

 ecto_adapters_dynamodb

 v3.3.4

 Table of contents

 	Ecto.Adapters.DynamoDB

 	Modules

 	Ecto.Adapters.DynamoDB

 	Ecto.Adapters.DynamoDB.Cache

 	Ecto.Adapters.DynamoDB.DynamoDBSet

 	Ecto.Adapters.DynamoDB.Info

 	Ecto.Adapters.DynamoDB.Migration

 	Ecto.Adapters.DynamoDB.Query

 	Ecto.Adapters.DynamoDB.QueryInfo

 	Ecto.Adapters.DynamoDB.RepoConfig

Ecto.Adapters.DynamoDB

[image: Hex.pm]
[image: Build Docs]
This is a partial implementation of an Elixir Ecto adapter for Amazon's DynamoDB. It's very much a work in progress, and has plenty of rough edges. It's complete enough that we're actually using it in other projects, so we're opening it up to the community in hopes that others will find it useful as well :-)
Keep in mind that DynamoDB is a key-value store designed for very high scale, while the Ecto abstractions are primarily designed to work with relational databases. As such, we've had to make significant compromises in the implementation of this adapter to make it work. Please understand that, while we are using it in production, it should be considered beta - do not deploy it without thoroughly testing it for your use cases.
If you wish to contribute, please run $ mix test and confirm that the test results are error-free before you push your commits. (Bonus points for improving our tests and adding your own tests for your changes. Patches with corresponding tests are more likely to be accepted, especially if they are significant.)
Special thanks to ExAws project
We use ExAws to wrap the actual DynamoDB API and requests. This project would not be possible without the extensive work in ExAws.
Design limitations
There are a lot of common things you can do in Ecto with a SQL database that you just can't do (or can't do efficiently) with DynamoDB. If you expect to pick up your existing Ecto-based app and just swap in DynamoDB, you're going to be disappointed. You still have to use this adapter the same way you would approach using a key-value store, and avoid the kinds of patterns you'd use with a relational database.
Is DynamoDB the right choice for you?
It may not be. Understand the DynamoDB limitations. It's designed for very high scale, throughput, and reliability. As a result of this design, there are many kinds of operations that are impossible. Other things are technically possible but not advisable, due to high costs in terms of performance and/or money.
A good starting point is Amazon's own documentation:
Amazon: Best Practices for DynamoDB
Our philosophy when creating this adapter can generally be summed up as:
 Try to do what the end user will expect the adapter to do, unless it's likely to ruin DynamoDB's performance.
An example of this is our handling of table scans (see below).
Lastly, please read and understand how DynamoDB and its queries and indexes work. If you don't, then a lot of the following behaviour is going to seem random, and you'll be frustrated trying to figure out why things don't work the way you expect them to. We've done our best to simplify what we can, but underneath it all, it's still DynamoDB.
How we use indexes
In DynamoDB, we can fetch individual records or batches of records very quickly if we know the primary key to look up, or the key of an indexed field. We can't easily perform queries which don't have a simple key or ID to look up:
Will work: (note that this will be a case sensitive match as well.)
select * from people where name = 'ALICE'
Won't Work:
select * from people where name like 'Ali%'
(Obviously these are SQL queries, not Ecto queries, but the above examples just provide a general illustration of what sorts of limitations to expect.)
We will try our best to parse queries and find any relevant DynamoDB indexes that exists (this includes both HASH indexes, and HASH+RANGE indexes). As long as the FROM clause contains at least one HASH key from a DynamoDB index, a query will be constructed using our best guess at the most specific matching index (this may not be the best index - unlike a SQL server, we don't understand the data in the table, so the adapter may have to guess - although users can specify the index for queries where the index may be ambiguous, more on that below). Any other fields in the FROM criteria will be converted to DynamoDB filters as required to ensure you only get back the data you requested. We also support is_nil in queries. This will test whether the attribute is either set to null or whether the attribute is missing from the record altogether. Please note that DynamoDB does not allow for this type of filtering on attributes that are being queried against, whether in the primary key or in a secondary index.
If we do not find any matching table index for the query (either a HASH key of an index or the HASH part of a composite HASH+RANGE key), the query will fail by default. It is possible to override this behaviour and have the adapter perform a DynamoDB scan instead. Since scans do not scale well, they can potentially be very costly with large data sets, and we have configured the adapter not to scan unless scanning is explicitly enabled. This can be done via global configuration options, or inline as an option to Repo.all and other query functions. See the section below on scan for more info.
The adapter will query DynamoDB for a list of indexes and indexed fields on the table, and by default it will cache the results to avoid the overhead of repeatedly pulling the same lists of indexes on every query. This does mean that if you update the indexes on a table in DynamoDB, you will need to execute the Ecto.Adapters.DynamoDB.Cache.update_table_info! function or restart the adapter.
Secondary index selection - default behavior
When querying a table (from f in Foo, where: ...), the adapter's default behavior is to automatically select the "best" index on which to query based on the fields in the query. A few things to note:
	A hash-only index will be preferred over a composite index with the same hash key if only the hash key field is represented in the query. For example, if you have a Person model with a hash-only key on first_name and a composite key on first_name, last_name, a query that only includes first_name will use the hash-only index; a query with both fields will use the composite. While this probably seems like expected behavior, consider what will happen if the range key from the composite index is not a required field in your application; a query that includes both first_name and last_name will not include records where the range key is nil (as that record hasn't been added to that index), but a query that does not include last_name will return those records.

	In the event that a query should include two fields fields that are represented by a hash-only index and the hash portion of a composite index, the hash-only index will always be chosen. Again, consider a Person model with a hash-only first_name index and a composite last_name, email index; a query that includes first_name and last_name will use the hash-only first_name index.

So in general, expect the adapter to prefer hash-only indexes where they could be seen as best-representing a query.
Lesson: create your data models and queries carefully.
Limited support for fetching all records - 'scan' disabled by default
Fetching records based on a hash of the primary key allows DynamoDB to distribute its data across many partitions on many servers, resulting in high scalability and reliability. It also means that you can't do arbitrary queries based on unindexed fields.
Well, that's not quite true, but running queries against un-indexed fields is usually a terrible idea. We can translate queries without any matching indexes to a DynamoDB scan operation, but this is not recommended as it can easily burn through all your read capacity. By default, attempting to perform these kinds of queries will raise an error. You can allow them to succeed by enabling the scan option at the adapter level for all queries, or by specifying the corresponding option on individual queries. See 'scan' options below for more information.
If you need to do this a lot, you're losing most of the benefits of DynamoDB, so think carefully before you do.
No joins
DynamoDB does not support joins. Thus, neither do we. Pretty simple.
While it's technically possible for us to decompose the query into multiple individual requests against each table and then perform the join ourselves, this will likely result in very poor performance, and burning through excess read units to do so. It's better to construct these 'joins' manually using key/value lookups against indexes carefully chosen to preserve your predictable key/value store performance.
This is one of those things that are technically possible, but would result in very unpredictable performance that could drag down your entire app, reducing or eliminating any benefit from DynamoDB. You're probably better off using another DB if this is a requirement.
That said, for very simple joins that match a limited number of keys where all the relevant fields are indexed, joins could probably be emulated pretty reasonably. We'd entertain the notion of accepting a patch for this, if anyone wants to go to the trouble, and if the code contains some reasonable safeguards to avoid executing big, expensive joins by accident. It would be tricky though, and it's certainly not a priority for us right now.
Limited sorting
DynamoDB can ONLY return sorted results if there is a matching HASH+RANGE index where the desired sort key is the RANGE portion of the index. In this case we support the :scan_index_forward option as a parameter to Repo queries. However, writing queries like SELECT * FROM person ORDER BY last_name LIMIT 50 may not be practical; we'd have to retrieve every record from the table to do this. (See also DynamoDB LIMIT & Paging below.)
From DynamoDB's Query API:
Query results are always sorted by the sort key value. If the data type of the sort key is Number, the results are returned in numeric order; otherwise, the results are returned in order of UTF-8 bytes. By default, the sort order is ascending. To reverse the order, set the ScanIndexForward parameter to false.

