emel v0.1.0 API Reference

Modules

Turn data into functions! A simple and functional machine learning library written in elixir

Uses a decision tree to go from observations about an item (represented in the branches) to conclusions about the item’s discrete target value (represented in the leaves)

Aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean

A non-parametric method used for classification and regression. In both cases, the input consists of the k closest training examples in the feature space

A linear approach to modelling the relationship between a dependent variable and one or more independent variables

A simple probabilistic classifier based on applying Bayes’ theorem with naive independence assumptions between the features. It makes classifications using the maximum posteriori decision rule in a Bayesian setting