

 Quark

 v2.3.3-doma

 [image: Logo]

 Table of contents

 	Quark: Common combinators for Elixir

 	Modules

 	Quark

 	Quark.BCKW

 	Quark.Compose

 	Quark.Curry

 	Quark.FixedPoint

 	Quark.M

 	Quark.Partial

 	Quark.Pointfree

 	Quark.SKI

 	Quark.Sequence

Quark: Common combinators for Elixir

[image:]
[image: Build Status] [image: Inline docs] [image: Deps Status] [image: hex.pm version] [image: API Docs] [image: license]
Table of Contents
	Quick Start
	Summary	Includes

	Functional Overview	Curry	Functions
	Macros

	Partial	Macros

	Pointfree
	Compose
	Common Combinators	Classics	SKI System
	BCKW System
	Fixed Point

	Sequence

Quick Start

def deps do
 [{:quark, "~> 2.3"}]
end

defmodule MyModule do
 use Quark

 # ...
end
Summary
Elixir is a functional programming language,
but it lacks some of the common built-in constructs that many other functional
languages provide. This is not all-together surprising, as Elixir has a strong
focus on handling the complexities of concurrency and fault-tolerance, rather than
deeper functional composition of functions for reuse.
Includes
	A series of classic combinators (SKI, BCKW, and fixed-points), along with friendlier aliases
	Fully-curried and partially applied functions
	Macros for defining curried and partially applied functions
	Composition helpers	Function: compose/2

	A plethora of common functional programming primitives, including:	id
	flip
	const
	pred
	succ
	fix
	self_apply

Functional Overview
Curry
Functions
curry creates a 0-arity function that curries an existing function. uncurry applies arguments to curried functions, or if passed a function creates a function on pairs.
Macros: defcurry and defcurryp
Why define the function before currying it? defcurry and defcurryp return
fully-curried 0-arity functions.

defmodule Foo do
 import Quark.Curry

 defcurry div(a, b), do: a / b
 defcurryp minus(a, b), do: a - b
end

Regular
div(10, 2)
=> 5

Curried
div.(10).(5)
=> 2

Partially applied
div_ten = div.(10)
div_ten.(2)
=> 5

Partial
:crown: We think that this is really the crowning jewel of Quark.
defpartial and defpartialp create all arities possible for the defined
function, bare, partially applied, and fully curried.
This does use up the full arity-space for that function name, however.
Macros: defpartial and defpartialp

defmodule Foo do
 import Quark.Partial

 defpartial one(), do: 1
 defpartial minus(a, b, c), do: a - b - c
 defpartialp plus(a, b, c), do: a + b + c
end

Normal zero-arity
one
=> 1

Normal n-arity
minus(4, 2, 1)
=> 1

Partially-applied first two arguments
minus(100, 5).(10)
=> 85

Partially-applied first argument
minus(100).(10).(50)
=> 40

Fully-curried
minus.(10).(2).(1)
=> 7

Pointfree
Allows defining functions as straight function composition (ie: no need to state the argument).
Provides a clean, composable named functions. Also doubles as an aliasing device.
defmodule Contrived do
 import Quark.Pointfree
 defx sum_plus_one, do: Enum.sum() |> fn x -> x + 1 end.()
end

Contrived.sum_plus_one([1,2,3])
#=> 7
Compose
Compose functions to do convenient partial applications.
Versions for composing left-to-right and right-to-left are provided
The function compose/2 is done "the math way" (right-to-left).
The operator <~> is done "the flow way" (left-to-right).
Versions on lists also available.
import Quark.Compose

Regular Composition
sum_plus_one = compose(fn x -> x + 1 end, &Enum.sum/1)
sum_plus_one.([1,2,3])
#=> 7

add_one = &(&1 + 1)
piped = fn x -> x |> Enum.sum |> add_one.() end
composed = compose(add_one, &Enum.sum/1)
piped.([1,2,3]) == composed.([1,2,3])
#=> true

sum_plus_one = (&Enum.sum/1) <~> fn x -> x + 1 end
sum_plus_one.([1,2,3])
#=> 7

Reverse Composition (same direction as pipe)
x200 = (&(&1 * 2)) <~> (&(&1 * 10)) <~> (&(&1 * 10))
x200.(5)
#=> 1000

add_one = &(&1 + 1)
piped = fn x -> x |> Enum.sum() |> add_one.() end
composed = (&Enum.sum/1) <~> add_one
piped.([1,2,3]) == composed.([1,2,3])
#=> true
Common Combinators
A number of basic, general functions, including id, flip, const, pred, succ, fix, and self_apply.
Classics
SKI System
The SKI system combinators. s and k alone can be combined to express any
algorithm, but not usually with much efficiency.
We've aliased the names at the top-level (Quark), so you can use const
rather than having to remember what k means.
 1 |> i()
#=> 1