Update support
We currently support both update and update_all with some performance caveats. Since DynamoDB currently does not offer a batch update operation, we emulate it in update_all (and update if the full primary key is not provided). The adapter first fetches the query results to get all the relevant keys, then updates the records one by one (paging as it goes, see DynamoDB LIMIT & Paging below). Consequently, performance might be slower than expected due to the need to execute individual fetches followed by individual inserts. Also please note that this means that update operations are not atomic! Multiple concurrent updates to the same record can race with each other, causing some updates to be silently lost.
All of these caveats can be especially pernicious if you're performing eventually consistent reads, as is the default for DynamoDB: you could write a new version of a record to a key, then attempt to perform an update to the same key, which could read from a zone that hasn't received your write yet. This would cause the update's fetch to return an older version of the record, which will then be modified and written back to DDB, overwriting your changes from the previous write! Thus, even if a single client synchronously updates a key, waits for success, then does another update, you may still experience a complete loss of the first of those two updates!
Lesson: be really careful with updates; and, you may want to use consistent reads unless you really know what you're doing (see the consistent_read option for more info).
DynamoDB BatchWriteItem
We currently support DynamoDB's BatchWriteItem via Ecto's insert_all and delete_all. DynamoDB enforces a limit of 25 records maximum per batch write, but we allow for an unlimited number of records by chunking large groups.
DynamoDB BatchGetItem
We currently support DynamoDB's BatchGetItem via an :in clause in all queries - for example, Repo.all(from m in Model, where: m.id in ["id_1", "id_2"]) or Repo.all(from m in Model, where: m.id in ^model_ids). For tables with a composite primary key, range keys must be supplied in another :in clause in matching order - for example, TestRepo.all(from bp in BookPage, where: bp.id in ["page:test-1", "page:test-2"] and bp.page_num in [1, 2]). DynamoDB enforces a limit of 100 records per batch get, but we allow for an unlimited number of records by chunking large groups into separate requests.
DynamoDB LIMIT & Paging
By default, we configure the adapter to fetch all pages recursively for a DynamoDB query operation, and to not fetch all pages recursively in the case of a DynamoDB scan operation. This default can be overridden with the inline :recursive and :page_limit options (see below). We do not respond to the Ecto limit option; rather, we support a :scan_limit option, which corresponds with DynamoDB's limit option, limiting "the number of items that it returns in the result."
Only ONE DynamoDB adapter can be configured
We only launch one instance of ExAws application (and have not yet investigated running multiple instances). This means we can only point to a single amazon Dynamo instance. It's currently not possible to run against two different amazon AWS accounts concurrently. Hopefully this won't be a problem for most users.
Adapter.Migration
We support Ecto migration tasks via create_table, create_if_not_exists_table, and alter_table only. The functions add, remove and modify work with corresponding indexes on the DynamoDB table, rather than columns (as they would in a relational database). The adapter will automatically wait and retry requests when encountering DynamoDB errors that have "OK to retry? Yes" listed in the DynamoDB docs, according to an exponential backoff schedule. Since working with DynamoDB indexes and describing tables includes many options outside of Ecto's scope, for our supported syntax, please see details and examples in the Ecto.Adapters.DynamoDB.Migration moduledoc, as well as the configuration options, :migration_initial_wait, :migration_wait_exponent, :migration_max_wait, :migration_table_capacity.
Please note: Ecto migration calls Repo.all() on the schema_migrations table, which corresponds with a DynamoDB scan. To run migrations, add "schema_migrations" (or the alternate name you've configured for it) in the configuration file to the config variable :scan_tables. Additionally, note that the creation of the schema-migration records table takes time - if you have not created it yourself already, we recommend running mix ecto.migrate --step 0, then confirming the table is up, which will prevent the adapter from attempting to retrieve records from the schema-migrations table before it's ready.
Unimplemented Features
While the previous section listed limitations that we're unlikely to work around due to philosophical differences between DynamoDB as a key/value store vs an SQL relational database, there are some features that we just haven't implemented yet. Feel free to help out if any of these are important to you!
Transactions
DynamoDB and ExAws.Dynamo support transactions, but they have not yet been implemented in this adapter. We will probably try to implement transactions at some point, but it's not a high priority for us - if you would like to make a valuable contribution to this project, you could help us to resolve this issue.
Adapter.Storage
In the current release, we do not support Adapter.Storage callbacks.
Adapter.Structure
To be honest, we don't even know what this is for. So it's not going to work :)
Associations & Embeds
While we've not tested these, without joins it's unlikely they work well (if at all).
Ecto.Adapter.Migration.lock_for_migrations/4
This callback was implemented under Ecto 3 - it does not seem to be critical for this adapter's behaviour, and we do not know if it is appropriate to implement for DynamoDB. If you have input on this, or you want to help out with its implementation, see the issue here.
Ecto.Adapter.checkout/3
This callback was implemented under Ecto 3 - it does not seem to be critical for this adapter's behaviour, and we do not know if it is appropriate to implement for DynamoDB. If you have input on this, or you want to help out with its implementation, see the issue here.
Ecto.Adapter.Queryable.stream/5
This callback was implemented under Ecto 3 - it does not seem to be critical for this adapter's behaviour, and we do not know if it is appropriate to implement for DynamoDB. If you have input on this, or you want to help out with its implementation, see the issue here.
So what DOES work?
Well, basic CRUD really, which is all you should really expect from a key/value store :).
Get, Insert, Delete and Update. As long as it's simple queries against single tables, it's probably going to work. Anything beyond that probably isn't. All of the following Ecto functions should work to some extent, if not necessarily in every scenario.
	all/2
	delete/2
	delete!/2
	delete_all/2
	get/3
	get!/3
	get_by/3
	get_by!/3
	insert/2
	insert!/2
	insert_all/3
	one/2
	one!/2
	update/2
	update!/2
	update_all/3

