Date.t()]

Returns an Enumerable list of dates of a given precision
of either :years, :quarters, :months, :weeks or
:days

 Arguments

	date_from is a any Date.t that is the start of the
sequence

	date_to_or_count is upper bound of the sequence
as a Date.t or the number of dates in the
sequence to be generated

	precision is one of :years, :quarters,
:months, :weeks or :days

The sequence is generated starting with date_from until the next date
in the sequence would be after date_to.

 Notes

The sequence can be in ascending or descending date order
based upon whether date_from is greater than date_to.

 Returns

	A list of dates

 Examples

iex> d = ~D[2019-01-31]
~D[2019-01-31]
iex> d2 = ~D[2019-05-31]
~D[2019-05-31]
iex> Cldr.Calendar.interval d, 3, :months
[~D[2019-01-31], ~D[2019-02-28], ~D[2019-03-31]]
iex> Cldr.Calendar.interval d, d2, :months
[~D[2019-01-31], ~D[2019-02-28], ~D[2019-03-31],
 ~D[2019-04-30], ~D[2019-05-31]]

 Link to this function

 interval_stream(date_from, count, precision)

 View Source

 Specs

 interval_stream(
 date_from :: Date.t(),
 date_to_or_count :: Date.t() | non_neg_integer(),
 precision()
) :: (... -> any())

Returns an a Stream function than can be lazily
enumerated.
This function has the same arguments and provides
the same functionality as interval/3 exept that
it is lazily evaluated.

 Arguments

	date_from is a any Date.t that is the start of the
sequence

	date_to_or_count is upper bound of the sequence
as a Date.t or the number of dates in the
sequence to be generated

	precision is one of :years, :quarters,
:months, :weeks or :days

The sequence is generated starting with date_from until the next date
in the sequence would be after date_to.

 Notes

The sequence can be in ascending or descending date order
based upon whether date_from is greater than date_to.

 Returns

	A list of dates

 Examples

iex> d = ~D[2019-01-31]
~D[2019-01-31]
iex> d2 = ~D[2019-05-31]
~D[2019-05-31]
iex> Cldr.Calendar.interval_stream(d, 3, :months) |> Enum.to_list
[~D[2019-01-31], ~D[2019-02-28], ~D[2019-03-31]]
iex> Cldr.Calendar.interval_stream(d, d2, :months) |> Enum.to_list
[~D[2019-01-31], ~D[2019-02-28], ~D[2019-03-31],
 ~D[2019-04-30], ~D[2019-05-31]]

 Link to this function

 iso_days_to_day_of_week(iso_day_number)

 View Source

 Specs

 iso_days_to_day_of_week(Calendar.iso_days() | Calendar.day()) :: day_of_week()

Returns the day of the week for a given
iso_day_number

 Arguments

	iso_day_number is the number of days since the start
of the epoch. See Cldr.Calendar.date_to_iso_days/1

 Returns

	An integer representing a day of the week where Monday
is represented by 1 and Sunday is represented by 7

 Examples

iex> days = Cldr.Calendar.date_to_iso_days ~D[2019-01-01]
iex> Cldr.Calendar.iso_days_to_day_of_week(days) == Cldr.Calendar.tuesday
true

 Link to this function

 iso_week_of_year(date)

 View Source

 Specs

 iso_week_of_year(Date.t()) :: {Calendar.year(), week()}

Returns the ISO week number for
a date.

 Arguments

	date is any Date.t()

 Returns

	a the ISO week of the year as an
integer or

	{:error, :not_defined} is the calendar
does not support the concept of weeks.

 Examples

iex> Cldr.Calendar.iso_week_of_year ~D[2019-01-01]
{2019, 1}
iex> Cldr.Calendar.iso_week_of_year ~D[2019-02-01]
{2019, 5}
iex> Cldr.Calendar.iso_week_of_year ~D[2019-52-01 Cldr.Calendar.NRF]
{2020, 4}
iex> Cldr.Calendar.iso_week_of_year ~D[2019-26-01 Cldr.Calendar.NRF]
{2019, 30}
iex> Cldr.Calendar.iso_week_of_year ~D[2019-12-01 Cldr.Calendar.Julian]
{:error, :not_defined}

 Link to this function

 last_day_of_year(map)

 View Source

 Specs

 last_day_of_year(date :: Date.t()) :: Date.t()

Returns the last date of a year
for a Date.t.

 Arguments

	date is any Date.t()

 Returns

	a Date.t() or

	{:error, :invalid_date}

 Examples

iex> Cldr.Calendar.last_day_of_year ~D[2019-01-01]
~D[2019-12-31]

 Link to this function

 last_day_of_year(year, calendar)

 View Source

 Specs

 last_day_of_year(year :: Calendar.year(), calendar :: calendar()) :: Date.t()

Returns the last date of a year
for a calendar.

 Arguments

	year is any year

	calendar is any module that implements
the Calendar and Cldr.Calendar
behaviours

 Returns

	a Date.t() or

	{:error, :invalid_date}

 Examples

iex> Cldr.Calendar.last_day_of_year(2019, Cldr.Calendar.Gregorian)
%Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 12, year: 2019}

iex> Cldr.Calendar.last_day_of_year(2019, Cldr.Calendar.NRF)
%Date{calendar: Cldr.Calendar.NRF, day: 7, month: 52, year: 2019}

 Link to this function

 last_gregorian_day_of_year(map)

 View Source

 Link to this function

 last_gregorian_day_of_year(year, calendar)

 View Source

 Specs

 last_gregorian_day_of_year(Calendar.year(), calendar()) ::
 Date.t() | {:error, :invalid_date}

Returns the gregorian date of the first day of a year
for a calendar.

 Arguments

	year is any integer year number

	calendar is any module that implements the Calendar and
Cldr.Calendar behaviours or Calendar.ISO

 Examples

iex> Cldr.Calendar.last_gregorian_day_of_year 2019, Cldr.Calendar.Gregorian
%Date{calendar: Cldr.Calendar.Gregorian, day: 31, month: 12, year: 2019}

iex> Cldr.Calendar.last_gregorian_day_of_year 2019, Cldr.Calendar.NRF
%Date{calendar: Cldr.Calendar.Gregorian, day: 1, month: 2, year: 2020}

iex> Cldr.Calendar.last_gregorian_day_of_year ~D[2019-12-01]
~D[2019-12-31]

 Link to this function

 localize(date, part, options \\ [])

 View Source

 Specs

 localize(Date.t(), atom(), Keyword.t()) ::
 String.t() | {:error, {module(), String.t()}}

Returns a localized string for a part of
a Date.t.

 Arguments

	date_ is any Date.t

	part is one of :era, :quarter, :month,
:day_of_week or :days_of_week

	options is a Keyword list of options

 Options

	:locale is any valid locale name in the list returned by
Cldr.known_locale_names/1 or a Cldr.LanguageTag struct
returned by Cldr.Locale.new!/2. The default is Cldr.get_locale().

	backend is any module that includes use Cldr and therefore
is a Cldr backend module. The default is default_backend/0.

	:format is one of :wide, :abbreviated or :narrow. The
default is :abbreviated.

 Returns

	A string representing the localized date part, or

	A list of strings representing the days of the week for
the part :days_of_week. The days are in week order for
the given date's calendar

	{error, {exception_module, message}} if an error is detected

 Examples

iex> Cldr.Calendar.localize ~D[2019-01-01], :era
"AD"

iex> Cldr.Calendar.localize ~D[2019-01-01], :day_of_week
"Tue"

iex> Cldr.Calendar.localize ~D[0001-01-01], :day_of_week
"Mon"

iex> Cldr.Calendar.localize ~D[2019-01-01], :days_of_week
[{1, "Mon"}, {2, "Tue"}, {3, "Wed"}, {4, "Thu"}, {5, "Fri"}, {6, "Sat"}, {7, "Sun"}]

iex> Cldr.Calendar.localize ~D[2019-06-01], :era
"AD"

iex> Cldr.Calendar.localize ~D[2019-06-01], :quarter
"Q2"

iex> Cldr.Calendar.localize ~D[2019-06-01], :month
"Jun"

iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week
"Sat"

iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week, format: :wide
"Saturday"

iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week, format: :narrow
"S"

iex> Cldr.Calendar.localize ~D[2019-06-01], :day_of_week, locale: "ar"
"السبت"

 Link to this function

 min_days_for_locale(locale)

 View Source

Returns the minimum days in the first week of a year
for a given locale.

 Link to this function

 min_days_for_locale(locale, options \\ [])

 View Source

 Link to this function

 min_days_for_territory(territory)

 View Source

 Link to this function

 minus(date, period, amount, options \\ [])

 View Source

Decrements a date or date range by an
integer amount of a date period (year,
quarter, month, week or day).

 Arguments

	date_or_date_range is any Date.t or
Date.Range.t

	period is :year, :quarter, :month,
:week or :day

	options is a Keyword list of options

 Options

	:coerce is a boolean which, when set to true
will coerce the month and/or day to be a valid date.
This affects,for example, moving to the previous month
from ~D[2019-03-31]. Sincce there is no date ~D[2019-02-31]
this would normally return {:error, :invalid_date}.
Setting coerce: true it will return ~D[2019-02-28].