"identity combinator" |> i()
#=> "identity combinator"

Enum.reduce([1,2,3], [42], &k/2)
#=> 3

BCKW System
The classic b, c, k, and w combinators. A similar "full system" as SKI,
but with some some different functionality out of the box.
As usual, we've aliased the names at the top-level (Quark).
c(&div/2).(1, 2)
#=> 2

reverse_concat = c(&Enum.concat/2)
reverse_concat.([1,2,3], [4,5,6])
#=> [4,5,6,1,2,3]

repeat = w(&Enum.concat/2)
repeat.([1,2])
#=> [1,2,1,2]
Fixed Point
Several fixed point combinators, for helping with recursion. Several formulations are provided,
but if in doubt, use fix. Fix is going to be kept as an alias to the most efficient
formulation at any given time, and thus reasonably future-proof.
fac = fn fac ->
 fn
 0 -> 0
 1 -> 1
 n -> n * fac.(n - 1)
 end
end

factorial = y(fac)
factorial.(9)
#=> 362880
Sequence
Really here for pred and succ on integers, by why stop there?
This works with any ordered collection via the Quark.Sequence protocol.
succ 10
#=> 11

42 |> origin() |> pred() |> pred()
#=> -2

Quark

Top-level module. Provides a convenient use macro for importing the most
commonly used functions and macros.
Due to performance reasons, many of the combinators are given non-combinatory
implementations (ie: not everything is expressed in terms s and k)

 Anchor for this section

 Summary

 Functions

 compose(a)

 See Quark.Compose.compose/1.

 compose(a, b)

 See Quark.Compose.compose/2.

 constant(a, b)

 See Quark.SKI.constant/2.

 first(a, b)

 See Quark.SKI.first/2.

 fix(fun)

 See Quark.FixedPoint.fix/1.

 flip(fun)

 See Quark.BCKW.flip/1.

 id(a)

 See Quark.SKI.id/1.

 origin(a)

 See Quark.Sequence.origin/1.

 pred(a)

 See Quark.Sequence.pred/1.

 second(a, b)

 See Quark.SKI.second/2.

 self_apply(a)

 See Quark.M.self_apply/1.

 succ(a)

 See Quark.Sequence.succ/1.

 Anchor for this section

Functions

 Link to this function

 compose(a)

 View Source

See Quark.Compose.compose/1.

 Link to this function

 compose(a, b)

 View Source

See Quark.Compose.compose/2.

 Link to this function

 constant(a, b)

 View Source

See Quark.SKI.constant/2.

 Link to this function

 first(a, b)

 View Source

See Quark.SKI.first/2.

 Link to this function

 fix(fun)

 View Source

See Quark.FixedPoint.fix/1.

 Link to this function

 flip(fun)

 View Source

See Quark.BCKW.flip/1.

 Link to this function

 id(a)

 View Source

See Quark.SKI.id/1.

 Link to this function

 origin(a)

 View Source

See Quark.Sequence.origin/1.

 Link to this function

 pred(a)

 View Source

See Quark.Sequence.pred/1.

 Link to this function

 second(a, b)

 View Source

See Quark.SKI.second/2.

 Link to this function

 self_apply(a)

 View Source

See Quark.M.self_apply/1.

 Link to this function

 succ(a)

 View Source

See Quark.Sequence.succ/1.

Quark.BCKW

The classic BCKW combinators.
A similar idea to SKI, but with different primitives.

