

 ECSx

 v0.2.0

 Table of contents

 	Installation

 	Tutorial Project

 	ECS Design

 	Modules

 	ECSx

 	ECSx.Aspect

 	ECSx.Component

 	ECSx.Manager

 	ECSx.System

 	ECSx.QueryError

 	Mix Tasks

 	mix ecsx.gen.aspect

 	mix ecsx.gen.system

 	mix ecsx.setup

Installation

To create an ECSx application, there are a few simple steps:
	install Elixir + erlang/OTP
	install Phoenix (optional)
	create an Elixir/Phoenix project
	fetch ECSx as a dependency for your project
	run the ECSx setup

Elixir and erlang/OTP
If you don't yet have Elixir and erlang/OTP installed on your machine, follow the instructions on the official Installation Page.
Phoenix
If you plan on hosting your application online, you'll probably want to use Phoenix. You can skip this step if you only want to run the app locally. Otherwise, follow the instructions for Phoenix installation (the tutorial project will assume you are using Phoenix).
Create project
If you are using Phoenix, you'll create your new application with the command
$ mix phx.new my_app

Or for a regular Elixir application (with supervision tree):
$ mix new my_app --sup

Install ECSx
To use the ECSx framework in your application, it should be added to the list of dependencies in my_app/mix.exs:
defp deps do
 [
 {:ecsx, "~> 0.1"}
]
end
Then (from the root directory of your application) run:
$ mix deps.get

Setup ECSx
With ECSx installed, you can run the setup generator:
$ mix ecsx.setup

which will create the Manager, and two folders to get your project started.
You'll also need to add the Manager to your application's supervision tree:
def start(_type, _args) do
 children = [
 MyApp.Manager
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
Summary
You should now have everything you need to start building! If you're already familiar with the Entity-Component-System pattern, jump right in to the tutorial project - otherwise, start with our guide on ECS design.

Tutorial Project

Now that we have an Elixir project with Phoenix, we can get started on building a game with
Entity-Component-System architecture. We're going to use the classic Snake as inspiration.
Design plan
In a classic Snake game, collision is everything. We're going to need a game world where a snake
can occupy many coordinates, and each one of those coordinates should be considered for collision.
We also need to "order" each occupied coordinate in order to simulate movement - by adding to the
head and removing from the tail.
Let's start by creating a Coordinate aspect:
 $ mix ecsx.gen.aspect Coordinate coordinate snake_id order

We are declaring three fields in the schema, coordinate, snake_id, and order. Normally,
the first field of a schema is entity_id, which will give us efficient lookups on that field.
However, this is a rare exception where lookup by entity_id is not very useful, and it is
coordinate which will be the basis for our querying. The id of the snake is still useful
metadata, so we'll include that as the second field. The third field is unique to our Snake game,
where each coordinate represents just one link to a longer chain that is a snake. We need to be
able to know the first (head) and last (tail) coordinates, and we accomplish this through order.
A coordinate with order 1 is the head, and a coordinate where order is equal to the total
length of the snake, must be the tail.
Since we know that snake length will be useful data, let's create another Aspect for it:
 $ mix ecsx.gen.aspect Length snake_id length

This is a standard Aspect where we will query its Components by snake_id, so that should be
the first field.
Next we can also anticipate needing to label snakes with a Direction of movement:
 $ mix ecsx.gen.aspect Direction snake_id direction

Now that we have modeled world data and snake data, let's think about the Systems which will
organize game logic. What makes a Snake game work?
	Snakes move forwards every game tick
	Snakes get longer over time (or based on other game conditions)
	When there is a collision, one or both snakes are removed from the game

Let's start with the most important System - the physics. We'll call it Driver:
 $ mix ecsx.gen.system Driver

Heading over to the generated file lib/your_app/systems/driver.ex and we'll add some code:
defmodule YourApp.Systems.Driver do
 ...
 alias YourApp.Aspects.Moving
 alias YourApp.Aspects.Position
 ...
 def run do
 # First we get all the Coordinate components
 coordinates = Coordinate.query_all()

 # Each coordinate will be appropriately updated to simulate the movement of the snakes
 Enum.each(coordinates, &update_coordinate/1)
 end

 defp update_coordinate(%{coordinate: {x, y}, snake_id: id, order: 1} = component) do
 # If the order is 1, then this is a head; we need to occupy an adjacent coordinate.
 # First let's find the direction this snake is headed
 direction = Direction.query_one(match: [snake_id: id], value: :direction)

 # From this direction we need to calculate the coordinate we're moving into
 new_coord = calculate_new_position(x, y, direction)