 Returns

When a Date.t is passed, a Date.t is
returned. When a Date.Range.t is passed
a Date.Range.t is returned.

 Examples

iex> Cldr.Calendar.minus ~D[2016-03-01], :days, 1
~D[2016-02-29]

iex> Cldr.Calendar.minus ~D[2019-03-01], :months, 1
~D[2019-02-01]

iex> Cldr.Calendar.minus ~D[2016-03-01], :days, 1
~D[2016-02-29]

iex> Cldr.Calendar.minus ~D[2019-03-01], :days, 1
~D[2019-02-28]

iex> Cldr.Calendar.minus ~D[2019-03-01], :months, 1
~D[2019-02-01]

iex> Cldr.Calendar.minus ~D[2019-03-01], :quarters, 1
~D[2018-12-01]

iex> Cldr.Calendar.minus ~D[2019-03-01], :years, 1
~D[2018-03-01]

 Link to this function

 modified_julian_day(date)

 View Source

Returns the Modified Julian Day of
a Date.t.

 Arguments

	date is any Date.t()

 Returns

	an integer number representing the
Modified Julian Day of the date

 Notes

The Modified Julian Day is the number of days
since November 17, 1858. Therefore this function
only returns valid values for dates after this
date.

 Examples

iex> Cldr.Calendar.modified_julian_day ~D[2019-01-01]
58484

 Link to this function

 monday()

 View Source

 Specs

 monday() :: 1

Returns the ordinal day number representing
Monday

 Link to this function

 month_of_year(date)

 View Source

 Specs

 month_of_year(Date.t()) :: Calendar.month()

Returns the month number for
a date.

 Arguments

	date is any Date.t()

 Returns

	a the quarter of the year as an
integer

 Examples

iex> Cldr.Calendar.month_of_year ~D[2019-01-01]
1
iex> Cldr.Calendar.month_of_year ~D[2019-12-01]
12
iex> Cldr.Calendar.month_of_year ~D[2019-52-01 Cldr.Calendar.NRF]
12
iex> Cldr.Calendar.month_of_year ~D[2019-26-01 Cldr.Calendar.NRF]
6

 Link to this function

 months_in_year(date)

 View Source

See Date.months_in_year/1.

 Link to this function

 new(calendar_module, calendar_type, config)

 View Source

 Specs

 new(module(), calendar_type(), Keyword.t()) ::
 {:ok, calendar()} | {:module_already_exists, module()}

Creates a new calendar based upon the provided configuration.
If a module exists with the calendar_module name then it
is returned, not recreated.

 Arguments

	calendar_module is am atom representing the module
name of the created calendar.

	calendar_type is an atom of either :month or
:week indicating whcih type of calendar is to
be created

	config is a Keyword list defining the configuration
of the calendar.

 Returns

	{:ok, module} where module is the new calendar
module that conforms to the Calendar and Cldr.Calendar
behaviours or

	{:module_already_exists, module} if a module of the given
calendar name already exists. It is not guaranteed
that the module is in fact a calendar module in this case.

 Configuration options

The following options can be provided to create
a new calendar.
	:cldr_backend defines a default
backend module to be used for this calendar.
The default is nil.

	:weeks_in_month defines the layout of
weeks in a quarter for a week- or month-
based calendar. The value must be one of
[4, 4, 5], [4,5,4] or [5,4,4].
The default is [4,4,5]. This option
is ignored for :month based calendars
that have the parameter day_of_year: :first.

	:begins_or_ends determines whether the calendar
year begins or ends on the given :day_of_week and
:month_of_year. The default is :begins.

	:first_or_last determines whether the calendar
year starts (or ends) on the first, last or nearest
:day-of_week and :month_of_year. The default
is :first

	:day_of_week determines the day
of the week on which this calendar begins
or ends. It may be a number in the range
1..7 representing Monday to Sunday.
It may also be :first indicating the
the weeks are calculated from the first
day of the calendar day irrespective of
the day of the week. In this case the last
week of the year may be less than 7 days
in length. The default is 1.

	:month_of_year determines the Cldr.Calendar.Gregorian
month of year in which this calendar begins
or ends. The default is 1.

	:year is used to determine which calendar
Greogian year is applicable for a given
calendar date. The valid options are :first,
:last and majority. The default is
:majority.

	:min_days_in_first_week is used to determine
how many days of the Cldr.Calendar.Gregorian year must be in
the first week of a calendar year. This is used
when determining when the year starts for week-based
years. The default is 4 which is consistent with
the ISO Week calendar

 Examples

Each calendar has a function __config__/0 generated within
it and therefore the configuraiton of the included calendars
in ex_cldr_calendars provide insight into the behaviour
of the configuration parameters.
As an example here we define the ISO Week calendar
calendar in full:
defmodule ISOWeek do
 use Cldr.Calendar.Base.Week,
 day_of_week: 1, # Weeks begin or end on Monday
 month_of_year: 1, # Years begin or end in January
 min_days_in_first_week, 4, # 4 Cldr.Calendar.Gregorian days of the year must be in the first week
 begins_or_ends: :begins, # The year *begins* on the `day_of_week` and `month_of_year`
 first_or_last: :first, # They year *begins* on the *first* `day_of_week` and `month_of_year`
 weeks_in_month: [4, 5, 4], # The weeks are laid out as *months* in a `[4,5,4]` pattern
 year: :majority, # Any given year is that in which the majority of Cldr.Calendar.Gregorian months fall
 cldr_backend: nil, # No default `cldr_backend` is configured.
 locale: nil # No `locale` is used to aid configuration
end
This can be generated at runtime by:
 iex> Cldr.Calendar.new ISOWeek, :week,
 ...> day_of_week: 1,
 ...> month_of_year: 1,
 ...> min_days_in_first_week: 4,
 ...> begins_or_ends: :begins,
 ...> first_or_last: :first,
 ...> weeks_in_month: [4, 5, 4],
 ...> year: :majority,
 ...> cldr_backend: nil
 {:ok, ISOWeek}
Note that Cldr.Calendar.ISOWeek is included as part of this
library.

 Link to this function

 next(date_or_date_range, date_part, options \\ [])

 View Source

Returns the next date or date range for
a date period (year, quarter, month, week
or day).

 Arguments

	date_or_date_range is any Date.t or
Date.Range.t

	period is :year, :quarter, :month,
:week or :day

 Returns

When a Date.t is passed, a Date.t is
returned. When a Date.Range.t is passed
a Date.Range.t is returned.

 Examples

iex> Cldr.Calendar.next ~D[2019-01-01], :day
~D[2019-01-02]

iex> Cldr.Calendar.next ~D[2019-01-01], :month
~D[2019-02-01]

iex> Cldr.Calendar.next ~D[2019-01-01], :quarter
~D[2019-04-01]

iex> Cldr.Calendar.next ~D[2019-01-01], :year
~D[2020-01-01]

 Link to this function

 plus(value, increment)

 View Source

 Specs

 plus(integer(), integer()) :: integer()

 plus(Calendar.date(), Cldr.Calendar.Duration.t()) :: Calendar.date()

Adds a duration to a date

 Arguments

	date is any map that conforms to
Calendar.date()

	duration is any duration returned
by Cldr.Calendar.Duration.new!/2

	options is a Keyword list of
options

 Options

	Options are those applicatable to
Cldr.Calendar.plus/4

 Returns

	A date advanced by the duration

 Examples

iex> Cldr.Calendar.plus ~D[2020-01-01],
...> Cldr.Calendar.Duration.new!(~D[2020-01-01], ~D[2020-02-01])
~D[2020-02-01]

iex> Cldr.Calendar.plus ~D[2020-01-01],
...> Cldr.Calendar.Duration.new!(~D[2020-01-01], ~D[2020-01-02])
~D[2020-01-02]

iex> Cldr.Calendar.plus ~D[2020-01-01],
...> Cldr.Calendar.Duration.new!(~D[2020-01-01], ~D[2020-02-01])
~D[2020-02-01]

iex> Cldr.Calendar.plus ~D[2020-01-01],
...> Cldr.Calendar.Duration.new!(~D[2020-01-01], ~D[2021-02-01])
~D[2021-02-01]

 Link to this function

 plus(date, duration, options)

 View Source

 Link to this function

 plus(date, period, increment, options \\ [])

 View Source

 Specs

 plus(Calendar.date() | Date.Range.t(), atom(), integer(), Keyword.t()) ::
 Calendar.date()

Increments a date or date range by an
integer amount of a date period (year,
quarter, month, week or day).

 Arguments

	date_or_date_range is any Date.t or
Date.Range.t

	period is :year, :quarter, :month,
:week or :day

	options is a Keyword list of options

 Options

	:coerce is a boolean which, when set to true
will coerce the month and/or day to be a valid date.
This affects,for example, moving to the previous month
from ~D[2019-03-31]. Sincce there is no date ~D[2019-02-31]
this would normally return {:error, :invalid_date}.
Setting coerce: true it will return ~D[2019-02-28].

 Returns

When a Date.t is passed, a Date.t is
returned. When a Date.Range.t is passed
a Date.Range.t is returned.