Migrations
In late 2018, Amazon introduced a new billing option for tables that allows users to specify table billing as pay per request (AKA "on-demand") as well as provisioned - more info - our migrations support both of these options. See lib/ecto_adapters_dynamodb/migration.ex for examples.
Installation
Install the Hex package by adding ecto_adapters_dynamodb to your list of dependencies in mix.exs:
defp deps do
 [
 {:ecto_adapters_dynamodb, "~> 3.1"}
]
end
Otherwise, to fetch from GitHub:
defp deps do
 [
 {:ecto_adapters_dynamodb, git: "https://github.com/circles-learning-labs/ecto_adapters_dynamodb", tag: "3.1.2"}
]
end
Local DynamoDB version
In order to make sure your local version of DynamoDB is up to date with the current production features, please use the latest release of DynamoDB local. As of spring 2020, the latest version is 1.11.478, released on January 16, 2020.
Configuration
Configuring a repository to use the DynamoDB ecto adapter is pretty similar to most other Ecto adapters - you'll set the adapter option in your app's Repo configuration file to Ecto.Adapters.DynamoDB, and then set the required (or optional) values in a keyword list in the appropriate application configuration files for your repo.
These values are different from the normal Ecto options. For example, in DynamoDB you don't have username, password, or database options - you'll need to delete these lines. Instead you'll add Amazon access_key_id, secret_access_key, region, and the optional dynamodb host and scheme options if you're not running against the default live Amazon instances (for example, running the local Amazon dev version of DynamoDB for testing and development).
All these options are quietly passed through to ExAws. Prior to version 3, existing ExAws configuration would be overwritten by these options. From version 3, the options are only used in calls made by the adapter, and other global ExAws configuration is maintained. See ExAws Getting Started for more information on these options.
A note on access_key_id and secret_access_key: This can simply be the actual key string, or it can be set to pull these from environment variables or Amazon roles (as per ExAws configuration). Some basic examples follow.
You may also omit all these ExAws options from the adapter config if you wish to configure ExAws manually (for example if you're using other features from ExAws such as S3, or dynamo_streams).
Note that as of version 3, with the exception of logging configuration, all config options are set per-repo.
The adapter also supports Confex-style configuration options.
config/config.exs
Include the repo module that's configured for the adapter among the project's Ecto repos:
config :my_app, ecto_repos: [MyApp.Repo]
repo module
Configure your app's repo module to use Ecto.Adapters.DynamoDB as its :adapter:
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.DynamoDB
end
Supervisor
Add the repo to your app's Supervisor configuration:
defmodule MyApp do
 def start(_type, _args) do
 children = [
 MyApp.Repo
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
mix.exs
Start your app by adding it to the :mod key under application:
def application do
 [
 mod: {MyApp, []}
]
end
Depending on your app's configuration, you may need to add :ecto_adapters_dynamodb under :extra_applications.
Configuring a Development Environment against a local instance of Dynamo
For development, we use the local version of DynamoDB, and some dummy variable assignments. Note that the access key/secret here are hardcoded in to the config, and that we set a dynamo key that overrides the connection parameters from the defaults for AWS. We point it to localhost:8000 - the default for a local DynamoDB test server.
config/dev.exs
config :my_app, MyApp.Repo,
 # ExAws configuration
 access_key_id: "abcd",
 secret_access_key: "1234",
 region: "us-east-1",
 debug_requests: true,	# ExAws option to enable debug on aws http request.
 dynamodb: [
 scheme: "http://",
 host: "localhost",
 port: 8000,
 region: "us-east-1"
]
Configuring a Production environment using Dynamo running on AWS
For a production setup, it's much simpler. No need to specify the host/port for dynamodb, as it will default to the appropriate AWS service in the region selected.
In this example configuration we do not hard code the secret or access key. These following settings tell ExAws to first attempt to pull the secret and access key from environment variables labelled AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. If it cannot find those environment variables, it will attempt to fall back on AWS role-based authentication (this only applies if this instance is running in an appropriately configured Amazon instance).
To reiterate, this is just standard ExAws configuration that we're wrapping up in our adapter config. Please consult the ExAws docs for further information.
config/prod.exs
config :my_app, MyApp.Repo,
 # ExAws configuration
 access_key_id: [{:system, "AWS_ACCESS_KEY_ID"}, :instance_role],
 secret_access_key: [{:system, "AWS_SECRET_ACCESS_KEY"}, :instance_role],
 region: "us-east-1"
Other adapter options
The following are adapter options that apply to the Ecto adapter, and are NOT related to ExAws configuration. They control certain behavioural aspects for the driver, enabling and disabling default behaviours and features on queries.
config :my_app, MyApp.Repo
 dynamodb_local: true,
 insert_nil_fields: false,
 remove_nil_fields_on_update: true,
 cached_tables: ["colour"]
The above snippet will (1) notify the adapter that you are running it against a local dev instance of DynamoDB, (2) set the adapter to ignore fields that are set to nil in the changeset, inserting the record without those attributes, (3) set the adapter to remove attributes in a record during an update where those fields are set to nil in the changeset, and (4) cache scan results from the "colour" table, providing the cached result in subsequent calls. More details for each of those options follow.
Production DynamoDB vs. local development DynamoDB
:dynamodb_local :: boolean, default: false
Indicate whether you are running against production (default) or local DynamoDB. The local development version of DynamoDB is not a true replica of the software used in production, and some local behaviours require special handling - in some scenarios for instance, production DynamoDB will raise an error whereas the local version will just hang until it times out. We strongly recommend setting this config value to true in any environment you will be running against local DynamoDB.
Here's an illustration of a situation where this will be useful:
A developer writes a migration that creates a new table set to the "provisioned" billing mode and runs the migration locally and in production. Several months (and several migrations) later, an administrator changes the billing mode for the table from "provisioned" to "on-demand" via the AWS dashboard. The developer is asked to add a new index to the table, and she writes a migration for the index that does not specify provisioned throughput. Since the production table is now "on-demand", the index will run against production without issue; however, her local table is still set to "provisioned". In production, attempting to add an index with no specified throughput to a "provisioned" table will raise the error
(ExAws.Error) ExAws Request Error! {"ValidationException", "One or more parameter values were invalid: Both ReadCapacityUnits and WriteCapacityUnits must be specified for index: index_name"}
but local DynamoDB will hang until it times out and the migration will not be run.
It is our opinion that the developer in this scenario would want to be able to run the migration locally without necessarily having to change the billing mode of the table, since there is no local equivalent of the AWS dashboard and rewriting/rerunning migrations may be undesirable or impractical. Instead, by setting dynamodb_local: true, this adapter will "ignore" the discrepancy by quietly adding default provisioned throughput to the index, allowing the developer to continue her work while keeping her local migrations in sync with production.
Not to put too fine a point on it, but attempting to run a migration to add an index with provisioned throughput to an "on-demand" table in production will raise the error
(ExAws.Error) ExAws Request Error! {"ValidationException", "One or more parameter values were invalid: Neither ReadCapacityUnits nor WriteCapacityUnits can be specified for index: name when BillingMode is PAY_PER_REQUEST"}
whereas local DynamoDB will simply ignore the throughput and proceed to add the index anyway... so setting this value in your configuration will help to ensure uniform behavior when migrating indexes.
nil value handling options
:insert_nil_fields :: boolean, default: true
Determines if fields in the changeset with nil values will be inserted as DynamoDB null values or not set at all. This option is also available inline per query. Please note that DynamoDB does not allow setting indexed attributes to null and will respond with an error. It does allow removal of those attributes.
:remove_nil_fields_on_update :: boolean, default: false
Determines if, during Repo.update or Repo.update_all, fields in the changeset with nil values will be removed from the record/s or set to the DynamoDB null value. This option is also available inline per query.
:empty_mapset_to_nil :: boolean, default: false
When a field contains a DynamoDBSet type and has a MapSet in it, by default the mapset must contain one or more values, otherwise an insert on the object will fail. This is due to DynamoDB not supporting empty sets. Setting this value to true will convert empty mapset values to nil before writing, allowing them to be written to DynamoDB as a null value.
:nil_to_empty_mapset :: boolean, default: false
When a field contains a DynmamoDBSet type, and the value in DynamoDB is null, setting this option causes the loaded value to be populated with an empty MapSet (the result of MapSet.new()) rather than being left as nil.
Scan-related options
:scan_tables :: [string], default: []
A list of table names for tables pre-approved for a DynamoDB scan command in case an indexed field is not provided in the query wheres. By default, scans are completely disabled on all tables. Use this option carefully; you may be better off using the inline query options to make sure you only perform table scans when you explicitly expect to do so.
:scan_limit :: integer, default: 100
Sets the default limit on the number of records scanned when calling DynamoDB's scan command. This can be overridden by the inline :scan_limit option. Included as limit in the DynamoDB query. (This option does not apply to queries performing recursive fetches.)
:scan_all :: boolean, default: false
Pre-approves all tables for a DynamoDB scan command in case an indexed field is not provided in the query wheres.
:cached_tables :: [string], default: []
A list of table names for tables assigned for caching of the first page of results (without setting DynamoDB's limit parameter in the scan request). For a set table, call Repo.all(Model) to cache the first page of results. To override the caching for a table in this list, and perform a regular scan with associated inline options (see below), provide an additional scan: true option with the query; for example, Repo.all(Model, scan: true, recursive: true).
Migration-related options
:migration_source :: string, default: "schema_migrations"
The name of the table that should be used for tracking schema migrations.
:migration_initial_wait :: integer, default: 1000
The time in milliseconds of the first wait period before retrying a DynamoDB create_table or update_table request.
:migration_wait_exponent :: float, default: 1.05
The exponent to which the wait time between sequential retries of create_table or update_table requests is raised.
:migration_max_wait :: integer, default: 15000
The maximum wait time in milliseconds over sequential retries of a particular create_table or update_table request. Set this to 0 to avoid retries altogether.
:migration_table_capacity :: [integer, integer], default: [1,1]
ProvisionedThroughput as [ReadCapacityUnits, WriteCapacityUnits], for the Schema Migrations table only, automatically created by Ecto if it does not exist.
Logging Configuration
As of 3.3.4, setting the use_logger configuration option to true will to write logs using Elixir's built-in Logger system. This setting causes all other log-related settings below to be ignored, and
instead has behaviour dictated by Logger's configuration.
If use_logger is not set, the adapter's logging options are configured during compile time, and can be altered in the application's configuration files (config/config.exs, config/dev.exs, config/test.exs and config/test.exs). To enable logging in colour, the MIX_ENV environment variable must be explicitly exported as dev during compilation.
We provide a few informational log lines, such as which adapter call is being processed, as well as the table, lookup fields, and options detected. Configure an optional log path to have the messages recorded on file.
Note that logging configuration is at the adapter level and is common to all repos.
:log_levels :: [:info, :debug], default: [:info]
:log_colours :: %{log-level-atom: IO.ANSI-colour-atom}, default: info: :green, debug: :normal
:log_path :: string, default: ""
Example:
config :ecto_adapters_dynamodb,
 log_levels: [:info, :debug]
Inline Options
The adapter supports a mix of Ecto options and custom inline options; if the Ecto option is not listed here, assume the adapter will ignore it. The following options can be passed during runtime in the Ecto calls. For example, consider a DynamoDB table with a composite index (HASH+RANGE):
MyApp.Repo.all(
 (from MyApp.HikingTrip, where: [location_id: "grand_canyon"]),
 recursive: false,
 scan_limit: 5
)
will retrieve the first five results from the record set for the indexed HASH, "location_id" = "grand_canyon", disabling the default recursive page fetch for queries. (Please note that without recursive: false, the adapter would ignore the scan limit.)
Supported Ecto Options
:on_conflict :: :raise | :nothing | :replace_all, default: :raise
By default, the adapter will provide the condition expression, attribute_not_exists(PARTITION_KEY_ATTRIBUTE) with the DynamoDB query, failing to insert if the record already exists. To perform an unconditional insert, possibly overwriting an existing record, provide the option on_conflict: :replace_all in the insert query. If on_conflict: :nothing is provided, a struct will be returned, although the record will not be inserted if there is a preexisting record with the same primary key.
Custom Inline Options
Inline Options: Repo.update, Repo.delete
:range_key :: {attribute_name_atom, value}, default: none
If the DynamoDB table queried has a composite primary key, an update or delete query must supply both the HASH and the RANGE parts of the key. We assume that your Ecto model schema will correlate its primary id with DynamoDB's HASH part of the key. However, since Ecto will normally only supply the adapter with the primary id along with the changeset, we offer the range_key option to avoid an extra query to retrieve the complete key. The adapter will attempt to query the table for the complete key if the :range_key option is not supplied.
Inline Options: Repo.update_all
:add / :delete :: [{field_atom, MapSet}], default: none
Ecto does not currently support :push and :pull on fields that are not :array type. To perform DynamoDB's add and delete on sets, pass the action, field, and value as an option.
:prepend_to_list :: [field_atom], default: none
To prepend a value during a :push action, include the field in this option. For example:
Repo.update_all((from Country, where: [name: "New Zealand"]), [push: [tags: "adventure"]], prepend_to_list: [:tags])
:pull_indexes :: [{field_atom, [integer]}], default: none
To remove an element in a DynamoDB list, we must supply the list index of the element/s. Include them in this option. If :pull_indexes is not specified, the adapter will attempt to find and remove all the occurrences of the value in the :pull keyword in the corresponding list field.
Here's an example including both of the options above:
Repo.update_all(
 (from Model, where: [id: "fffx"]),
 [set: [name: "Speedy"], inc: [int_field: 2], pull: [list_field_1: "value to remove"], list_field_2: "value will be ignored"],
 add: [set_field_1: MapSet.new(["add_this"])], delete: [set_field_2: MapSet.new(["remove_this"])], pull_indexes: [list_field_2: [5]]
)
DynamoDBSet
For convenience, we have added an Ecto type, Ecto.Adapters.DynamoDB.DynamoDBSet, which casts and validates an Elixir MapSet type. Once you've included it in your schema, or extended the Ecto.Type behaviour to MapSet, Ecto Repo insert, update, and get commands; and the adapter's DynamoDb set related options, :add and :delete (mentioned in, Inline Options: Repo.update_all) will apply to the MapSet type.
Here's an example of how to declare the DynamoDBSet type in an Ecto schema:
defmodule Model do
 use Ecto.Schema