 # Insert new head coordinate and increment the order of this one
 Coordinate.add_component(coordinate: new_coord, snake_id: id, order: 1)
 increment_order(component)
 end

 defp update_coordinate(%{coordinate: coordinate, snake_id: id, order: order} = component) do
 # Since we know this isn't the head, we just need to check if it's the tail
 length = Length.query_one(match: [snake_id: id], value: :length)

 if length == order do
 # This is the tail, we should un-occupy the coordinate as the snake moves out
 Coordinate.remove_component(coordinate: coordinate, snake_id: id)
 else
 # All other coordinates in-between get their order incremented by one
 increment_order(component)
 end
 end

 defp calculate_new_position(x, y, :north), do: {x, y + 1}
 defp calculate_new_position(x, y, :east), do: {x + 1, y}
 defp calculate_new_position(x, y, :south), do: {x, y - 1}
 defp calculate_new_position(x, y, :west), do: {x - 1, y}

 defp increment_order(%{coordinate: coordinate, snake_id: id, order: order}) do
 Coordinate.remove_component(coordinate: coordinate, snake_id: id)
 Coordinate.add_component(coordinate: coordinate, snake_id: id, order: order + 1)
 end
end
You probably noticed that this System creates new coordinates without checking if there is any
collision with existing coordinates. This is intentional; to demonstrate why, imagine an
example where Snake A is exiting a coordinate, and Snake B is entering the same coordinate,
on the same server tick. Now, if we check for collision in the Driver system, the result will
depend on which Component gets updated first:
	If Snake A's tail Component is updated first, then the check will show the coordinate as
unoccupied, and there will be no collision.
	If Snake B's head Component is updated first, then the check will show the coordinate as
occupied by Snake A's tail, and there will be a collision.

We want to avoid this kind of inconsistency, and ensure that the result is the same, regardless
of which Component is stored earlier in the table. Therefore we allow duplicate coordinates,
and will have another System handle the cleanup afterwards.
You've probably guessed that we'll start by running the generator:
 $ mix ecsx.gen.system Collision

But before we start coding, let's think of a plan for how to efficiently check for collisions.
One approach could be to fetch all the Coordinate Components, iterate over the list, grouping
them by {x, y} pair, then iterate over the groups, checking if any have more than one member.
This might be fine for some games, but if we want to optimize performance, we should only check
for collision where there is actually a possibility of collision. The only possible points of
collision are those coordinates where there is a snake head (order 1).
Then, in lib/your_app/systems/collision.ex:
defmodule YourApp.Systems.Collision do
 ...
 def run do
 # Fetch coordinates for all snake heads
 possible_collision_coords = Coordinate.query_all(match: [order: 1])
 # Update components for any entities which have collided
 Enum.each(possible_collision_coords, &check_for_collision/1)
 end

 defp check_for_collision(%{coordinate: coordinate, snake_id: id, order: order}) do
 case Coordinate.query_all(match: [coordinate: coordinate]) do
 [] -> :ok
 [_] -> :ok
 multiple_results -> Enum.each(multiple_results, &handle_collision/1)
 end
 end

 defp handle_collision(%{coordinate: coordinate, snake_id: id, order: 1}) do
 # When a snake head collides, it dies - we can remove its components
 Position.remove_component(id)
 Moving.remove_component(id)
 Length.remove_component(id)

 # Without any components, the entity will cease to exist!
 # Maybe we would like to keep some record of the entity instead:
 CrashRecord.add_component(
 entity_id: id,
 crash_time: DateTime.utc_now(),
 crash_location: coordinate
)
 end

 # If the order is not 1, then the collision was on the snake's tail, and it will survive
 defp handle_collision(_), do: :ok
end
Whenever we need a new Aspect (such as CrashRecord), we can simply run the generator again:
 $ mix ecsx.gen.aspect CrashRecord entity_id crash_time crash_location

ECS Design

Entities, Aspects, and Components
Everything in your application is an Entity, but in ECS you won't work with these
Entities directly - instead you will work directly with the individual attributes
that an Entity might have. These attributes are called Aspects, and they are given
to an Entity by creating a Component, which holds, at minimum, the Entity's
unique ID, but also any extra data which is relevant to that Aspect. For example:
	You're running a simulation of cars on a highway
	Each car gets its own entity_id e.g. 123
	If the car with ID 123 is blue, we give it the Color Aspect, stored as a {123, "blue"} Component
	If the same car is moving west at 60mph, we might model this with a Moving Aspect, stored as a {123, 60, "west"} Component
	Another car with ID 135 might have the Moving Aspect with different data {135, 30, "east"}
	These cars would also have Location which holds x, y, z coordinates: {entity_id, x, y, z}