 Anchor for this section

 Summary

 Functions

 b()

 Normal (binary) function composition

 b(x)

 b(x, y)

 b(x, y, z)

 c()

 Reverse (first) two arguments (flip). Aliased as flip.

 c(fun)

 flip(fun)

 See Quark.BCKW.c/1.

 k()

 See Quark.SKI.k/0.

 k(a)

 See Quark.SKI.k/1.

 k(a, b)

 See Quark.SKI.k/2.

 w()

 Apply the same argument to a functon twice

 w(fun)

 Anchor for this section

Functions

 Link to this function

 b()

 View Source

Normal (binary) function composition

 examples

 Examples

iex> sum_plus_one = b(&(&1 + 1), &Enum.sum/1)
iex> [1,2,3] |> sum_plus_one.()
7

 Link to this function

 b(x)

 View Source

 Link to this function

 b(x, y)

 View Source

 Link to this function

 b(x, y, z)

 View Source

 @spec b((... -> any()), (... -> any()), any()) :: any()

 Link to this function

 c()

 View Source

Reverse (first) two arguments (flip). Aliased as flip.

 examples

 Examples

iex> c(&div/2).(1, 2)
2

iex> reverse_concat = c(&Enum.concat/2)
...> reverse_concat.([1,2,3], [4,5,6])
[4,5,6,1,2,3]

iex> flip(&div/2).(1, 2)
2

 Link to this function

 c(fun)

 View Source

 @spec c((... -> any())) :: (... -> any())

 Link to this function

 flip(fun)

 View Source

See Quark.BCKW.c/1.

 Link to this function

 k()

 View Source

See Quark.SKI.k/0.

 Link to this function

 k(a)

 View Source

See Quark.SKI.k/1.

 Link to this function

 k(a, b)

 View Source

See Quark.SKI.k/2.

 Link to this function

 w()

 View Source

Apply the same argument to a functon twice

 examples

 Examples

iex> repeat = w(&Enum.concat/2)
iex> repeat.([1,2])
[1,2,1,2]

iex> w(&Enum.zip/2).([1,2,3])
[{1, 1}, {2, 2}, {3, 3}]

 Link to this function

 w(fun)

 View Source

 @spec w((... -> any())) :: any()

Quark.Compose

Function composition is taking two functions, and joining them together to
create a new function. For example:
Examples
iex> sum_plus_one = compose([&(&1 + 1), &Enum.sum/1])
...> sum_plus_one.([1,2,3])
7
In this case, we have joined Enum.sum with a function that adds one,
to create a new function that takes a list, sums it, and adds one.
Note that composition normally applies from right to left, though Quark
provides the opposite in the form of *_forward functions.

 Anchor for this section

 Summary

 Functions

 f <~> g

 Infix "forward" compositon operator

 compose(funcs)

 Function composition, from the tail of the list to the head

 compose(g, f)

 Function composition

 compose_forward(funcs)

 Compose functions, from the head of the list of functions.

 compose_forward(f, g)

 Function composition, from the head to tail (left-to-right)

 Anchor for this section

Functions

 Link to this function

 f <~> g

 View Source

 @spec (... -> any()) <~> (... -> any()) :: (... -> any())

Infix "forward" compositon operator

 examples

 Examples

iex> sum_plus_one = (&Enum.sum/1) <~> fn x -> x + 1 end
...> sum_plus_one.([1, 2, 3])
7

iex> x200 = (&(&1 * 2)) <~> (&(&1 * 10)) <~> (&(&1 * 10))
...> x200.(5)
1000

iex> add_one = &(&1 + 1)
...> piped = [1, 2, 3] |> Enum.sum() |> add_one.()
...> composed = [1, 2, 3] |> ((&Enum.sum/1) <~> add_one).()
...> piped == composed
true

 Link to this function

 compose(funcs)

 View Source

 @spec compose([(... -> any())]) :: (... -> any())

Function composition, from the tail of the list to the head

 examples

 Examples

iex> sum_plus_one = compose([&(&1 + 1), &Enum.sum/1])
...> [1,2,3] |> sum_plus_one.()
7

 Link to this function

 compose(g, f)

 View Source

 @spec compose((... -> any()), (... -> any())) :: any()

Function composition

 examples

 Examples

iex> sum_plus_one = compose(&(&1 + 1), &Enum.sum/1)
...> [1, 2, 3] |> sum_plus_one.()
7

 Link to this function

 compose_forward(funcs)

 View Source

 @spec compose_forward([(... -> any())]) :: (... -> any())