 Examples

iex> Cldr.Calendar.plus ~D[2016-02-29], :days, 1
~D[2016-03-01]

iex> Cldr.Calendar.plus ~D[2019-03-01], :months, 1
~D[2019-04-01]

iex> Cldr.Calendar.plus ~D[2016-02-29], :days, 1
~D[2016-03-01]

iex> Cldr.Calendar.plus ~D[2019-02-28], :days, 1
~D[2019-03-01]

iex> Cldr.Calendar.plus ~D[2019-03-01], :months, 1
~D[2019-04-01]

iex> Cldr.Calendar.plus ~D[2019-03-01], :quarters, 1
~D[2019-06-01]

iex> Cldr.Calendar.plus ~D[2019-03-01], :years, 1
~D[2020-03-01]

 Link to this function

 previous(date_or_date_range, date_part, options \\ [])

 View Source

Returns the previous date or date range for
a date period (year, quarter, month, week
or day).

 Arguments

	date_or_date_range is any Date.t or
Date.Range.t

	period is :year, :quarter, :month,
:week or :day

	options is a Keyword list of options that is
passed to plus/4 or minus/4

 Returns

When a Date.t is passed, a Date.t is
returned. When a Date.Range.t is passed
a Date.Range.t is returned.

 Examples

iex> Cldr.Calendar.previous ~D[2019-01-01], :day
~D[2018-12-31]

iex> Cldr.Calendar.previous ~D[2019-01-01], :quarter
~D[2018-10-01]

iex> Cldr.Calendar.previous ~D[2019-01-01], :month
~D[2018-12-01]

iex> Cldr.Calendar.previous ~D[2019-01-01], :year
~D[2018-01-01]

 Link to this function

 quarter_of_year(date)

 View Source

 Specs

 quarter_of_year(Date.t()) :: quarter()

Returns the quarter number for
a date.

 Arguments

	date is any Date.t()

 Returns

	a the quarter of the year as an
integer

 Examples

iex> Cldr.Calendar.quarter_of_year ~D[2019-01-01]
1

iex> Cldr.Calendar.quarter_of_year Cldr.Calendar.first_day_of_year(2019, Cldr.Calendar.NRF)
1

iex> Cldr.Calendar.quarter_of_year Cldr.Calendar.last_day_of_year(2019, Cldr.Calendar.NRF)
4

 Link to this function

 same_as_default?(config)

 View Source

 Link to this function

 saturday()

 View Source

 Specs

 saturday() :: 6

Returns the ordinal day number representing
Saturday.

 Link to this function

 sunday()

 View Source

 Specs

 sunday() :: 7

Returns the ordinal day number representing
Sunday.

 Link to this function

 thursday()

 View Source

 Specs

 thursday() :: 4

Returns the ordinal day number representing
Thursday.

 Link to this function

 tuesday()

 View Source

 Specs

 tuesday() :: 2

Returns the ordinal day number representing
Tuesday.

 Link to this function

 validate_calendar(calendar_module)

 View Source

Validates if the argument is a Cldr.Calendar
calendar module.

 Arguments

	calendar_module is a module that implements the
Cldr.Calendar behaviour

 Returns

	{:ok, calendar_module} or

	{:error, {exception, reason}}

 Examples

iex> Cldr.Calendar.validate_calendar Cldr.Calendar.Gregorian
{:ok, Cldr.Calendar.Gregorian}

iex> Cldr.Calendar.validate_calendar :not_a_calendar
{:error,
 {Cldr.InvalidCalendarModule, ":not_a_calendar is not a calendar module."}}

 Link to this function

 wednesday()

 View Source

 Specs

 wednesday() :: 3

Returns the ordinal day number representing
Wednesday.

 Link to this function

 week_of_month(date)

 View Source

 Specs

 week_of_month(Date.t()) :: {Calendar.month(), week()}

Returns the {month, week_number}
for a date.
The nature of a week depends on the
calendar configuration and therefore
some results may be surprising. For example
the date of December 31st 2018 is actually
in month one of the ISO Week calendar of
2019.

 Arguments

	date is any Date.t()

 Returns

	a tuple of the form {month, week} or

	{:error, :not_defined} if the calendar
does not support the concept of weeks.

 Examples

iex> Cldr.Calendar.week_of_month(~D[2019-01-01])
{1, 1}
iex> Cldr.Calendar.week_of_month(~D[2018-12-31])
{1, 1}
iex> Cldr.Calendar.week_of_month(~D[2019-01-01 Cldr.Calendar.BasicWeek])
{1, 1}
iex> Cldr.Calendar.week_of_month(~D[2018-12-31 Cldr.Calendar.BasicWeek])
{12, 5}
iex> Cldr.Calendar.week_of_month(~D[2018-12-31 Cldr.Calendar.Julian])
{:error, :not_defined}

 Link to this function

 week_of_year(date)

 View Source

 Specs

 week_of_year(Date.t()) :: {Calendar.year(), week()}

Returns the {year, week_number}
for a date.

 Arguments

	date is any Date.t()

 Returns

	a the week of the year as an
integer or

	{:error, :not_defined} if the calendar
does not support the concept of weeks.

 Examples

iex> Cldr.Calendar.week_of_year ~D[2019-01-01]
{2019, 1}
iex> Cldr.Calendar.week_of_year ~D[2019-12-01]
{2019, 48}
iex> Cldr.Calendar.week_of_year ~D[2019-52-01 Cldr.Calendar.NRF]
{2019, 52}
iex> Cldr.Calendar.week_of_year ~D[2019-26-01 Cldr.Calendar.NRF]
{2019, 26}
iex> Cldr.Calendar.week_of_year ~D[2019-12-01 Cldr.Calendar.Julian]
{:error, :not_defined}

 Link to this function

 weekday?(date, options \\ [])

 View Source

 Specs

 weekday?(Date.t(), Keyword.t()) :: boolean() | {:error, {module(), String.t()}}

Returns whether a given date is a weekday.
Weekdays are locale-specific and depend on
the policies of a given territory (country).

 Arguments

	date is any Date.t()

	options is a Keyword list of options

 Options

	:locale is any locale or locale name validated
by Cldr.validate_locale/2. The default is
Cldr.get_locale() which returns the locale
set for the current process

	:territory is any valid ISO-3166-2 territory
that is validated by Cldr.validate_territory/1

	:backend is any Cldr backend module. See the
backend configuration
documentation for further information. The default
is Cldr.Calendar.Backend.Default which configures
only the en locale.

 Notes

When identifying which territory context within which
to determine whether a given day is a weekday or not
the following order applies:
	A territory specified by the :territory option

	The territory defined as part of the :locale option

	The territory defined as part of the current processes
default locale.

 Examples

The defalt locale for `Cldr` is `en-001` for which
the territory is `001` (the world). The weekdays
for `001` are Monday to Friday
iex> Cldr.Calendar.weekday? ~D[2019-03-23], locale: "en"
false

iex> Cldr.Calendar.weekday? ~D[2019-03-23], territory: "IS"
false

Saturday is a weekday in India
iex> Cldr.Calendar.weekday? ~D[2019-03-23], locale: "en-IN", backend: MyApp.Cldr
true

Friday is not a weekday in Saudi Arabia
iex> Cldr.Calendar.weekday? ~D[2019-03-22], locale: "ar-SA", backend: MyApp.Cldr
false

Friday is not a weekday in Israel
iex> Cldr.Calendar.weekday? ~D[2019-03-22], locale: "he", backend: MyApp.Cldr
false

 Link to this function

 weekdays(territory)

 View Source

Returns a list of the days of the week that
are considered a weekend for a given
territory (country)

 Arguments

	territory is any valid ISO3166-2 code

 Returns

	A list of integers representing the days of
the week that are week days

 Notes

The list of days may not my monotonic. See
the example for Saudi Arabia below.

 Examples

iex> Cldr.Calendar.weekdays("US")
[1, 2, 3, 4, 5]

iex> Cldr.Calendar.weekdays("IN")
[1, 2, 3, 4, 5, 6]

iex> Cldr.Calendar.weekdays("SA")
[1, 2, 3, 4, 7]

iex> Cldr.Calendar.weekdays("xx")
{:error, {Cldr.UnknownTerritoryError, "The territory :XX is unknown"}}

 Link to this function

 weekend(territory)

 View Source

Returns a list of the days of the week that
are considered a weekend for a given
territory (country)

 Arguments

	territory is any valid ISO3166-2 code

 Returns

	A list of integers representing the days of
the week that are weekend days

 Examples

iex> Cldr.Calendar.weekend("US")
[6, 7]

iex> Cldr.Calendar.weekend("IN")
[7]

iex> Cldr.Calendar.weekend("SA")
[5, 6]

iex> Cldr.Calendar.weekend("xx")
{:error, {Cldr.UnknownTerritoryError, "The territory :XX is unknown"}}

 Link to this function

 weekend?(date, options \\ [])

 View Source

 Specs

 weekend?(Date.t(), Keyword.t()) :: boolean() | {:error, {module(), String.t()}}

Returns whether a given date is a weekend day.
Weekend days are locale-specific and depend on
the policies of a given territory (country).