Systems
Once your data is modeled using Components to associate different Aspects to your Entities,
you'll create Systems to operate on them. For example:
	Entities with the Moving Aspect should have their locations regularly updated according to the speed and direction
	We can create a Move System which reads the Moving Component, calculates how far the car has moved since the last server tick, and updates the Entity's Location Component accordingly.
	The System will run every tick, only considering Entities which have the Moving Aspect

ECSx

ECSx is an Entity-Component-System (ECS) framework for Elixir.
In ECS:
	Every game object is an Entity, represented by a unique ID.
	The data which comprises an Entity is split among many Components.
	Game logic is split into Systems, which update the Components every server tick.

Components are grouped together - with similar Components from other Entities - into
categories called Aspects. Systems can then be organized in a way where each one only
operates on Components of a specific Aspect.
Under the hood, ECSx uses Erlang Term Storage (ETS) to store active Components in memory.
A single GenServer manages the ETS tables to ensure strict serializability and customize
the run order for Systems.

ECSx.Aspect behaviour

Provides an API for working with Components of a specific type.
For example, if Entities in your application should have a "color" value, you will
create an Aspect called Color. This allows you to add a color Component to an Entity
with add_component/1, query the color value for a given Entity with query_one/1,
query all Entities which have a color value with query_all/1, remove
the color value from an Entity altogether with remove_component/1, or test whether
an entity has a color with has_component?/1.
Usage
Each Aspect should have its own module, which defines a schema for the data, and optional
ETS table settings. The schema defines the field names which will be used to reference
each value.
defmodule MyApp.Aspects.Color do
 use ECSx.Aspect,
 schema: {:entity_id, :hue, :saturation, :lightness}
end
Options
	:schema - a tuple of field names
	:table_type - ETS table type. Possible options are :set, :ordered_set, :bag, and
:duplicate_bag. Defaults to :set. See below for more information.
	:read_concurrency - when true, enables read concurrency for the ETS table. Defaults
to false

:table_type option
By default, ECSx creates ETS tables of type :set for your Components. This means that
each Entity may have at most one Component of each Aspect. For example, if your application
has a "Height" Aspect, Entities would never need more than one Component to model that value.
However, if you had an Aspect such as "TakingDamageOverTime", you might want an Entity to
store each source of damage as a separate value, using multiple Components of the same Aspect.
To do this, set :table_type to :bag.
Example
defmodule TakingDamageOverTime do
 use ECSx.Aspect,
 schema: {:entity_id, :damage_per_second, :damage_type, :source_id},
 table_type: :bag
end

alias TakingDamageOverTime, as: DOT

DOT.add_component(entity_id: hero.id, damage_per_second: 10, type: :poison, source_id: spider.id)
DOT.add_component(entity_id: hero.id, damage_per_second: 25, type: :fire, source_id: dragon.id)
query_one/1 and query_all/1
The standard way to fetch the Component(s) from an Entity is using a Query. Each aspect
provides two Query functions: query_one/1 and query_all/1. The former returns a single
result, and will raise an ECSx.QueryError if more than one result is found. The latter
will return a list with any number of results.
These Query functions have two possible parameters:
	:match - A keyword list of the fields and values for which to search. If a :match is
not given, the entire Aspect table will be returned.

	:value - By default, each Component returned by a Query will be in the form of a map,
using the keys provided by its Aspect schema. If you only care about one field from the
Component, you can instead return unwrapped values with value: :field_name

Examples
Color.query_one(match: [entity_id: entity_id])
%{entity_id: entity_id, hue: 300, saturation: 50, lightness: 45}

Color.query_one(match: [entity_id: entity_id], value: :hue)
300

Color.query_all()
[%{entity_id: entity_id, ...}, %{...}, ...]

Color.query_all(value: :entity_id)
[entity_id, another_entity_id, ...]

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 add_component(attrs)

 Creates a new component.

 has_component?(entity_id)

 Checks if an entity has one or more components with this aspect.

 query_all(query)

 Query for all components of this aspect with optional match conditions.

 query_one(query)

 Query for a single component of this aspect with optional match conditions.

 remove_component(entity_id)

 Removes any existing components of this aspect from an entity.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: module()

 Anchor for this section

Callbacks

 Link to this callback

 add_component(attrs)

 View Source

 @callback add_component(attrs :: Keyword.t()) :: :ok

Creates a new component.

 example

 Example

ArmorRating.add_component(entity_id: 123, value: 10)

 Link to this callback

 has_component?(entity_id)

 View Source

 @callback has_component?(entity_id :: any()) :: boolean()

Checks if an entity has one or more components with this aspect.