Compose functions, from the head of the list of functions.

 examples

 Examples

iex> sum_plus_one = compose_forward([&Enum.sum/1, &(&1 + 1)])
...> sum_plus_one.([1, 2, 3])
7

 Link to this function

 compose_forward(f, g)

 View Source

 @spec compose_forward((... -> any()), (... -> any())) :: (... -> any())

Function composition, from the head to tail (left-to-right)

 examples

 Examples

iex> sum_plus_one = compose_forward(&Enum.sum/1, &(&1 + 1))
...> [1, 2, 3] |> sum_plus_one.()
7

Quark.Curry

Currying breaks up a function into a
series of unary functions that apply their arguments to some inner
n-ary function. This is a convenient way to achieve a general and flexible
partial application on any curried function.

 Anchor for this section

 Summary

 Functions

 curry(fun)

 Curry a function at runtime, rather than upon definition

 defcurry(head, list)

 Define a curried function

 defcurryp(head, list)

 Define a curried private function

 uncurry(fun)

 Convert a curried function to a function on pairs

 uncurry(fun, arg_list)

 Apply one or more arguments to a curried function

 Anchor for this section

Functions

 Link to this function

 curry(fun)

 View Source

 @spec curry((... -> any())) :: (... -> any())

Curry a function at runtime, rather than upon definition

 examples

 Examples

iex> curried_reduce_3 = curry &Enum.reduce/3
...> {_, arity} = :erlang.fun_info(curried_reduce_3, :arity)
...> arity
1

iex> curried_reduce_3 = curry &Enum.reduce/3
...> curried_reduce_3.([1,2,3]).(42).(&(&1 + &2))
48

 Link to this macro

 defcurry(head, list)

 View Source

 (macro)

Define a curried function

 Link to this macro

 defcurryp(head, list)

 View Source

 (macro)

Define a curried private function

 Link to this function

 uncurry(fun)

 View Source

 @spec uncurry((any() -> (... -> any()))) :: (any(), any() -> any())

Convert a curried function to a function on pairs

 examples

 Examples

iex> curried_add = fn x -> (fn y -> x + y end) end
iex> add = uncurry curried_add
iex> add.(1,2)
3

 Link to this function

 uncurry(fun, arg_list)

 View Source

 @spec uncurry((... -> any()), any() | [any()]) :: any()

Apply one or more arguments to a curried function

 examples

 Examples

iex> curried_add = fn x -> (fn y -> x + y end) end
...> uncurry(curried_add, [1,2])
3

iex> add_one = &(&1 + 1)
...> uncurry(add_one, 1)
2

iex> curried_add = fn x -> (fn y -> x + y end) end
...> add_one = uncurry(curried_add, 1)
...> add_one.(3)
4

Quark.FixedPoint

Fixed point combinators generalize the idea of a recursive function. This can
be used to great effect, simplifying many definitions.
For example, here is the factorial function written in terms of y/1:
iex> fac = fn fac ->
...> fn
...> 0 -> 0
...> 1 -> 1
...> n -> n * fac.(n - 1)
...> end
...> end
...> factorial = y(fac)
...> factorial.(9)
362880
The resulting function will always be curried
iex> import Quark.SKI, only: [s: 3]
...> one_run = y(&s/3)
...> {_, arity} = :erlang.fun_info(one_run, :arity)
...> arity
1

 Anchor for this section

 Summary

 Functions

 fix()

 See Quark.FixedPoint.y/0.

 fix(a)

 See Quark.FixedPoint.y/1.

 turing()

 Alan Turing's fix-point combinator. This is the call-by-value formulation.

 turing(fun)

 y()

 The famous Y-combinator. The resulting function will always be curried.

 y(fun)

 z()

 A normal order
fixed point.

 z(g)

 z(g, v)

 Anchor for this section

Functions

 Link to this function

 fix()

 View Source

See Quark.FixedPoint.y/0.

 Link to this function

 fix(a)

 View Source

See Quark.FixedPoint.y/1.