 Arguments

	date is any Date.t()

	options is a Keyword list of options

 Options

	:locale is any locale or locale name validated
by Cldr.validate_locale/2. The default is
Cldr.get_locale() which returns the locale
set for the current process

	:territory is any valid ISO-3166-2 territory
that is validated by Cldr.validate_territory/1

	:backend is any Cldr backend module. See the
backend configuration
documentation for further information. The default
is Cldr.Calendar.Backend.Default which configures
only the en locale.

 Notes

When identifying which territory context within which
to determine whether a given day is a weekend or not
the following order applies:
	A territory specified by the :territory option

	The territory defined as part of the :locale option

	The territory defined as part of the current processes
default locale.

 Examples

The defalt locale for `Cldr` is `en-001` for which
the territory is `001` (the world). The weekend
for `001` is Saturday and Sunday
iex> Cldr.Calendar.weekend? ~D[2019-03-23]
true

iex> Cldr.Calendar.weekend? ~D[2019-03-23], locale: "en"
true

iex> Cldr.Calendar.weekend? ~D[2019-03-23], territory: "IS"
true

In India the official weekend is only Sunday
iex> Cldr.Calendar.weekend? ~D[2019-03-23], locale: "en-IN", backend: MyApp.Cldr
false

In Israel the weekend starts on Friday
iex> Cldr.Calendar.weekend? ~D[2019-03-22], locale: "he", backend: MyApp.Cldr
true

As it also does in Saudia Arabia
iex> Cldr.Calendar.weekend? ~D[2019-03-22], locale: "ar-SA", backend: MyApp.Cldr
true

Sunday is not a weekend day in Saudi Arabia
iex> Cldr.Calendar.weekend? ~D[2019-03-24], locale: "ar-SA", backend: MyApp.Cldr
false

 Link to this function

 weeks_in_year(map)

 View Source

 Specs

 weeks_in_year(Date.t()) :: week()

Returns the number of weeks
in a year.

 Arguments

	Either a Date.t() or
an integer year a calendar name

 Returns

	In integer number of weeks in a year

 Examples

iex> Cldr.Calendar.weeks_in_year ~D[2026-W01-1 Cldr.Calendar.ISOWeek]
53

iex> Cldr.Calendar.weeks_in_year ~D[2019-01-01]
52

iex> Cldr.Calendar.weeks_in_year ~D[2020-01-01]
52

iex> Cldr.Calendar.weeks_in_year 2020, Cldr.Calendar.ISOWeek
53

 Link to this function

 weeks_in_year(year, calendar)

 View Source

 Specs

 weeks_in_year(Calendar.year(), calendar()) :: week()

 Link to this function

 weeks_to_days(n)

 View Source

 Specs

 weeks_to_days(integer()) :: integer()

Returns the number of days in n weeks

 Example

iex> Cldr.Calendar.weeks_to_days(2)
14

 Anchor for this section

Callbacks

 Link to this callback

 calendar_base()

 View Source

 Specs

 calendar_base() :: :week | :month

Returns the calendar basis.
Returns either :week or :month

 Link to this callback

 cldr_calendar_type()

 View Source

 Specs

 cldr_calendar_type() :: :gregorian | :persian | :coptic | :ethiopic

Returns the CLDR calendar type.
Only algorithmic calendars are considered
in this implementation

 Link to this callback

 days_in_year(year)

 View Source

 Specs

 days_in_year(year :: Calendar.year()) :: Calendar.day()

Returns the number of days in a year

 Link to this callback

 iso_week_of_year(year, month, day)

 View Source

 Specs

 iso_week_of_year(
 year :: Calendar.year(),
 month :: Calendar.month(),
 day :: Calendar.day()
) :: {Calendar.year(), Calendar.week()} | {:error, :not_defined}

Returns a tuple of {year, week_in_year} for a given year, month or week, and day
for a a calendar.
The iso_week_of_year is calculated based on the ISO calendar.

 Link to this callback

 month(year, month)

 View Source

 Specs

 month(year :: Calendar.year(), month :: Calendar.month()) :: Date.Range.t()

Returns a date range representing the days in a
given month for a calendar year.

 Link to this callback

 month_of_year(year, month, day)

 View Source

 Specs

 month_of_year(
 year :: Calendar.year(),
 month :: Calendar.month() | week(),
 day :: Calendar.day()
) :: Calendar.month()

Returns the month for a given year, month or week, and day
for a a calendar.
The month_of_year is calculated based upon the calendar configuration.

 Link to this callback

 periods_in_year(year)

 View Source

 Specs

 periods_in_year(year :: Calendar.year()) :: week() | Calendar.month()

Returns the number of periods (which are
months in a month calendar and weeks in a
week calendar) in a year

 Link to this callback

 plus(year, month, day, months_or_quarters, increment, options)

 View Source

 Specs

 plus(
 year :: Calendar.year(),
 month :: Calendar.month() | week(),
 day :: Calendar.day(),
 months_or_quarters :: :months | :quarters,
 increment :: integer(),
 options :: Keyword.t()
) :: {Calendar.year(), Calendar.month(), Calendar.day()}

Increments a Date.t or Date.Range.t by a specified positive
or negative integer number of periods (year, quarter, month,
week or day).
Calendars need only implement this callback for :months and :quarters
since all other date periods can be derived.

 Link to this callback

 quarter(year, quarter)

 View Source

 Specs

 quarter(year :: Calendar.year(), quarter :: quarter()) :: Date.Range.t()

Returns a date range representing the days in a
given quarter for a calendar year.

 Link to this callback

 week(year, week)

 View Source

 Specs

 week(year :: Calendar.year(), week :: week()) ::
 Date.Range.t() | {:error, :not_defined}

Returns a date range representing the days in a
given week for a calendar year.

 Link to this callback

 week_of_month(arg1, week, arg3)

 View Source

 Specs

 week_of_month(Calendar.year(), week(), Calendar.day()) ::
 {Calendar.month(), week()} | {:error, :not_defined}

Returns a tuple of {month, week_in_month} for a given year, month or week, and day
for a a calendar.
The week_in_month is calculated based upon the calendar configuration.

 Link to this callback

 week_of_year(year, month, day)

 View Source

 Specs

 week_of_year(
 year :: Calendar.year(),
 month :: Calendar.month() | week(),
 day :: Calendar.day()
) :: {Calendar.year(), Calendar.week()} | {:error, :not_defined}

Returns a tuple of {year, week_in_year} for a given year, month or week, and day
for a a calendar.
The week_in_year is calculated based upon the calendar configuration.

 Link to this callback

 weeks_in_year(year)

 View Source

 Specs

 weeks_in_year(year :: Calendar.year()) :: week() | {:error, :not_defined}

Returns the number of weeks in a year

 Link to this callback

 year(year)

 View Source

 Specs

 year(year :: Calendar.year()) :: Date.Range.t()

Returns a date range representing the days in a
calendar year.

Cldr.Calendar.Config

Defines the configuration for a calendar.
See Cldr.Calendar.new/3 for usage details.

 Anchor for this section

 Summary

 Types

 t()

 Defines the struct type for a calendar configuration

 Functions

 first_day_for_locale(backend, options)

 min_days_for_locale(backend, options)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Cldr.Calendar.Config{
 begins_or_ends: :begins | :ends,
 calendar: atom(),
 cldr_backend: Cldr.backend() | nil,
 day_of_week: Cldr.Calendar.day_of_week(),
 first_or_last: :first | :last,
 min_days_in_first_week: 1..7,
 month_of_year: pos_integer(),
 weeks_in_month: [pos_integer()],
 year: :majority | :starts | :ends
}

Defines the struct type for a calendar configuration

 Anchor for this section

Functions

 Link to this function

 first_day_for_locale(backend, options)

 View Source

 Link to this function

 min_days_for_locale(backend, options)

 View Source

Cldr.Calendar.Duration

Functions to create and format a difference between
two dates, times or datetimes.
The difference between two dates (or times or datetimes) is
usually defined in terms of days or seconds.
A duration is calculated as the difference in time in calendar
units: years, months, days, hours, minutes, seconds and microseconds.
This is useful to support formatting a string for users in
easy-to-understand terms. For example 11 months, 3 days and 4 minutes
is a lot easier to understand than 28771440 seconds.
The package ex_cldr_units can
be optionally configured to provide localized formatting of durations.
If configured, the following providers should be configured in the
appropriate CLDR backend module. For example:
defmodule MyApp.Cldr do
 use Cldr,
 locales: ["en", "ja"],
 providers: [Cldr.Calendar, Cldr.Number, Cldr.Unit, Cldr.List]
end

 Anchor for this section

 Summary

 Types

 date_or_time_or_datetime()

 A date, time, naivedatetime or datetime

 interval()

 A interval as either Date.Range.t() CalendarInterval.t()

 t()

 Duration in calendar units

 Functions

 new(arg1)

 Calculates the calendar difference in
a Date.Range or CalendarInterval
returning a Duration struct.

 new(from, to)

 Calculates the calendar difference between two dates
returning a Duration struct.

 new!(interval)

 Calculates the calendar difference in
a Date.Range or CalendarInterval
returning a Duration struct.

 new!(from, to)

 Calculates the calendar difference between two dates
returning a Duration struct.

 to_string(duration, options \\ [])

 Returns a string formatted representation of
a duration.

 to_string!(duration, options \\ [])

 Formats a duration as a string or raises
an exception on error.

