

 Ecto SQLite3

 v0.9.1

 Table of contents

 	Modules

 	Ecto.Adapters.SQLite3

Ecto.Adapters.SQLite3

Adapter module for SQLite3.
It uses Exqlite for communicating to the database.
Options
The adapter supports a superset of the options provided by the
underlying Exqlite driver.
Provided options
	:database - The path to the database. In memory is allowed. You can use
:memory or ":memory:" to designate that.
	:journal_mode - Sets the journal mode for the sqlite connection. Can be
one of the following :delete, :truncate, :persist, :memory,
:wal, or :off. Defaults to :wal.
	:temp_store - Sets the storage used for temporary tables. Default is
:default. Allowed values are :default, :file, :memory.
	:synchronous - Can be :extra, :full, :normal, or :off. Defaults
to :normal.
	:foreign_keys - Sets if foreign key checks should be enforced or not.
Can be :on or :off. Default is :on.
	:cache_size - Sets the cache size to be used for the connection. This is
an odd setting as a positive value is the number of pages in memory to use
and a negative value is the size in kilobytes to use. Default is -64000.
	:cache_spill - The cache_spill pragma enables or disables the ability of
the pager to spill dirty cache pages to the database file in the middle of
a transaction. By default it is :on, and for most applications, it
should remain so.
	:case_sensitive_like - whether LIKE is case-sensitive or not. Can be
:off or :on. Defaults to :off.
	:auto_vacuum - Defaults to :none. Can be :none, :full or
:incremental. Depending on the database size, :incremental may be
beneficial.
	:locking_mode - Defaults to :normal. Allowed values are :normal or
:exclusive. See sqlite documentation for more information.
	:secure_delete - Defaults to :off. Can be :off or :on. If :on, it will cause SQLite3
to overwrite records that were deleted with zeros.
	:wal_auto_check_point - Sets the write-ahead log auto-checkpoint
interval. Default is 1000. Setting the auto-checkpoint size to zero or a
negative value turns auto-checkpointing off.
	:busy_timeout - Sets the busy timeout in milliseconds for a connection.
Default is 2000.
	:pool_size - the size of the connection pool. Defaults to 5.
	:binary_id_type - Defaults to :string. Determines how binary IDs are stored in the database and the type of
:binary_id columns. See the section on binary ID types for more details.
	:uuid_type - Defaults to :string. Determines the type of :uuid columns. Possible values and
column types are the same as for binary IDs.
	:datetime_type - Defaults to :iso8601. Determines how datetime fields are stored in the database.
The allowed values are :iso8601 and :text_datetime. :iso8601 corresponds to a string of the form
YYYY-MM-DDThh:mm:ss and :text_datetime corresponds to a string of the form YYYY-MM-DD hh:mm:ss

For more information about the options above, see sqlite documentation
Differences between SQLite and Ecto SQLite defaults
For the most part, the defaults we provide above match the defaults that SQLite usually
ships with. However, SQLite has conservative defaults due to its need to be strictly backwards
compatible, so some of them do not necessarily match "best practices". Below are the defaults
we provide above that differ from the normal SQLite defaults, along with rationale.
	:journal_mode - we use :wal, as it is vastly superior
for concurrent access. SQLite usually defaults to :delete.
See SQLite documentation for more info.
	:temp_store - we use :memory, which increases performance a bit.
SQLite usually defaults to :file.
	:foreign_keys - we set it to :on, for better relational guarantees.
This is also the default of the underlying Exqlite driver.
SQLite usually defaults to :off for backwards compat.
	:busy_timeout - we set it to 2000, to better enable concurrent access.
This is also the default of Exqlite. SQLite usually defaults to 0.
	:cache_size - we set it to -64000, to speed up access of data.
SQLite usually defaults to -2000.

These defaults can of course be overridden, as noted above, to suit other needs.
Binary ID types
The :binary_id_type configuration option allows configuring how :binary_id fields are stored in the database as
well as the type of the column in which these IDs will be stored. The possible values are:
	:string (default): IDs are stored as strings, and the type of the column is TEXT_UUID.
	:binary: IDs are stored in their raw binary form, and the type of the column is UUID.

The main differences between the two formats are as follows:
	When stored as binary, UUIDs require much less space in the database. IDs stored as strings require 36 bytes each,
while IDs stored as binary only require 16 bytes.
	Because SQLite does not have a dedicated UUID type, most clients cannot represent UUIDs stored as binary in a human
readable format. Therefore, IDs stored as strings may be easier to work with if manual manipulation is required.

Limitations and caveats
There are some limitations when using Ecto with SQLite that one needs
to be aware of. The ones listed below are specific to Ecto usage, but it
is encouraged to also view the guidance on when to use SQLite provided
by the SQLite documentation, as well.
Async Sandbox testing
The Ecto SQLite3 adapter does not support async tests when used with
Ecto.Adapters.SQL.Sandbox. This is due to SQLite only allowing up one
write transaction at a time, which often does not work with the Sandbox approach of
wrapping each test in a transaction.
LIKE match on BLOB columns
We have the DSQLITE_LIKE_DOESNT_MATCH_BLOBS compile-time option set to true,
as recommended by SQLite. This means you cannot do LIKE queries on BLOB columns.
Case sensitivity
Case sensitivty for LIKE is off by default, and controlled by the :case_sensitive_like
option outlined above.
However, for equality comparison, case sensitivity is always on.
If you want to make a column not be case sensitive, for email storage for example, you can
make it case insensitive by using the COLLATE NOCASE option in SQLite. This is configured
via the :collate option.
So instead of:
add :email, :string
You would do:
add :email, :string, collate: :nocase
Check constraints
SQLite3 supports specifying check constraints on the table or on the column definition. We currently only
support adding a check constraint via a column definition, since the table definition approach only
works at table-creation time and cannot be added at table-alter time. You can see more information in
the SQLite3 CREATE TABLE documentation.
Because of this, you cannot add a constraint via the normal Ecto.Migration.constraint/3 method, as that
operates via ALTER TABLE ADD CONSTRAINT, and this type of ALTER TABLE operation SQLite3 does not support.
You can however get the full functionality by adding a constraint at the column level, specifying the name
and expression. Per the SQLite3 documentation, there is no functional difference between a column or table constraint.
Thus, adding a check constraint for a new column is as simple as:
add :email, :string, check: %{name: "test_constraint", expr: "email != 'test@example.com'"}
Handling foreign key constraints in changesets
Unfortunately, unlike other databases, SQLite3 does not provide the precise name of the constraint violated,
but only the columns within that constraint (if it provides any information at all). Because of this, changeset
functions like Ecto.Changeset.foreign_key_constraint/3 may not work at all.
This is because the above functions depend on the Ecto Adapter returning the name of the violated constraint,
which you annotate in your changeset so that Ecto can convert the constraint violation into the correct
updated changeset when the constraint is hit during a Ecto.Repo.update/2 or Ecto.Repo.insert/2 operation.
Since we cannot get the name of the violated constraint back from SQLite3 at INSERT or UPDATE time,
there is no way to effectively use these changeset functions. This is a SQLite3 limitation.
See this GitHub issue for more details.
Schemaless queries
Using schemaless Ecto queries will not work well with SQLite. This is because
the Ecto SQLite adapter relies heavily on the schema to support a rich array of Elixir
types, despite the fact SQLite only has five storage classes. The query will still
work and return data, but you will need to do this mapping on your own.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