 Link to this function

 turing()

 View Source

Alan Turing's fix-point combinator. This is the call-by-value formulation.

 examples

 Examples

iex> fac = fn fac ->
...> fn
...> 0 -> 0
...> 1 -> 1
...> n -> n * fac.(n - 1)
...> end
...> end
...> factorial = turing(fac)
...> factorial.(9)
362880

 Link to this function

 turing(fun)

 View Source

 @spec turing((... -> any())) :: (... -> any())

 Link to this function

 y()

 View Source

The famous Y-combinator. The resulting function will always be curried.

 examples

 Examples

iex> fac = fn fac ->
...> fn
...> 0 -> 0
...> 1 -> 1
...> n -> n * fac.(n - 1)
...> end
...> end
...> factorial = y(fac)
...> factorial.(9)
362880

 Link to this function

 y(fun)

 View Source

 @spec y((... -> any())) :: (... -> any())

 Link to this function

 z()

 View Source

A normal order
fixed point.

 examples

 Examples

iex> fac = fn fac ->
...> fn
...> 0 -> 0
...> 1 -> 1
...> n -> n * fac.(n - 1)
...> end
...> end
...> factorial = z(fac)
...> factorial.(9)
362880

 Link to this function

 z(g)

 View Source

 Link to this function

 z(g, v)

 View Source

 @spec z((... -> any()), any()) :: (... -> any())

Quark.M

The self-applyication combinator

 Anchor for this section

 Summary

 Functions

 m()

 Apply a function to itself. Also aliased as self_apply.

 m(fun)

 self_apply()

 See Quark.M.m/0.

 self_apply(fun)

 See Quark.M.m/1.

 Anchor for this section

Functions

 Link to this function

 m()

 View Source

Apply a function to itself. Also aliased as self_apply.

 examples

 Examples

iex> add_one = fn x -> x + 1 end
...> add_two = m(add_one)
...> add_two.(8)
10

 Link to this function

 m(fun)

 View Source

 @spec m((... -> any())) :: (... -> any())

 Link to this function

 self_apply()

 View Source

See Quark.M.m/0.

 Link to this function

 self_apply(fun)

 View Source

See Quark.M.m/1.

Quark.Partial

Provide curried functions, that can also be partially bound without
dot notation. Partially applying a function will always return a
fully-curried function.
Please note that these will use all of the arities up to the defined function.
For instance:
defpartial foo(a, b, c), do: a + b + c
#=> foo/0, foo/1, foo/2, and foo/3
If you need to use an arity in the range below the original
function, fall back to defcurry/2 and partially apply manually.

 Anchor for this section

 Summary

 Functions

 defpartial(arg, list)

 A convenience on defcurry/2. Generates a series of partially-bound
applications of a fully-curried function, for all arities at and below
the user-specified arity.

 defpartialp(arg, list)

 defpartial/2, but generates private functions.

 Anchor for this section

Functions

 Link to this macro

 defpartial(arg, list)

 View Source

 (macro)

A convenience on defcurry/2. Generates a series of partially-bound
applications of a fully-curried function, for all arities at and below
the user-specified arity.
For instance:
defpartial add(a,b), do: a + b
#=> add/0, add/1, add/2.

 examples

 Examples

defmodule A do
 defpartial minus(a, b, c), do: a - b - c
end

A.minus(3, 2, 1)
#=> 0

A.minus.(3).(2).(1)
#=> 0

below_ten = A.minus(10)
below_ten.(2).(1)
#=> 7

below_five = A.minus(20, 15)
below_five.(2)
#=> 3

 Link to this macro

 defpartialp(arg, list)

 View Source

 (macro)

defpartial/2, but generates private functions.

Quark.Pointfree

Allows defining functions as straight function composition
(ie: no need to state the argument).
Provides a clean, composable named functions

 Anchor for this section

 Summary

 Functions

 defx(head, list)

 Define a unary function with an implied subject

 defxp(head, list)

 Define a private unary function with an implied subject

 Anchor for this section

Functions

 Link to this macro

 defx(head, list)

 View Source

 (macro)

Define a unary function with an implied subject

 examples

 Examples

iex> defmodule Foo do
...> import Quark.Pointfree
...> defx foo(), do: Enum.sum |> fn x -> x + 1 end.()
...> end
...> Foo.foo([1,2,3])
7

iex> defmodule Bar do
...> import Quark.Pointfree
...> defx bar, do: Enum.sum |> fn x -> x + 1 end.()
...> end
...> Bar.bar([1,2,3])
7

 Link to this macro

 defxp(head, list)

 View Source

 (macro)

Define a private unary function with an implied subject

 examples

 Examples

defmodule Foo do
 import Quark.Pointfree
 defxp foo(), do: Enum.sum |> fn x -> x + 1 end.()
end

Quark.SKI

The classic SKI
system of combinators. s and k alone can be used to express any algorithm,
though generally not efficiently.