 Anchor for this section

Types

 Link to this type

 date_or_time_or_datetime()

 View Source

 Specs

 date_or_time_or_datetime() ::
 Calendar.date()
 | Calendar.time()
 | Calendar.datetime()
 | Calendar.naive_datetime()

A date, time, naivedatetime or datetime

 Link to this type

 interval()

 View Source

 Specs

 interval() :: Date.Range.t() | CalendarInterval.t()

A interval as either Date.Range.t() CalendarInterval.t()

 Link to this type

 t()

 View Source

 Specs

 t() :: %Cldr.Calendar.Duration{
 day: non_neg_integer(),
 hour: non_neg_integer(),
 microsecond: non_neg_integer(),
 minute: non_neg_integer(),
 month: non_neg_integer(),
 second: non_neg_integer(),
 year: non_neg_integer()
}

Duration in calendar units

 Anchor for this section

Functions

 Link to this function

 new(arg1)

 View Source

 Specs

 new(interval()) :: {:ok, t()} | {:error, {module(), String.t()}}

Calculates the calendar difference in
a Date.Range or CalendarInterval
returning a Duration struct.
The difference calculated is in terms of years, months,
days, hours, minutes, seconds and microseconds.

 Arguments

	interval is either Date.Range.t() or a
CalendarInterval.t()

 Returns

	A {:ok, duration} tuple or a

	{:error, {exception, reason}} tuple

 Notes

	CalendarInterval is defined by the most wonderful
calendar_interval
library.

 Example

iex> Cldr.Calendar.Duration.new(Date.range(~D[2019-01-01], ~D[2019-12-31]))
{:ok,
 %Cldr.Calendar.Duration{
 year: 0,
 month: 11,
 day: 30,
 hour: 0,
 microsecond: 0,
 minute: 0,
 second: 0
 }}

 Link to this function

 new(from, to)

 View Source

 Specs

 new(from :: date_or_time_or_datetime(), to :: date_or_time_or_datetime()) ::
 {:ok, t()} | {:error, {module(), String.t()}}

Calculates the calendar difference between two dates
returning a Duration struct.
The difference calculated is in terms of years, months,
days, hours, minutes, seconds and microseconds.

 Arguments

	from is a date, time or datetime representing the
start of the duration.

	to is a date, time or datetime representing the
end of the duration

 Notes

	from must be before or at the same time
as to. In addition, both from and to must
be in the same calendar

	If from and to are datetimes then
they must both be in the same time zone

 Returns

	A {:ok, duration} tuple or a

	{:error, {exception, reason}} tuple

 Example

iex> Cldr.Calendar.Duration.new(~D[2019-01-01], ~D[2019-12-31])
{:ok,
 %Cldr.Calendar.Duration{
 year: 0,
 month: 11,
 day: 30,
 hour: 0,
 microsecond: 0,
 minute: 0,
 second: 0
 }}

 Link to this function

 new!(interval)

 View Source

 Specs

 new!(interval()) :: t() | no_return()

Calculates the calendar difference in
a Date.Range or CalendarInterval
returning a Duration struct.
The difference calculated is in terms of years, months,
days, hours, minutes, seconds and microseconds.

 Arguments

	interval is either Date.Range.t() or a
CalendarInterval.t()

 Returns

	A duration struct or

	raises an exception

 Notes

	CalendarInterval is defined by the most wonderful
calendar_interval
library.

 Example

iex> Cldr.Calendar.Duration.new!(Date.range(~D[2019-01-01], ~D[2019-12-31]))
%Cldr.Calendar.Duration{
 year: 0,
 month: 11,
 day: 30,
 hour: 0,
 microsecond: 0,
 minute: 0,
 second: 0
}

 Link to this function

 new!(from, to)

 View Source

 Specs

 new!(from :: date_or_time_or_datetime(), to :: date_or_time_or_datetime()) ::
 t() | no_return()

Calculates the calendar difference between two dates
returning a Duration struct.
The difference calculated is in terms of years, months,
days, hours, minutes, seconds and microseconds.

 Arguments

	from is a date, time or datetime representing the
start of the duration

	to is a date, time or datetime representing the
end of the duration

Note that from must be before or at the same time
as to. In addition, both from and to must
be in the same calendar.

 Returns

	A duration struct or

	raises an exception

 Example

iex> Cldr.Calendar.Duration.new!(~D[2019-01-01], ~D[2019-12-31])
%Cldr.Calendar.Duration{
 year: 0,
 month: 11,
 day: 30,
 hour: 0,
 microsecond: 0,
 minute: 0,
 second: 0
}

 Link to this function

 to_string(duration, options \\ [])

 View Source

Returns a string formatted representation of
a duration.
Note that time units that are zero are ommitted
from the output.
Formatting is

 Arguments

	duration is a duration of type t() returned
by Cldr.Calendar.Duration.new/2

	options is a Keyword list of options

 Options

	:except is a list of time units to be omitted from
the formatted output. It may be useful to use
except: [:microsecond] for example. The default is
[].

	locale is any valid locale name returned by Cldr.known_locale_names/1
or a Cldr.LanguageTag struct returned by Cldr.Locale.new!/2
The default is Cldr.get_locale/0

	backend is any module that includes use Cldr and therefore
is a Cldr backend module. The default is Cldr.default_backend/0

	:list_options is a list of options passed to Cldr.List.to_string/3 to
control the final list output.

Any other options are passed to Cldr.Number.to_string/3 and
Cldr.Unit.to_string/3 during the formatting process.

 Note

	Any duration parts that are 0 are not output.

 Example

iex> {:ok, duration} = Cldr.Calendar.Duration.new(~D[2019-01-01], ~D[2019-12-31])
iex> Cldr.Calendar.Duration.to_string(duration)
{:ok, "11 months and 30 days"}

 Link to this function

 to_string!(duration, options \\ [])

 View Source

 Specs

 to_string!(t(), Keyword.t()) :: String.t() | no_return()

Formats a duration as a string or raises
an exception on error.

 Arguments

	duration is a duration of type t() returned
by Cldr.Calendar.Duration.new/2

	options is a Keyword list of options

 Options

See Cldr.Calendar.Duration.to_string/2

 Returns

	A formatted string or

	raises an exception

Cldr.Calendar.FiscalYear

 Anchor for this section

 Summary

 Functions

 calendar_for(territory)

 known_fiscal_calendars()

 known_fiscal_years()

 Anchor for this section

Functions

 Link to this function

 calendar_for(territory)

 View Source

 Link to this function

 known_fiscal_calendars()

 View Source

 Link to this function

 known_fiscal_years()

 View Source

Cldr.Calendar.Interval

Implements functions to return intervals and compare
date intervals.
In particular it provides functions which return an
interval (as a Date.Range.t) for years, quarters,
months, weeks and days.
In general, the intervals created with the packaage
calendar_interval
are to be preferred since they can used over different
time precisions whereas the functions in this module are
all intervals of a day. In order to be used with ex_cldr_calendars,
version "~> 0.2" of calendar_interval
is required.
Note however that as of release 0.2, calendar_interval does
not support intervals of quarters or weeks.

 Anchor for this section

 Summary

 Functions

 compare(r1, r2)

 Compare two date ranges.

 day(date)

 Returns a Date.Range.t that represents
the day.

 day(year, day, calendar \\ Cldr.Calendar.Gregorian)

 month(date)

 Returns a Date.Range.t that represents
the year.

 month(year, month, calendar \\ Cldr.Calendar.Gregorian)

 quarter(date)

 Returns a Date.Range.t that represents
the quarter.

 quarter(year, quarter, calendar \\ Cldr.Calendar.Gregorian)

 week(date)

 Returns a Date.Range.t that represents
the year.

 week(year, week, calendar \\ Cldr.Calendar.Gregorian)

 year(date)

 Returns a Date.Range.t that represents
the year.

 year(year, calendar \\ Cldr.Calendar.Gregorian)

 Anchor for this section

Functions

 Link to this function

 compare(r1, r2)

 View Source

 Specs

 compare(range_1 :: Date.Range.t(), range_2 :: Date.Range.t()) ::
 Cldr.Calendar.interval_relation()

Compare two date ranges.
Uses Allen's Interval Algebra
to return one of 13 different relationships:
	Relation	Converse
	:precedes	:preceded_by
	:meets	:met_by
	:overlaps	:overlapped_by
	:finished_by	:finishes
	:contains	:during
	:starts	:started_by
	:equals	:equals

 Arguments

	range_1 is a Date.Range.t

	range_2 is a Date.Range.t

 Returns

An atom representing the relationship between the two ranges.