 schema "model" do
 ...
 field :set, Ecto.Adapters.DynamoDB.DynamoDBSet
 ...
Inline Options: Repo.all, Repo.update_all, Repo.delete_all
:scan_limit :: integer, default: none, except configuration default applies to the DynamoDB scan command
Sets the limit on the number of records scanned in the current query. Included as limit in the DynamoDB query.
:scan :: boolean, default: false (also depends on scan-related configuration)
Approves a DynamoDB scan command for the current query in case an indexed field is not provided in the query wheres.
:exclusive_start_key :: [key_atom: value], default: none
Adds DynamoDB's ExclusiveStartKey to the current query, providing a starting offset.
:scan_index_forward :: boolean, default: none
Adds DynamoDB's ScanIndexForward to the current query, specifying ascending (true/default) or descending (false) traversal of the index. (Quoted from DynamoDB's documentation.)
:consistent_read :: boolean, default: none
If set to true, then the operation uses strongly consistent reads; otherwise, eventually consistent reads are used. Strongly consistent reads are not supported on global secondary indexes. If you query a global secondary index with ConsistentRead set to true, you will receive an error message. (Quoted from DynamoDB's documentation.)
:recursive :: boolean, default: true, except for DynamoDB scan where default is false
Fetches all pages recursively and performs the relevant operation on results in the case of Repo.update_all and Repo.delete_all
:page_limit :: integer, default: none
Sets the maximum number of pages to access. The query will execute recursively until the page limit has been reached or there are no more pages (overrides :recursive option).
:index :: string | atom, default: none
When querying on a secondary index, this option allows a user to explicitly set the index on which to query by providing the name of that index. In most query cases, the adapter will be able to select the "best" index to use without this option, but there are some scenarios where the choice may be ambiguous, such as a query on first_name and last_name where the indexes first_name_last_name and last_name_first_name both exist. Without passing an :index option in such cases, the adapter may arbitrarily select one index over the other, and consistent results can not be guaranteed. This is especially important when a query includes operations that are specific to either hash or range key behaviors such as :in, which will work when applied to hash keys but will break for range keys.
QueryInfo agent
:query_info_key :: string, default: none
If you would like the query information provided by DynamoDB (for example, to retrieve the LastEvaluatedKey even when no results are returned from the current page), include the option, query_info_key: key_string.
After the query is completed, retrieve the query info from the adapter's QueryInfo agent (the key is automatically deleted from the agent upon retrieval):
Ecto.Adapters.DynamoDB.QueryInfo.get(key_string)
The returned map corresponds with DynamoDB's return values:
%{"Count" => 10, "LastEvaluatedKey" => %{"id" => %{"S" => "6814"}}, "ScannedCount" => 100}
Ecto.Adapters.DynamoDB.QueryInfo.get_key provides a 32-character random string for convenience.
Inline Options: Repo.insert, Repo.insert_all
:insert_nil_fields :: boolean, default: set in configuration
Determines if fields in the changeset with nil values will be inserted as DynamoDB null values or not set at all.
Inline Options: Repo.update, Repo.update_all
:remove_nil_fields :: boolean, default: set in configuration
Determines if fields in the changeset with nil values will be removed from the record/s or set to the DynamoDB null value.
DynamoDB between and Ecto :fragment
We currently only support the Ecto fragments of the form:
from(m in Model, where: fragment("? between ? and ?", m.attribute, ^range_start, ^range_end))
from(m in Model, where: fragment("begins_with(?, ?)", m.attribute, ^prefix))
Caching
The adapter automatically caches its own calls to describe_table for retrieval of table information. We also offer the option to configure tables for scan caching. To update the cache after making a change in a table, the cache offers two functions:
Ecto.Adapters.DynamoDB.Cache.update_table_info!(table_name), table_name :: string
This re-fetches and caches the index data for the given table.
Ecto.Adapters.DynamoDB.Cache.update_cached_table!(table_name), table_name :: string
This runs a scan against the given table and updates the in-memory cached copy of it.
Developer Notes
The projection_expression option is used internally during delete_all to select only the key attributes and is recognized during query construction.
Documentation can be generated with ExDoc and published on HexDocs. Once published, the docs can be found at https://hexdocs.pm/ecto_adapters_dynamodb.
Upgrade guides
0.X.X -> 1.X.X
Please see the instructions here
1.X.X -> 2.X.X
Please see the instructions here
2.X.X -> 3.X.X
Please see the instructions here
License
Copyright Circles Learning Labs
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project except in compliance with the License.

