

 dispenser

 v0.1.0

 Table of contents

 	dispenser

 	LICENSE

 	Modules

 	Dispenser.AssignmentStrategy

 	Dispenser.AssignmentStrategy.Even

 	Dispenser.Buffer

 	Dispenser.Demands

 	Dispenser.MonitoredBuffer

 	Dispenser.Server.BatchingBufferServer

 	Dispenser.Server.BufferServer

 	Dispenser.SubscriptionManager

dispenser
[image: CI]
[image: Hex.pm Version]
[image: Hex.pm License]
[image: HexDocs]
dispenser is an Elixir library for buffering events and sending them to multiple subscribers.
Terminology
The terminology used in dispenser is similar to the terminology used in gen_stage.
events are pieces of data you want to send to subscribers.
A buffer is something that you can put events into.
Multiple subscribers can ask a buffer for any number of events.
The amount of events that a subscriber has asked for and is waiting to receive is its demand.
Overview
The basic function of the library is to accept events and assign them to subscribers.
There are two main "modes" for the buffer:
	Normal Mode: There are more subscription demands than there are events in the buffer.
The buffer is not filling up and events can be sent.

	Overloaded Mode: There are more events than the subscribers can handle.
If the buffer becomes completely filled, it will drop events according to its LimitedQueue.drop_strategy\0.

Different uses of the library can decide how to handle these cases.
Two example GenServers are implemented along with the library (see below).
Usage / API
Append events and add subscription demand in any order, and then use Buffer.assign_events/1 to assign events to subscribers.
alias Dispenser.{AssignmentStrategy, Buffer}

capacity = 4
buffer = Buffer.new(AssignmentStrategy.Even, capacity, :drop_newest)
Buffer.size(buffer) == 0
Buffer.stats(buffer) == %{buffered: 0, demand: 0}

events = ["a", "b", "c", "d", "e"]

{buffer, dropped} = Buffer.append(buffer, events)
dropped == 1
Buffer.stats(buffer) == %{buffered: 4, demand: 0}

subscription_1 = make_ref()
buffer = Buffer.ask(buffer, subscription_1, 2)
Buffer.stats(buffer) == %{buffered: 4, demand: 2}

subscription_2 = make_ref()
buffer = Buffer.ask(buffer, subscription_2, 2)
Buffer.stats(buffer) == %{buffered: 4, demand: 4}

{buffer, assignments} = Buffer.assign_events(buffer)
Buffer.stats(buffer) == %{buffered: 0, demand: 0}
assignments == [{^subscription_1, ["a", "b"]}, {^subscription_2, ["c", "d"]}]
Helper Modules
The library is broken into several pieces that can be implemented and tested simply.
	Dispenser.Demands is an opaque module that keeps track of demands from subscribers.
	Dispenser.AssignmentStrategy.Even is the assignment method we use to decide which subscribers to send a limited number of events to. It is the only assignment method implemented, but this can be extended to other methods.
	Dispenser.Buffer is the main buffer that ties everything together and keeps track of demand and events.
	Dispenser.SubscriptionManager can monitor subscribers and is a helper for building GenServers that buffer events.
	Dispenser.MonitoredBuffer combines the Dispenser.Buffer and Dispenser.SubscriptionManager into one module.

GenServer examples
Users of this library will likely implement their own GenServer, but these examples are a good place to start.
Most normal uses and error cases of the BufferServer and BatchingBufferServer are covered in the tests.
BufferServer
The simplest example GenServer is Dispenser.Server.BufferServer, which will accept events and send them to subscribers.
	Normal State:
BufferServer will accept events and immediately send them to subscribers as evenly as it can (see Dispenser.AssignmentStrategy.Even and the associated tests for the assignment logic by itself in Dispenser.AssignmentStrategy.EvenTest).

	Overloaded State:
The internal buffer is filling up and the BufferServer will immediately send events to any subscriber who asks.