 Examples

iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-01]),
...> Cldr.Calendar.Interval.day(~D[2019-01-02])
:meets

iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-01]),
...> Cldr.Calendar.Interval.day(~D[2019-01-03])
:precedes

iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-03]),
...> Cldr.Calendar.Interval.day(~D[2019-01-01])
:preceded_by

iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-02]),
...> Cldr.Calendar.Interval.day(~D[2019-01-01])
:met_by

iex> Cldr.Calendar.Interval.compare Cldr.Calendar.Interval.day(~D[2019-01-02]),
...> Cldr.Calendar.Interval.day(~D[2019-01-02])
:equals

 Link to this function

 day(date)

 View Source

 Specs

 day(Date.t()) :: Date.Range.t()

Returns a Date.Range.t that represents
the day.
The range is enumerable.

 Arguments

	year is any year for calendar

	day is any day in the year
for calendar

	calendar is any module that implements
the Calendar and Cldr.Calendar
behaviours. The default is Cldr.Calendar.Gregorian.

 Returns

	A Date.Range.t() representing the
the enumerable days in the week

 Examples

iex> Cldr.Calendar.Interval.day 2019, 52, Cldr.Calendar.Fiscal.US
#DateRange<~D[2019-02-21 Cldr.Calendar.Fiscal.US], ~D[2019-02-21 Cldr.Calendar.Fiscal.US]>

iex> Cldr.Calendar.Interval.day 2019, 92, Cldr.Calendar.NRF
#DateRange<~D[2019-W14-1 Cldr.Calendar.NRF], ~D[2019-W14-1 Cldr.Calendar.NRF]>

Cldr.Calendar.Interval.day 2019, 8, Cldr.Calendar.ISOWeek
#DateRange<%Date{calendar: Cldr.Calendar.ISOWeek, day: 1, month: 2, year: 2019}, %Date{calendar: Cldr.Calendar.ISOWeek, day: 1, month: 2, year: 2019}>

 Link to this function

 day(year, day, calendar \\ Cldr.Calendar.Gregorian)

 View Source

 Specs

 day(Calendar.year(), Calendar.day(), Cldr.Calendar.calendar()) :: Date.Range.t()

 Link to this function

 month(date)

 View Source

 Specs

 month(Date.t()) :: Date.Range.t()

Returns a Date.Range.t that represents
the year.
The range is enumerable.

 Arguments

	year is any year for calendar

	month is any month in the year
for calendar

	calendar is any module that implements
the Calendar and Cldr.Calendar
behaviours. The default is Cldr.Calendar.Gregorian.

 Returns

	A Date.Range.t() representing the
the enumerable days in the month

 Examples

iex> Cldr.Calendar.Interval.month 2019, 3, Cldr.Calendar.Fiscal.UK
#DateRange<~D[2019-03-01 Cldr.Calendar.Fiscal.UK], ~D[2019-03-30 Cldr.Calendar.Fiscal.UK]>

iex> Cldr.Calendar.Interval.month 2019, 3, Cldr.Calendar.Fiscal.US
#DateRange<~D[2019-03-01 Cldr.Calendar.Fiscal.US], ~D[2019-03-31 Cldr.Calendar.Fiscal.US]>

 Link to this function

 month(year, month, calendar \\ Cldr.Calendar.Gregorian)

 View Source

 Specs

 month(Calendar.year(), Calendar.month(), Cldr.Calendar.calendar()) ::
 Date.Range.t()

 Link to this function

 quarter(date)

 View Source

 Specs

 quarter(Date.t()) :: Date.Range.t()

Returns a Date.Range.t that represents
the quarter.
The range is enumerable.

 Arguments

	year is any year for calendar

	quarter is any quarter in the
year for calendar

	calendar is any module that implements
the Calendar and Cldr.Calendar
behaviours. The default is Cldr.Calendar.Gregorian.

 Returns

	A Date.Range.t() representing the
the enumerable days in the quarter

 Examples

iex> Cldr.Calendar.Interval.quarter 2019, 2, Cldr.Calendar.Fiscal.UK
#DateRange<~D[2019-04-01 Cldr.Calendar.Fiscal.UK], ~D[2019-06-30 Cldr.Calendar.Fiscal.UK]>

iex> Cldr.Calendar.Interval.quarter 2019, 2, Cldr.Calendar.ISOWeek
#DateRange<~D[2019-W14-1 Cldr.Calendar.ISOWeek], ~D[2019-W26-7 Cldr.Calendar.ISOWeek]>

 Link to this function

 quarter(year, quarter, calendar \\ Cldr.Calendar.Gregorian)

 View Source

 Specs

 quarter(Calendar.year(), Cldr.Calendar.quarter(), Cldr.Calendar.calendar()) ::
 Date.Range.t()

 Link to this function

 week(date)

 View Source

 Specs

 week(Date.t()) :: Date.Range.t()

Returns a Date.Range.t that represents
the year.
The range is enumerable.

 Arguments

	year is any year for calendar

	week is any week in the year
for calendar

	calendar is any module that implements
the Calendar and Cldr.Calendar
behaviours. The default is Cldr.Calendar.Gregorian.

 Returns

	A Date.Range.t() representing the
the enumerable days in the week or

	{:error, :not_defined} if the calendar
does not support the concept of weeks

 Examples

iex> Cldr.Calendar.Interval.week 2019, 52, Cldr.Calendar.Fiscal.US
#DateRange<~D[2019-12-22 Cldr.Calendar.Fiscal.US], ~D[2019-12-28 Cldr.Calendar.Fiscal.US]>

iex> Cldr.Calendar.Interval.week 2019, 52, Cldr.Calendar.NRF
#DateRange<~D[2019-W52-1 Cldr.Calendar.NRF], ~D[2019-W52-7 Cldr.Calendar.NRF]>

iex> Cldr.Calendar.Interval.week 2019, 52, Cldr.Calendar.ISOWeek
#DateRange<~D[2019-W52-1 Cldr.Calendar.ISOWeek], ~D[2019-W52-7 Cldr.Calendar.ISOWeek]>

iex> Cldr.Calendar.Interval.week 2019, 52, Cldr.Calendar.Julian
{:error, :not_defined}

 Link to this function

 week(year, week, calendar \\ Cldr.Calendar.Gregorian)

 View Source

 Specs

 week(Calendar.year(), Cldr.Calendar.week(), Cldr.Calendar.calendar()) ::
 Date.Range.t()

 Link to this function

 year(date)

 View Source

 Specs

 year(Date.t()) :: Date.Range.t()

Returns a Date.Range.t that represents
the year.
The range is enumerable.

 Arguments

	year is any year for calendar

	calendar is any module that implements
the Calendar and Cldr.Calendar
behaviours. The default is Cldr.Calendar.Gregorian.

 Returns

	A Date.Range.t() representing the
the enumerable days in the year

 Examples

iex> Cldr.Calendar.Interval.year 2019, Cldr.Calendar.Fiscal.UK
#DateRange<~D[2019-01-01 Cldr.Calendar.Fiscal.UK], ~D[2019-12-31 Cldr.Calendar.Fiscal.UK]>

iex> Cldr.Calendar.Interval.year 2019, Cldr.Calendar.NRF
#DateRange<~D[2019-W01-1 Cldr.Calendar.NRF], ~D[2019-W52-7 Cldr.Calendar.NRF]>

 Link to this function

 year(year, calendar \\ Cldr.Calendar.Gregorian)

 View Source

 Specs

 year(Calendar.year(), Cldr.Calendar.calendar()) :: Date.Range.t()

Cldr.Calendar.Julian

 Anchor for this section

 Summary

 Types

 day()

 month()

 year()

 Functions

 calendar_base()

 Identifies that this calendar is month based.

 cldr_calendar_type()

 Defines the CLDR calendar type for this calendar.

 date_from_iso_days(iso_days)

 Returns a {year, month, day} calculated from
the number of iso_days.

 date_to_iso_days(year, month, day)

 Returns the number of days since the calendar
epoch for a given year-month-day

 day_of_era(year, month, day)

 Calculates the day and era from the given year, month, and day.

 day_of_week(year, month, day, atom)

 Calculates the day of the week from the given year, month, and day.
It is an integer from 1 to 7, where 1 is Monday and 7 is Sunday.

 day_of_year(year, month, day)

 Calculates the day of the year from the given year, month, and day.

 days_in_month(year, month)

 Returns how many days there are in the given year-month.

 days_in_week()

 Returns the number days in a a week.

 days_in_year(year)

 Returns the number days in a given year.

 epoch()

 iso_week_of_year(year, month, day)

 Calculates the ISO week of the year from the given year, month, and day.
It is an integer from 1 to 53.

 leap_year?(year)

 Returns if the given year is a leap year.

 month(year, month)

 Returns a Date.Range.t representing
a given month of a year.

 month_of_year(year, month, day)

 Calculates the month of the year from the given year, month, and day.
It is an integer from 1 to 12.

 naive_datetime_from_iso_days(arg)

 Converts the Calendar.iso_days/0 format to the datetime format specified by this calendar.

 naive_datetime_to_iso_days(year, month, day, hour, minute, second, microsecond)

 Returns the Calendar.iso_days/0 format of the specified date.

 periods_in_year(year)

 Calculates the number of period in a given year. A period
corresponds to a month in month-based calendars and
a week in week-based calendars..

 plus(year, month, day, date_part, increment, options \\ [])

 Adds an increment number of date_parts
to a year-month-day.

 quarter(year, quarter)

 Returns a Date.Range.t representing
a given quarter of a year.

 quarter_of_year(year, month, day)

 Calculates the quarter of the year from the given year, month, and day.
It is an integer from 1 to 4.

 valid_date?(year, month, day)

 Determines if the date given is valid according to this calendar.

 week(year, week)

 Returns a Date.Range.t representing
a given week of a year.

 week_of_month(year, month, day)

 Calculates the week of the year from the given year, month, and day.
It is an integer from 1 to 53.

 week_of_year(year, month, day)

 Calculates the week of the year from the given year, month, and day.
It is an integer from 1 to 53.

 year(year)

 Returns a Date.Range.t representing
a given year.

 year_of_era(year)

 Calculates the year and era from the given year.
The ISO calendar has two eras: the current era which
starts in year 1 and is defined as era "1". And a
second era for those years less than 1 defined as
era "0".