Ecto.Adapters.DynamoDB

Ecto adapter for Amazon DynamoDB.

 Anchor for this section

 Summary

 Functions

 autogenerate(atom)

 Called to autogenerate a value for id/embed_id/binary_id.

 dumpers(type, datetime)

 Returns the dumpers for a given type.

 ecto_dynamo_log(level, message, attributes \\ %{}, opts \\ [])

 Logs message to console and optionally to file. Log levels, colours and file path may be set in configuration (details in README.md).

 ensure_all_started(config, type)

 Ensure all applications necessary to run the adapter are started.

 ex_aws_config(repo)

 execute(map, query_meta, arg, params, opts)

 Executes a previously prepared query.

 insert(repo_meta, schema_meta, fields, on_conflict, returning, opts)

 Inserts a single new struct in the data store.

 loaders(primitive, type)

 Returns the loaders for a given type.

 prepare(atom, query)

 Commands invoked to prepare a query for all, update_all and delete_all.

 Anchor for this section

Functions

 Link to this function

 autogenerate(atom)

 View Source

Called to autogenerate a value for id/embed_id/binary_id.
Returns the autogenerated value, or nil if it must be
autogenerated inside the storage or raise if not supported.
For the Ecto type, :id, the adapter autogenerates a 128-bit integer
For the Ecto type, :embed_id, the adapter autogenerates a string, using Ecto.UUID.generate()
For the Ecto type, :binary_id, the adapter autogenerates a string, using Ecto.UUID.generate()

 Link to this function

 dumpers(type, datetime)

 View Source

Returns the dumpers for a given type.
We rely on ExAws encoding functionality during insertion and update to properly format types for DynamoDB. Please see ExAws ExAws.Dynamo.update_item and ExAws.Dynamo.put_item for specifics. Currently, we only modify :utc_datetime and :naive_datetime, appending the UTC offset, "Z", to the datetime string before passing to ExAws.