Because of these two modes, the BufferServer's state will either have some pending demand, or some buffered events, but never both at the same time.
When a subscribed process unsubscribes or crashes, it is removed from the BufferServer's subscribers and any remaining demand for its subscriptions is canceled.
Here is a simple example:
alias Dispenser.{AssignmentStrategy, Buffer}
alias Dispenser.Server.BufferServer

capacity = 10
buffer = Buffer.new(AssignmentStrategy.Even, capacity, :drop_oldest)
buffer_server = BufferServer.start_link(%{buffer: buffer})

:ok = BufferServer.ask(buffer_server, 1)

assert BufferServer.stats(buffer_server) == %{buffered: 0, subscribed: 1, demand: 1}

events = ["a", "b", "c", "d", "e"]
{:ok, 0} = BufferServer.append(buffer_server, events)

assert_receive {:handle_assigned_events, ^buffer_server, ["a"]}

assert BufferServer.stats(buffer_server) == %{buffered: 9, subscribed: 1, demand: 0}
Please see the docs for BufferServer.ask/3 for more details on the format of the :handle_assigned_events message.
Please see the documentation and associated test (Dispenser.Server.BufferServerTest) for more details.
BatchingBufferServer
Dispenser.Server.BatchingBufferServer is a slightly optimized improvement on BufferServer
that will only send events once a minimum batch size of events has been reached.
The BatchingBufferServer has the two states from BufferServer,
but it has a third state where it is waiting for the buffer to reach a specified size before sending out events.
This helps reduce the number of messages sent to subscribers that have demand > 1.
Please see the documentation for BatchingBufferServer and associated test (Dispenser.Server.BatchingBufferServerTest) for details.
Running the Tests
Tests can be run by running mix test in the root of the library.
Generating Documentation
This library contains a lot of internal documentation.
Documentation is available on HexDocs,
or you can generate the documentation from source:
$ mix deps.get
$ mix docs

MIT License

Copyright (c) 2021 Discord

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Dispenser.AssignmentStrategy behaviour

A AssignmentStrategy is strategy to handle assigning events to subscribers to meet their demands.

 Anchor for this section

 Summary

 Types

 t()

 The AssignmentStrategy type.

 Callbacks

 assign(demands, event_count)

 Given subscriber demands and a number of events, determines how to assign the events to the subscribers.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: module()

The AssignmentStrategy type.

 Anchor for this section

Callbacks

 Link to this callback

 assign(demands, event_count)

 View Source

 Specs

 assign(
 demands :: Dispenser.Demands.t(subscriber),
 event_count :: non_neg_integer()
) ::
 {assigned_demands :: Dispenser.Demands.t(subscriber),
 remaining_demands :: Dispenser.Demands.t(subscriber)}
when subscriber: any()

Given subscriber demands and a number of events, determines how to assign the events to the subscribers.
Returns a new assigned_demands that contains values for assigning the events to the subscribers,
and returns a remaining_demands that are left over for later when there are more events than demand.

Dispenser.AssignmentStrategy.Even

The Even AssignmentStrategy assigns events to as many subscribers as possible, up to their demand.
Once a subscribers has its demand satisfied, it is removed from the assignment rounds and the remaining events
are assigned to the remaining subscribers.
This assignment cycle continues until either all demand is satisfied or all events have been assigned.

Dispenser.Buffer

A Dispenser.Buffer is a buffer that manages incoming events and demand for those events.

 Anchor for this section

 Summary

 Types

 stats()

 Various statistics exposed by the Buffer for use by debugging and metrics.

 t(event, subscriber)

 The opaque internal state of the Buffer.

 Functions

 append(state, events)

 Add events to the Buffer.

 ask(state, subscriber, demand)

 Ask for events from the Buffer.

 assign_events(state)

 Given the current events and demands, returns the events to send to each subscriber.

 delete(state, subscriber)

 Remove all demand from the given subscriber.

 new(assignment_strategy, capacity, drop_strategy)

 Create a new Buffer with a maximum capacity.

 size(state)

 Get the number of events in the Buffer.

 stats(state)

 Get various statistics about the Buffer for use when debugging and generating metrics.

 Anchor for this section

Types

 Link to this type

 stats()

 View Source

 Specs

 stats() :: %{buffered: non_neg_integer(), demand: non_neg_integer()}

Various statistics exposed by the Buffer for use by debugging and metrics.
See stats/1

 Link to this opaque

 t(event, subscriber)

 View Source

 (opaque)

 Specs

 t(event, subscriber)

The opaque internal state of the Buffer.

 Anchor for this section

Functions

 Link to this function

 append(state, events)

 View Source

 Specs

 append(t(event, subscriber), [event]) ::
 {t(event, subscriber), dropped :: non_neg_integer()}
when event: any(), subscriber: any()

Add events to the Buffer.
If the Buffer reaches its capacity, events will be dropped.