 Link to this callback

 query_all(query)

 View Source

 @callback query_all(query :: Keyword.t()) :: [ECSx.Component.t() | ECSx.Component.value()]

Query for all components of this aspect with optional match conditions.
Examples
Get the ID of each entity with zero velocity in the x-y plane
Velocity.query_all(match: [vx: 0, vy: 0], value: :entity_id)

 Link to this callback

 query_one(query)

 View Source

 @callback query_one(query :: Keyword.t()) :: ECSx.Component.t() | ECSx.Component.value()

Query for a single component of this aspect with optional match conditions.
Raises if more than one component is returned.
Examples
Get the Velocity component for entity 123
Velocity.query_one(match: [entity_id: 123])

 Link to this callback

 remove_component(entity_id)

 View Source

 @callback remove_component(entity_id :: any()) :: :ok

Removes any existing components of this aspect from an entity.

ECSx.Component

A Component labels an entity as possessing a particular Aspect, and holds any data
needed to model that Aspect.
Under the hood, we use ETS to store the Components in memory for quick retrieval
via Aspect and Entity ID.

 Anchor for this section

 Summary

 Types

 t()

 value()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: map()

 Link to this type

 value()

 View Source

 @type value() :: any()

ECSx.Manager

The Manager for your ECSx application.
In an ECSx application, the Manager is responsible for:
	starting up ETS tables for each Aspect, where the Components will be stored
	prepopulating the game content into memory
	keeping track of the Systems to run, and their run order
	configuring the tick rate for the application
	running the Systems every tick

:tick_rate option
The mix ecsx.setup generator creates a Manager file with :tick_rate set to 20
(i.e. 20 ticks per second). Feel free to change this number to fit the needs
of your application.
aspects/0 and systems/0
Your Manager module must contain two zero-arity functions called aspects and systems
which return a list of all Aspects or Systems in your application. The order of
the Aspects list is irrelevant, but the order of the Systems list is very important,
because the Systems are run consecutively in the given order.
setup block
Another important piece of the Manager module is the setup block. Here you can load
all the necessary data for your app before any Systems run or users connect. See setup/1
for more information.

 Anchor for this section

 Summary

 Functions

 setup(block)

 Runs the given code block during startup.

 Anchor for this section

Functions

 Link to this macro

 setup(block)

 View Source

 (macro)

Runs the given code block during startup.
The code will be run during the Manager's initialization (so pay special attention to the
position of ECSx.Manager in your application's supervision tree). The Aspect tables will
be created before setup is executed.

 example

 Example

defmodule YourApp.Manager do
 use ECSx.Manager

 setup do
 for npc <- YourApp.fetch_npc_spawn_info() do
 Name.add_component(entity_id: npc.id, name: npc.name)
 HitPoints.add_component(entity_id: npc.id, current: npc.hp, max: npc.hp)
 Location.add_component(entity_id: npc.id, coords: npc.spawn_location)
 end
 end
end
This setup will spawn each NPC with Components for Name, HitPoints, and Location.

ECSx.System behaviour

A fragment of game logic which reads and updates Components.
Every System must implement a run function.
By default, the System will run every game tick. To use a longer period between runs,
you can pass the option :period. For example, to set a System to run every 5 ticks:
use ECSx.System,
 period: 5

 Anchor for this section

 Summary

 Callbacks

 run()

 Invoked to run System logic.

 Anchor for this section

Callbacks

 Link to this callback

 run()

 View Source

 @callback run() :: :ok

Invoked to run System logic.
This function will be called every T game ticks, where T is the value of
the System's :period option (defaults to 1).
Note: A crash inside this function will restart the entire app!

ECSx.QueryError exception

Raised at runtime when the Query is invalid.

mix ecsx.gen.aspect

Generates a new Aspect for an ECSx application.
$ mix ecsx.gen.aspect Color entity_id hue saturation lightness

The first argument is the name of the Aspect module, followed by the data fields
which will make up each Component.

mix ecsx.gen.system

Generates a new System for an ECSx application.
$ mix ecsx.gen.system Foo

The only argument accepted is a module name for the System.

mix ecsx.setup

Generates the Manager process which runs an ECSx application.
$ mix ecsx.setup

This setup will generate manager.ex and empty folders for aspects and systems.
If you don't want to generate the folders, you can provide option --no-folders

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