 Link to this function

 ecto_dynamo_log(level, message, attributes \\ %{}, opts \\ [])

 View Source

Logs message to console and optionally to file. Log levels, colours and file path may be set in configuration (details in README.md).

 Link to this function

 ensure_all_started(config, type)

 View Source

Ensure all applications necessary to run the adapter are started.

 Link to this function

 ex_aws_config(repo)

 View Source

 Link to this function

 execute(map, query_meta, arg, params, opts)

 View Source

Executes a previously prepared query.
It must return a tuple containing the number of entries and
the result set as a list of lists. The result set may also be
nil if a particular operation does not support them.
The meta field is a map containing some of the fields found
in the Ecto.Query struct.
It receives a process function that should be invoked for each
selected field in the query result in order to convert them to the
expected Ecto type. The process function will be nil if no
result set is expected from the query.

 Link to this function

 insert(repo_meta, schema_meta, fields, on_conflict, returning, opts)

 View Source

Inserts a single new struct in the data store.

 autogenerate

 Autogenerate

The primary key will be automatically included in returning if the
field has type :id or :binary_id and no value was set by the
developer or none was autogenerated by the adapter.

 Link to this function

 loaders(primitive, type)

 View Source

Returns the loaders for a given type.
Rather than use the Ecto adapter loaders callback, the adapter builds on ExAws' decoding functionality, please see ExAws's ExAws.Dynamo.Decoder, in this module, which at this time only loads :utc_datetime and :naive_datetime.

 Link to this function

 prepare(atom, query)

 View Source

Commands invoked to prepare a query for all, update_all and delete_all.
The returned result is given to execute/6.

Ecto.Adapters.DynamoDB.Cache

An Elixir agent to cache DynamoDB table schemas and the first page of results for selected tables

 Anchor for this section

 Summary

 Types

 cached_table()

 t()

 Functions

 child_spec(list)

 describe_table(repo, table_name)

 describe_table!(repo, table_name)

 Returns the cached value for a call to DynamoDB, describe-table. Performs a DynamoDB scan if not yet cached and raises any errors as a result of the request. The raw json is presented as an elixir map.

 get_cache(repo)

 Returns the current cache of table schemas, and cache of first page of results for selected tables, as an Elixir map

 scan(repo, table_name)

 scan!(repo, table_name)

 Returns the cached first page of results for a table. Performs a DynamoDB scan if not yet cached and raises any errors as a result of the request

 start_link(repo)

 update_cached_table(repo, table_name)

 update_cached_table!(repo, table_name)

 Performs a DynamoDB scan and caches (without returning) the first page of results. Raises any errors as a result of the request

 update_table_info(repo, table_name)

 update_table_info!(repo, table_name)

 Performs a DynamoDB, describe-table, and caches (without returning) the result. Raises any errors as a result of the request

 Anchor for this section

Types

 Link to this type

 cached_table()

 View Source

 @type cached_table() :: {String.t(), map()}

 Link to this type

 t()

 View Source

 @type t() :: %Ecto.Adapters.DynamoDB.Cache{
 ex_aws_config: term(),
 schemas: map(),
 tables: [cached_table()]
}

 Anchor for this section

Functions

 Link to this function

 child_spec(list)

 View Source

 Link to this function

 describe_table(repo, table_name)

 View Source

 @spec describe_table(Ecto.Repo.t(), table_name_t()) ::
 {:ok, dynamo_response_t()} | {:error, term()}

 Link to this function

 describe_table!(repo, table_name)

 View Source

 @spec describe_table!(Ecto.Repo.t(), table_name_t()) ::
 dynamo_response_t() | no_return()

Returns the cached value for a call to DynamoDB, describe-table. Performs a DynamoDB scan if not yet cached and raises any errors as a result of the request. The raw json is presented as an elixir map.

 Link to this function

 get_cache(repo)

 View Source

Returns the current cache of table schemas, and cache of first page of results for selected tables, as an Elixir map

 Link to this function

 scan(repo, table_name)

 View Source

 @spec scan(Ecto.Repo.t(), table_name_t()) ::
 {:ok, dynamo_response_t()} | {:error, term()}

 Link to this function

 scan!(repo, table_name)

 View Source

 @spec scan!(Ecto.Repo.t(), table_name_t()) :: dynamo_response_t() | no_return()

Returns the cached first page of results for a table. Performs a DynamoDB scan if not yet cached and raises any errors as a result of the request

 Link to this function

 start_link(repo)

 View Source

 @spec start_link(Ecto.Repo.t()) :: Agent.on_start()

 Link to this function

 update_cached_table(repo, table_name)

 View Source

 @spec update_cached_table(Ecto.Repo.t(), table_name_t()) :: :ok | {:error, term()}

 Link to this function

 update_cached_table!(repo, table_name)

 View Source

 @spec update_cached_table!(Ecto.Repo.t(), table_name_t()) :: :ok | no_return()

Performs a DynamoDB scan and caches (without returning) the first page of results. Raises any errors as a result of the request

 Link to this function

 update_table_info(repo, table_name)

 View Source

 @spec update_table_info(Ecto.Repo.t(), table_name_t()) :: :ok | {:error, term()}

 Link to this function

 update_table_info!(repo, table_name)

 View Source

 @spec update_table_info!(Ecto.Repo.t(), table_name_t()) :: :ok | no_return()

Performs a DynamoDB, describe-table, and caches (without returning) the result. Raises any errors as a result of the request

Ecto.Adapters.DynamoDB.DynamoDBSet

An Ecto type for handling MapSet, corresponding with DynamoDB's set types. Since ExAws
already encodes and decodes MapSet, we only handle casting and validation here.

 Anchor for this section

 Summary

 Functions

 cast(mapset)

 Confirm the type is a MapSet and its elements are of one type, number or binary

 dump(mapset)

 Dump as is

 embed_as(_)

 Dictates how the type should be treated inside embeds

 equal?(term_a, term_b)

 Check if two terms are semantically equal

 load(mapset)

 Load as is

 type()

 This type is actually a MapSet

 Anchor for this section

Functions

 Link to this function

 cast(mapset)

 View Source

Confirm the type is a MapSet and its elements are of one type, number or binary

 Link to this function

 dump(mapset)

 View Source

Dump as is

 Link to this function

 embed_as(_)

 View Source

Dictates how the type should be treated inside embeds

 Link to this function

 equal?(term_a, term_b)

 View Source

Check if two terms are semantically equal

 Link to this function

 load(mapset)

 View Source

Load as is

 Link to this function

 type()

 View Source

This type is actually a MapSet

Ecto.Adapters.DynamoDB.Info

Get information on dynamo tables and schema

 Anchor for this section

 Summary

 Functions

 index_details(repo, tablename)