 Anchor for this section

Types

 Link to this type

 day()

 View Source

 Specs

 day() :: 1..31

 Link to this type

 month()

 View Source

 Specs

 month() :: 1..12

 Link to this type

 year()

 View Source

 Specs

 year() :: -9999..-1 | 1..9999

 Anchor for this section

Functions

 Link to this function

 calendar_base()

 View Source

Identifies that this calendar is month based.

 Link to this function

 cldr_calendar_type()

 View Source

Defines the CLDR calendar type for this calendar.
This type is used in support of Cldr.Calendar.localize/3.
Currently only :gregorian is supported.

 Link to this function

 date_from_iso_days(iso_days)

 View Source

Returns a {year, month, day} calculated from
the number of iso_days.

 Link to this function

 date_to_iso_days(year, month, day)

 View Source

Returns the number of days since the calendar
epoch for a given year-month-day

 Link to this function

 day_of_era(year, month, day)

 View Source

 Specs

 day_of_era(year(), month(), day()) :: {day :: pos_integer(), era :: 0..1}

Calculates the day and era from the given year, month, and day.

 Link to this function

 day_of_week(year, month, day, atom)

 View Source

 Specs

 day_of_week(year(), month(), day(), 1..7 | :default) ::
 {Calendar.day_of_week(), first_day_of_week :: non_neg_integer(),
 last_day_of_week :: non_neg_integer()}

Calculates the day of the week from the given year, month, and day.
It is an integer from 1 to 7, where 1 is Monday and 7 is Sunday.

 Link to this function

 day_of_year(year, month, day)

 View Source

 Specs

 day_of_year(year(), month(), day()) :: 1..366

Calculates the day of the year from the given year, month, and day.

 Link to this function

 days_in_month(year, month)

 View Source

 Specs

 days_in_month(year(), month()) :: 28..31

Returns how many days there are in the given year-month.

 Link to this function

 days_in_week()

 View Source

Returns the number days in a a week.

 Link to this function

 days_in_year(year)

 View Source

Returns the number days in a given year.

 Link to this function

 epoch()

 View Source

 Link to this function

 iso_week_of_year(year, month, day)

 View Source

 Specs

 iso_week_of_year(year(), month(), day()) :: {:error, :not_defined}

Calculates the ISO week of the year from the given year, month, and day.
It is an integer from 1 to 53.

 Link to this function

 leap_year?(year)

 View Source

 Specs

 leap_year?(year()) :: boolean()

Returns if the given year is a leap year.

 Link to this function

 month(year, month)

 View Source

Returns a Date.Range.t representing
a given month of a year.

 Link to this function

 month_of_year(year, month, day)

 View Source

 Specs

 month_of_year(year(), month(), day()) :: month()

Calculates the month of the year from the given year, month, and day.
It is an integer from 1 to 12.

 Link to this function

 naive_datetime_from_iso_days(arg)

 View Source

 Specs

 naive_datetime_from_iso_days(Calendar.iso_days()) ::
 {Calendar.year(), Calendar.month(), Calendar.day(), Calendar.hour(),
 Calendar.minute(), Calendar.second(), Calendar.microsecond()}

Converts the Calendar.iso_days/0 format to the datetime format specified by this calendar.

 Link to this function

 naive_datetime_to_iso_days(year, month, day, hour, minute, second, microsecond)

 View Source

 Specs

 naive_datetime_to_iso_days(
 Calendar.year(),
 Calendar.month(),
 Calendar.day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond()
) :: Calendar.iso_days()

Returns the Calendar.iso_days/0 format of the specified date.

 Link to this function

 periods_in_year(year)

 View Source

Calculates the number of period in a given year. A period
corresponds to a month in month-based calendars and
a week in week-based calendars..

 Link to this function

 plus(year, month, day, date_part, increment, options \\ [])

 View Source

Adds an increment number of date_parts
to a year-month-day.
date_part can be :quarters
 or:months.

 Link to this function

 quarter(year, quarter)

 View Source

Returns a Date.Range.t representing
a given quarter of a year.

 Link to this function

 quarter_of_year(year, month, day)

 View Source

 Specs

 quarter_of_year(year(), month(), day()) :: 1..4

Calculates the quarter of the year from the given year, month, and day.
It is an integer from 1 to 4.

 Link to this function

 valid_date?(year, month, day)

 View Source

Determines if the date given is valid according to this calendar.

 Link to this function

 week(year, week)

 View Source

Returns a Date.Range.t representing
a given week of a year.

 Link to this function

 week_of_month(year, month, day)

 View Source

 Specs

 week_of_month(year(), month(), day()) ::
 {pos_integer(), pos_integer()} | {:error, :not_defined}

Calculates the week of the year from the given year, month, and day.
It is an integer from 1 to 53.

 Link to this function

 week_of_year(year, month, day)

 View Source

 Specs

 week_of_year(year(), month(), day()) :: {:error, :not_defined}

Calculates the week of the year from the given year, month, and day.
It is an integer from 1 to 53.

 Link to this function

 year(year)

 View Source

Returns a Date.Range.t representing
a given year.

 Link to this function

 year_of_era(year)

 View Source

 Specs

 year_of_era(year()) :: {year(), era :: 0..1}

Calculates the year and era from the given year.
The ISO calendar has two eras: the current era which
starts in year 1 and is defined as era "1". And a
second era for those years less than 1 defined as
era "0".

Cldr.Calendar.Kday

Provide K-Day functions for Dates, DateTimes and NaiveDateTimes.

 Anchor for this section

 Summary

 Functions

 first_kday(date, k)

 Return the date of the first day_of_week on or after the
specified date.

 kday_after(date, k)

 Return the date of the day_of_week after the
specified date.

 kday_before(date, k)

 Return the date of the day_of_week before the
specified date.

 kday_nearest(date, k)

 Return the date of the day_of_week nearest the
specified date.

 kday_on_or_after(date, k)

 Return the date of the day_of_week on or after the
specified date.

 kday_on_or_before(date, k)

 Return the date of the day_of_week on or before the
specified date.

 last_kday(date, k)

 Return the date of the last day_of_week on or before the
specified date.

 nth_kday(date, n, k)

 Return the date of the nth day_of_week on or before/after the
specified date.

 Anchor for this section

Functions

 Link to this function

 first_kday(date, k)

 View Source

 Specs

 first_kday(Calendar.day() | Date.t(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the first day_of_week on or after the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or ISO days

	k is an integer day of the week.

 Returns

	A %Date{”} in the calendar of the date provided as an argument

 Examples

US election day
iex> Cldr.Calendar.Kday.first_kday(~D[2017-11-02], 2)
~D[2017-11-07]

US Daylight savings end
iex> Cldr.Calendar.Kday.first_kday(~D[2017-11-01], 7)
~D[2017-11-05]

 Link to this function

 kday_after(date, k)

 View Source

 Specs

 kday_after(Calendar.day() | Date.t(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the day_of_week after the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or a Rata Die

	k is an integer day of the week.

 Returns

	A %Date{} in the calendar of the date provided as an argument

 Examples

iex> Cldr.Calendar.Kday.kday_after(~D[2016-02-29], 2)
~D[2016-03-01]

iex> Cldr.Calendar.Kday.kday_after(~D[2017-11-30], 1)
~D[2017-12-04]

iex> Cldr.Calendar.Kday.kday_after(~D[2017-06-30], 6)
~D[2017-07-01]

 Link to this function

 kday_before(date, k)

 View Source

 Specs

 kday_before(Calendar.day() | Date.t(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the day_of_week before the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or a Rata Die

	k is an integer day of the week.

 Returns

	A %Date{} in the calendar of the date provided as an argument

 Examples

iex> Cldr.Calendar.Kday.kday_before(~D[2016-02-29], 2)
~D[2016-02-23]

iex> Cldr.Calendar.Kday.kday_before(~D[2017-11-30], 1)
~D[2017-11-27]

6 means Saturday. Use either the integer value or the atom form.
iex> Cldr.Calendar.Kday.kday_before(~D[2017-06-30], 6)
~D[2017-06-24]

 Link to this function

 kday_nearest(date, k)

 View Source

 Specs

 kday_nearest(Calendar.day() | Date.t(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the day_of_week nearest the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or a Rata Die

	k is an integer day of the week.