 Anchor for this section

 Summary

 Functions

 constant(a, b)

 See Quark.SKI.k/2.

 first(a, b)

 See Quark.SKI.k/2.

 i()

 The identity combinator. Also aliased as id.

 i(x)

 id(x)

 See Quark.SKI.i/1.

 k()

 The constant ("Konstant") combinator. Returns the first argument unchanged,
and discards the second argument.

 k(x)

 k(x, y)

 s()

 The "substitution" combinator. Applies the last argument to the first two,
and then the first two to each other.

 s(x)

 s(x, y)

 s(x, y, z)

 second()

 Opposite of first (the k combinator).

 second(a)

 second(a, b)

 Anchor for this section

Functions

 Link to this function

 constant(a, b)

 View Source

See Quark.SKI.k/2.

 Link to this function

 first(a, b)

 View Source

See Quark.SKI.k/2.

 Link to this function

 i()

 View Source

The identity combinator. Also aliased as id.
iex> i(1)
1

iex> i("identity combinator")
"identity combinator"

iex> [1,2,3] |> id
[1,2,3]

 Link to this function

 i(x)

 View Source

 @spec i(any()) :: any()

 Link to this function

 id(x)

 View Source

See Quark.SKI.i/1.

 Link to this function

 k()

 View Source

The constant ("Konstant") combinator. Returns the first argument unchanged,
and discards the second argument.
Can be used to repeatedly apply the same value in functions such as folds.
Aliased as first and constant.

 examples

 Examples

iex> k(1, 2)
1

iex> k("happy", "sad")
"happy"

iex> Enum.reduce([1,2,3], [42], &k/2)
3

iex> Enum.reduce([1,2,3], [42], &constant/2)
3

iex> first(1,2)
1

 Link to this function

 k(x)

 View Source

 Link to this function

 k(x, y)

 View Source

 @spec k(any(), any()) :: any()

 Link to this function

 s()

 View Source

The "substitution" combinator. Applies the last argument to the first two,
and then the first two to each other.

 examples

 Examples

iex> add = &(&1 + &2)
...> double = &(&1 * 2)
...> s(add, double, 8)
24

 Link to this function

 s(x)

 View Source

 Link to this function

 s(x, y)

 View Source

 Link to this function

 s(x, y, z)

 View Source

 @spec s((... -> any()), (... -> any()), any()) :: any()

 Link to this function

 second()

 View Source

Opposite of first (the k combinator).
While not strictly part of SKI, it's a common enough case.
Returns the second of two arguments. Can be used to repeatedly apply
the same value in functions such as folds.

 examples

 Examples

iex> second(43, 42)
42

iex> Enum.reduce([1,2,3], [], &second/2)
[]

 Link to this function

 second(a)

 View Source

 Link to this function

 second(a, b)

 View Source

 @spec second(any(), any()) :: any()

Quark.Sequence protocol

A protocol for stepping through ordered enumerables

 Anchor for this section

 Summary

 Types

 t()

 Functions

 origin(specimen)

 The beginning of the sequence.

 pred(element)

 The predessor in the sequence.

 succ(element)

 The successor in sequence.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 origin(specimen)

 View Source

 @spec origin(any()) :: any()

The beginning of the sequence.
For instance, integers are generally thought of as centering around 0.

 examples

 Examples

origin(9)
#=> 0

 Link to this function

 pred(element)

 View Source

 @spec pred(any()) :: any()

The predessor in the sequence.
For integers, this is the number below.

 examples

 Examples

pred(10)
#=> 9

42 |> origin() |> pred() |> pred()
#=> -2

 Link to this function

 succ(element)

 View Source

 @spec succ(any()) :: any()

The successor in sequence.
For integers, this is the number above.

 examples

 Examples

iex> succ(1)
#=> 2

iex> 10 |> origin() |> succ() |> succ()
#=> 2

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