 Get all the raw information on indexes for a given table, returning as a map.

 indexed_attributes(repo, table_name)

 returns a list of any indexed attributes in the table

 indexes(repo, tablename)

 Get a list of the available indexes on a table. The format of this list is described in normalise_dynamo_index!

 primary_key!(repo, tablename)

 Returns the primary key/ID for a table. It may be a single field that is a HASH, OR
it may be the dynamoDB {HASH, SORT} type of index. we return
{:primary, [index]}
in a format described in normalise_dynamo_index!

 repo_primary_key(repo)

 secondary_indexes(repo, tablename)

 returns a simple list of the secondary indexes (global and local) for the table. Uses same format
for each member of the list as 'primary_key!'.

 table_info(repo, tablename)

 Returns the raw amazon dynamo DB table schema information. The raw json is presented as an elixir map.

 ttl_info(repo, tablename)

 Anchor for this section

Functions

 Link to this function

 index_details(repo, tablename)

 View Source

 @spec index_details(Ecto.Repo.t(), table_name_t()) :: %{
 primary: [map()],
 secondary: [map()]
}

Get all the raw information on indexes for a given table, returning as a map.

 Link to this function

 indexed_attributes(repo, table_name)

 View Source

 @spec indexed_attributes(Ecto.Repo.t(), table_name_t()) :: [String.t()]

returns a list of any indexed attributes in the table

 Link to this function

 indexes(repo, tablename)

 View Source

 @spec indexes(Ecto.Repo.t(), table_name_t()) :: [
 {:primary | String.t(), [String.t()]}
]

Get a list of the available indexes on a table. The format of this list is described in normalise_dynamo_index!

 Link to this function

 primary_key!(repo, tablename)

 View Source

 @spec primary_key!(Ecto.Repo.t(), table_name_t()) ::
 {:primary, [String.t()]} | no_return()

Returns the primary key/ID for a table. It may be a single field that is a HASH, OR
it may be the dynamoDB {HASH, SORT} type of index. we return
{:primary, [index]}
in a format described in normalise_dynamo_index!

 Link to this function

 repo_primary_key(repo)

 View Source

 @spec repo_primary_key(module()) :: String.t() | no_return()

 Link to this function

 secondary_indexes(repo, tablename)

 View Source

 @spec secondary_indexes(Ecto.Repo.t(), table_name_t()) ::
 [{String.t(), [String.t()]}] | no_return()

returns a simple list of the secondary indexes (global and local) for the table. Uses same format
for each member of the list as 'primary_key!'.

 Link to this function

 table_info(repo, tablename)

 View Source

 @spec table_info(Ecto.Repo.t(), table_name_t()) :: dynamo_response_t() | no_return()

Returns the raw amazon dynamo DB table schema information. The raw json is presented as an elixir map.
Here is an example of what it may look like
%{"AttributeDefinitions" => [%{"AttributeName" => "id",
 "AttributeType" => "S"},
 %{"AttributeName" => "person_id", "AttributeType" => "S"}],
 "CreationDateTime" => 1489615412.651,
 "GlobalSecondaryIndexes" => [%{"IndexArn" => "arn:aws:dynamodb:ddblocal:000000000000:table/circle_members/index/person_id",
 "IndexName" => "person_id", "IndexSizeBytes" => 7109,
 "IndexStatus" => "ACTIVE", "ItemCount" => 146,
 "KeySchema" => [%{"AttributeName" => "person_id", "KeyType" => "HASH"}],
 "Projection" => %{"ProjectionType" => "ALL"},
 "ProvisionedThroughput" => %{"ReadCapacityUnits" => 100,
 "WriteCapacityUnits" => 50}}], "ItemCount" => 146,
 "KeySchema" => [%{"AttributeName" => "id", "KeyType" => "HASH"},
 %{"AttributeName" => "person_id", "KeyType" => "RANGE"}],
 "ProvisionedThroughput" => %{"LastDecreaseDateTime" => 0.0,
 "LastIncreaseDateTime" => 0.0, "NumberOfDecreasesToday" => 0,
 "ReadCapacityUnits" => 100, "WriteCapacityUnits" => 50},
 "TableArn" => "arn:aws:dynamodb:ddblocal:000000000000:table/circle_members",
 "TableName" => "circle_members", "TableSizeBytes" => 7109,
 "TableStatus" => "ACTIVE"}

 Link to this function

 ttl_info(repo, tablename)

 View Source

Ecto.Adapters.DynamoDB.Migration

Implements Ecto migrations for create table and alter table.
The functions, add, remove and modify correspond to indexes on the DynamoDB table. Using add, the second parameter, field type (which corresponds with the DynamoDB attribute) must be specified. Use the third parameter to specify a primary key not already specified. For a HASH-only primary key, use primary_key: true as the third parameter. For a composite primary key (HASH and RANGE), in addition to the primary_key specification, set the third parameter on the range key attribute to range_key: true. There should be only one primary key (hash or composite) specified per table.
To specify index details, such as provisioned throughput, create_if_not_exists/drop_if_exists, billing_mode, and global and local indexes, use the options keyword in create table and alter table, please see the examples below for greater detail.
Please note that change may not work as expected on rollback. We recommend specifying up and down instead.
Example:

Migration file 1:

 def change do
 create table(:post,
 primary_key: false,
 options: [
 global_indexes: [
 [index_name: "email_content",
 keys: [:email, :content],
 provisioned_throughput: [100, 100]] # [read_capacity, write_capacity]
],
 provisioned_throughput: [20,20]
]) do

 add :email, :string, primary_key: true # primary composite key
 add :title, :string, range_key: true # primary composite key
 add :content, :string
 end
 end

Migration file 2:

 def up do
 create_if_not_exists table(:rabbit,
 primary_key: false,
 options: [
 billing_mode: :pay_per_request,
 global_indexes: [
 [index_name: "name",
 keys: [:name]]
]
]) do

 add :id, :string, primary_key: true
 add :name, :string, hash_key: true
 end
 end

 def down do
 drop_if_exists table(:rabbit)
 end

Migration file 3:

 def up do
 alter table(:post,
 options: [
 global_indexes: [
 [index_name: "content",
 keys: [:content],
 create_if_not_exists: true,
 provisioned_throughput: [1,1],
 projection: [projection_type: :include, non_key_attributes: [:email]]]
]
]) do

 add :content, string
 end
 end

 def down do
 alter table(:post,
 options: [
 global_indexes: [
 [index_name: "content",
 drop_if_exists: true]]
]
) do
 remove :content
 end
 end

Migration file 4:

 def up do
 alter table(:post) do
 # modify will not be processed in a rollback if 'change' is used
 modify :"email_content", :string, provisioned_throughput: [2,2]
 remove :content
 end
 end

 def down do
 alter table(:post,
 options: [
 global_indexes: [
 [index_name: "content",
 keys: [:content],
 projection: [projection_type: :include, non_key_attributes: [:email]]]
]
]) do

 modify :"email_content", :string, provisioned_throughput: [100,100]
 add :content, :string
 end
 end

 Anchor for this section

 Summary

 Functions

 execute_ddl(arg1, string, options)

 Anchor for this section

Functions

 Link to this function

 execute_ddl(arg1, string, options)

 View Source

Ecto.Adapters.DynamoDB.Query

Some query wrapper functions for helping us query dynamo db. Selects indexes to use, etc.
Not to be confused with Ecto.Query.