 Returns

	A %Date{} in the calendar of the date provided as an argument

 Examples

iex> Cldr.Calendar.Kday.kday_nearest(~D[2016-02-29], 2)
~D[2016-03-01]

iex> Cldr.Calendar.Kday.kday_nearest(~D[2017-11-30], 1)
~D[2017-11-27]

iex> Cldr.Calendar.Kday.kday_nearest(~D[2017-06-30], 6)
~D[2017-07-01]

 Link to this function

 kday_on_or_after(date, k)

 View Source

 Specs

 kday_on_or_after(Calendar.day() | Date.t(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the day_of_week on or after the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or a Rata Die

	k is an integer day of the week.

 Returns

	A %Date{} in the calendar of the date provided as an argument

 Examples

iex> Cldr.Calendar.Kday.kday_on_or_after(~D[2016-02-29], 2)
~D[2016-03-01]

iex> Cldr.Calendar.Kday.kday_on_or_after(~D[2017-11-30], 1)
~D[2017-12-04]

iex> Cldr.Calendar.Kday.kday_on_or_after(~D[2017-06-30], 6)
~D[2017-07-01]

 Link to this function

 kday_on_or_before(date, k)

 View Source

 Specs

 kday_on_or_before(Calendar.day() | Date.t(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the day_of_week on or before the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or a Rata Die

	k is an integer day of the week.

 Returns

	A %Date{} in the calendar of the date provided as an argument

 Examples

iex> Cldr.Calendar.Kday.kday_on_or_before(~D[2016-02-29], 2)
~D[2016-02-23]

iex> Cldr.Calendar.Kday.kday_on_or_before(~D[2017-11-30], 1)
~D[2017-11-27]

iex> Cldr.Calendar.Kday.kday_on_or_before(~D[2017-06-30], 6)
~D[2017-06-24]

 Link to this function

 last_kday(date, k)

 View Source

 Specs

 last_kday(Calendar.day() | Date.t(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the last day_of_week on or before the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or a Rata Die

	k is an integer day of the week.

 Returns

	A %Date{} in the calendar of the date provided as an argument

 Example

Memorial Day in the US
iex> Cldr.Calendar.Kday.last_kday(~D[2017-05-31], 1)
~D[2017-05-29]

 Link to this function

 nth_kday(date, n, k)

 View Source

 Specs

 nth_kday(Calendar.day() | Date.t(), integer(), Cldr.Calendar.day_of_week()) ::
 Calendar.day() | Date.t()

Return the date of the nth day_of_week on or before/after the
specified date.

 Arguments

	date is %Date{}, a %DateTime{}, %NaiveDateTime{} or a Rata Die

	n is the cardinal number of k before (negative n) or after
(positive n) the specified date

	k is an integer day of the week.

 Returns

	A %Date{} in the calendar of the date provided as an argument

 Examples

Thanksgiving in the US
iex> Cldr.Calendar.Kday.nth_kday(~D[2017-11-01], 4, 4)
~D[2017-11-23]

Labor day in the US
iex> Cldr.Calendar.Kday.nth_kday(~D[2017-09-01], 1, 1)
~D[2017-09-04]

Daylight savings time starts in the US
iex> Cldr.Calendar.Kday.nth_kday(~D[2017-03-01], 2, 7)
~D[2017-03-12]

Cldr.Calendar.Preference

 Anchor for this section

 Summary

 Functions

 calendar_for_locale(locale)

 deprecated

 See Cldr.Calendar.Preference.calendar_from_locale/1.

 calendar_for_territory(territory)

 deprecated

 See Cldr.Calendar.Preference.calendar_from_territory/1.

 calendar_from_locale(locale \\ Cldr.get_locale())

 Return the calendar module for a locale.

 calendar_from_locale(locale, backend)

 calendar_from_name(name)

 calendar_from_territory(territory)

 Returns the calendar module preferred for
a territory.

 calendar_from_territory(territory, calendar)

 calendar_module(calendar)

 calendar_modules()

 Anchor for this section

Functions

 Link to this function

 calendar_for_locale(locale)

 View Source

 This function is deprecated. Use calendar_from_locale/1.

See Cldr.Calendar.Preference.calendar_from_locale/1.

 Link to this function

 calendar_for_territory(territory)

 View Source

 This function is deprecated. Use calendar_from_territory/1.

See Cldr.Calendar.Preference.calendar_from_territory/1.

 Link to this function

 calendar_from_locale(locale \\ Cldr.get_locale())

 View Source

Return the calendar module for a locale.

 Arguments

	:locale is any locale or locale name validated
by Cldr.validate_locale/2. The default is
Cldr.get_locale() which returns the locale
set for the current process

 Returns

	{:ok, calendar_module} or

	{:error, {exception, reason}}

 Examples

iex> Cldr.Calendar.Preference.calendar_from_locale "en-GB"
{:ok, Cldr.Calendar.GB}

iex> Cldr.Calendar.Preference.calendar_from_locale "en-GB-u-ca-gregory"
{:ok, Cldr.Calendar.GB}

iex> Cldr.Calendar.Preference.calendar_from_locale "en"
{:ok, Cldr.Calendar.US}

iex> Cldr.Calendar.Preference.calendar_from_locale "fa-IR"
{:ok, Cldr.Calendar.Persian}

iex> Cldr.Calendar.Preference.calendar_from_locale "fa-IR-u-ca-gregory"
{:ok, Cldr.Calendar.IR}

 Link to this function

 calendar_from_locale(locale, backend)

 View Source

 Link to this function

 calendar_from_name(name)

 View Source

 Link to this function

 calendar_from_territory(territory)

 View Source

Returns the calendar module preferred for
a territory.

 Arguments

	territory is any valid ISO3166-2 code as
an String.t or upcased atom()

 Returns

	{:ok, calendar_module} or

	{:error, {exception, reason}}

 Examples

iex> Cldr.Calendar.Preference.calendar_from_territory :US
{:ok, Cldr.Calendar.US}

iex> Cldr.Calendar.Preference.calendar_from_territory :XX
{:error, {Cldr.UnknownTerritoryError, "The territory :XX is unknown"}}

 Notes

The overwhelming majority of territories have
:gregorian as their first preferred calendar
and therefore Cldr.Calendar.Gregorian
will be returned for most territories.
Returning any other calendar module would require:
	That another calendar is preferred over :gregorian
for a territory

	That a calendar module is available to support
that calendar.

As an example, Iran (territory :IR) prefers the
:persian calendar. If the optional library
ex_cldr_calendars_persian
is installed, the calendar module Cldr.Calendar.Persian will
be returned. If it is not installed, Cldr.Calendar.Gregorian
will be returned as :gregorian is the second preference
for :IR.

 Link to this function

 calendar_from_territory(territory, calendar)

 View Source

 Link to this function

 calendar_module(calendar)

 View Source

 Link to this function

 calendar_modules()

 View Source

Cldr.Calendar.Sigils

Implements the ~d sigils to produce
dates, datetimes and naive datetimes.

 Anchor for this section

 Summary

 Functions

 do_sigil_d(arg, _)

 sigil_d(arg, modifiers)

 Implements a ~d sigil for expressing dates.

 Anchor for this section

Functions

 Link to this function

 do_sigil_d(arg, _)

 View Source

 Link to this macro

 sigil_d(arg, modifiers)

 View Source

 (macro)

Implements a ~d sigil for expressing dates.
Dates can be expressed in the following formats:
	~d[yyyy-mm-dd] which produces a date in the Cldr.Calendar.Gregorian calendar
	~d[yyyy-Wmm-dd] which produces a date in the Cldr.Calendar.IsoWeek calendar
	~d[yyyy-mm-dd calendar] which produces a date in the given month-based calendar
	~d[yyyy-Wmm-dd calendar] which produces a date in the given week-based calendar
	~d[yyyy-mm-dd C.E Julian] which produces a date in the Cldr.Calendar.Julian calendar
	~d[yyyy-mm-dd B.C.E Julian] which produces a date in the Cldr.Calendar.Julian calendar

 Examples

iex> import Cldr.Calendar.Sigils
iex> ~d[2019-01-01 Gregorian]
~d[2019-01-01 Gregorian]
iex> ~d[2019-W01-01]
~d[2019-W01-1 ISOWeek]

Cldr.Cldr.IncompatibleTimeZone exception

Exception raised when a two datestimes
are not in the same timezone

Cldr.IncompatibleCalendarError exception

Exception raised when an attempt is made to use a two incompatible
calendars.

Cldr.InvalidCalendarModule exception

Exception raised when a module is not a
calendar.

Cldr.InvalidDateOrder exception

Exception raised when two dates
or times are not ordered from earlier
to later

Cldr.Cldr.IncompatibleTimeZone exception

Exception raised when a two datestimes
are not in the same timezone

Cldr.IncompatibleCalendarError exception

Exception raised when an attempt is made to use a two incompatible
calendars.

Cldr.InvalidCalendarModule exception

Exception raised when a module is not a
calendar.

Cldr.InvalidDateOrder exception

Exception raised when two dates
or times are not ordered from earlier
to later

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