 Anchor for this section

 Summary

 Types

 expression_data_acc()

 Functions

 construct_search(arg, search, opts)

 get_best_index(repo, tablename, search, opts)

 Given a map with a search criteria, finds the best index to search against it.
Returns a tuple indicating whether it's a primary key index, or a secondary index.
To query against a secondary index in Dynamo, we NEED to have it's index name,
so secondary indexes are returned as a tuple with the field name, whilst
the primary key uses the atom :primary to distinguish it.

 get_best_index!(repo, tablename, search, opts \\ [])

 Same as get_best_index, but refers to a scan option on failure

 get_item(repo, table, search, opts)

 get_matching_primary_index(repo, tablename, search)

 Given a search criteria of 1 or more fields, we try find out if the primary key is a
good match and can be used to forfill this search. Returns the tuple
 {:primary, [hash] | [hash, range]}
or
 :not_found

 get_matching_secondary_index(repo, tablename, search, opts)

 Given a keyword list containing search field, value and operator to search for (which may also be nested under logical operators, e.g., [{"id", {"franko", :==}}], or [{:and, [{"circle_id", {"123", :==}}, {"person_id", {"abc", :>}}]}), will return the dynamo db index description that will help us match this search. return :not_found if no index is found.

 parse_recursive_option(scan_or_query, opts)

 Formats the recursive option according to whether the query is a DynamoDB scan or query. (The adapter defaults to recursive fetch in case of the latter but not the former)

 scan_or_query?(repo, table, search)

 Returns an atom, :scan or :query, specifying whether the current search will be a DynamoDB scan or a query.

 update_recursive_option(r)

 Updates the recursive option during a recursive fetch, according to whether the option is a boolean or an integer (as in the case of page_limit)

 Anchor for this section

Types

 Link to this type

 expression_data_acc()

 View Source

 @type expression_data_acc() :: {[String.t()], map(), map()}

 Anchor for this section

Functions

 Link to this function

 construct_search(arg, search, opts)

 View Source

 @spec construct_search(
 {:primary | :primary_partial | nil | String.t(), [String.t()]},
 search(),
 keyword()
) :: keyword()

 @spec construct_search(
 {:secondary_partial, String.t(), [String.t()]},
 search(),
 keyword()
) :: keyword()

 Link to this function

 get_best_index(repo, tablename, search, opts)

 View Source

 @spec get_best_index(Ecto.Repo.t(), table_name(), search(), query_opts()) ::
 :not_found
 | {:primary, [String.t()]}
 | {:primary_partial, [String.t()]}
 | {String.t(), [String.t()]}
 | {:secondary_partial, String.t(), [String.t()]}
 | no_return()

Given a map with a search criteria, finds the best index to search against it.
Returns a tuple indicating whether it's a primary key index, or a secondary index.
To query against a secondary index in Dynamo, we NEED to have it's index name,
so secondary indexes are returned as a tuple with the field name, whilst
the primary key uses the atom :primary to distinguish it.
 | {"index_name", [indexed_fields_list]}
Exception if the index doesn't exist.

 Link to this function

 get_best_index!(repo, tablename, search, opts \\ [])

 View Source

Same as get_best_index, but refers to a scan option on failure

 Link to this function

 get_item(repo, table, search, opts)

 View Source

 @spec get_item(Ecto.Repo.t(), table_name(), search(), keyword()) ::
 dynamo_response() | no_return()

 Link to this function

 get_matching_primary_index(repo, tablename, search)

 View Source

Given a search criteria of 1 or more fields, we try find out if the primary key is a
good match and can be used to forfill this search. Returns the tuple
 {:primary, [hash] | [hash, range]}
or
 :not_found

 Link to this function

 get_matching_secondary_index(repo, tablename, search, opts)

 View Source

Given a keyword list containing search field, value and operator to search for (which may also be nested under logical operators, e.g., [{"id", {"franko", :==}}], or [{:and, [{"circle_id", {"123", :==}}, {"person_id", {"abc", :>}}]}), will return the dynamo db index description that will help us match this search. return :not_found if no index is found.
Returns a tuple of {"index_name", [hash_key or hash,range_key]]} or :not_found
TODO: Does not help with range queries. -> The match_index_hash_part function is
 beginning to address this.

 Link to this function

 parse_recursive_option(scan_or_query, opts)

 View Source

Formats the recursive option according to whether the query is a DynamoDB scan or query. (The adapter defaults to recursive fetch in case of the latter but not the former)

 Link to this function

 scan_or_query?(repo, table, search)

 View Source

Returns an atom, :scan or :query, specifying whether the current search will be a DynamoDB scan or a query.

 Link to this function

 update_recursive_option(r)

 View Source

Updates the recursive option during a recursive fetch, according to whether the option is a boolean or an integer (as in the case of page_limit)

Ecto.Adapters.DynamoDB.QueryInfo

An Elixir agent to optionally record DynamoDB query information (like LastEvaluatedKey) that's not part of expected Ecto return values.

 Anchor for this section

 Summary

 Functions

 child_spec(_)

 get(key)

 Returns the value (query info) in the QueryInfo agent associated with the provided key.

 get_key()

 Provides a random 32 character, base 64 encoded string.

 get_map()

 Returns the complete current map recorded by the agent.

 put(key, val)

 Updates the value of a given key in the Agent map.

 start_link()

 update(key, initial, fun)

 Updates the value of a given key in the Agent map according to a specific function.

 Anchor for this section

Functions

 Link to this function

 child_spec(_)

 View Source

 Link to this function

 get(key)

 View Source

Returns the value (query info) in the QueryInfo agent associated with the provided key.

 Link to this function

 get_key()

 View Source

Provides a random 32 character, base 64 encoded string.

 Link to this function

 get_map()

 View Source

Returns the complete current map recorded by the agent.

 Link to this function

 put(key, val)

 View Source

Updates the value of a given key in the Agent map.

 Link to this function

 start_link()

 View Source

 Link to this function

 update(key, initial, fun)

 View Source

Updates the value of a given key in the Agent map according to a specific function.

Ecto.Adapters.DynamoDB.RepoConfig

 Anchor for this section

 Summary

 Functions

 config_val(repo, key, default \\ nil)

 table_in_list?(repo, table, list)

 Anchor for this section

Functions

 Link to this function

 config_val(repo, key, default \\ nil)

 View Source

 Link to this function

 table_in_list?(repo, table, list)

 View Source

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