 Link to this function

 ask(state, subscriber, demand)

 View Source

 Specs

 ask(t(event, subscriber), subscriber, non_neg_integer()) :: t(event, subscriber)
when event: any(), subscriber: any()

Ask for events from the Buffer.
These demands are met by calls to assign_events/1

 Link to this function

 assign_events(state)

 View Source

 Specs

 assign_events(t(event, subscriber)) ::
 {t(event, subscriber), [{subscriber, [event]}]}
when event: any(), subscriber: any()

Given the current events and demands, returns the events to send to each subscriber.

 Link to this function

 delete(state, subscriber)

 View Source

 Specs

 delete(t(event, subscriber), subscriber) :: t(event, subscriber)
when event: any(), subscriber: any()

Remove all demand from the given subscriber.

 Link to this function

 new(assignment_strategy, capacity, drop_strategy)

 View Source

 Specs

 new(
 Dispenser.AssignmentStrategy.t(),
 pos_integer(),
 LimitedQueue.drop_strategy()
) :: t(event, subscriber)
when event: any(), subscriber: any()

Create a new Buffer with a maximum capacity.

 Link to this function

 size(state)

 View Source

 Specs

 size(t(event, subscriber)) :: non_neg_integer()
when event: any(), subscriber: any()

Get the number of events in the Buffer.

 Link to this function

 stats(state)

 View Source

 Specs

 stats(t(event, subscriber)) :: stats() when event: any(), subscriber: any()

Get various statistics about the Buffer for use when debugging and generating metrics.

Dispenser.Demands

Tracks the demands of subscribers.
Keeps a constant-time total/1 of the overall demand.
Used by Buffer to keep track of demand for events.
Used by implementations of Dispenser.AssignmentStrategy
to determine which subscribers to send to.

 Anchor for this section

 Summary

 Types

 demand()

 The current demand for one subscriber.

 subscribers(subscriber)

 A map of all subscribers that have demand > 0, with their demands.

 t(subscriber)

 The opaque internal state of the Demands.

 Functions

 add(state, subscriber, amount)

 Add some demand for one subscriber. A subscriber can demand as much as it wants.

 delete(state, subscriber)

 Remove the demand of one subscriber.

 get(state, subscriber)

 Get the current demand for one subscriber.

 new()

 Create a new Demands.

 size(state)

 The total number of subscribers that have demand > 0.

 subscribers(state)

 Get all subscribers that have demand > 0.

 subtract(state, subscriber, amount)

 Remove some demand for one subscriber.

 total(state)

 The total demand of all subscribers.

 Anchor for this section

Types

 Link to this type

 demand()

 View Source

 Specs

 demand() :: pos_integer()

The current demand for one subscriber.

 Link to this type

 subscribers(subscriber)

 View Source

 Specs

 subscribers(subscriber) :: %{required(subscriber) => demand()}

A map of all subscribers that have demand > 0, with their demands.

 Link to this opaque

 t(subscriber)

 View Source

 (opaque)

 Specs

 t(subscriber)

The opaque internal state of the Demands.

 Anchor for this section

Functions

 Link to this function

 add(state, subscriber, amount)

 View Source

 Specs

 add(t(subscriber), subscriber, non_neg_integer()) :: t(subscriber)
when subscriber: any()

Add some demand for one subscriber. A subscriber can demand as much as it wants.

 Link to this function

 delete(state, subscriber)

 View Source

 Specs

 delete(t(subscriber), subscriber) :: t(subscriber) when subscriber: any()

Remove the demand of one subscriber.

 Link to this function

 get(state, subscriber)

 View Source

 Specs

 get(t(subscriber), subscriber) :: non_neg_integer() when subscriber: any()

Get the current demand for one subscriber.

 Link to this function

 new()

 View Source

 Specs

 new() :: t(subscriber) when subscriber: any()

Create a new Demands.

 Link to this function

 size(state)

 View Source

 Specs

 size(t(subscriber)) :: non_neg_integer() when subscriber: any()

The total number of subscribers that have demand > 0.

 Link to this function

 subscribers(state)

 View Source

 Specs

 subscribers(t(subscriber)) :: subscribers(subscriber) when subscriber: any()

Get all subscribers that have demand > 0.

 Link to this function

 subtract(state, subscriber, amount)

 View Source

 Specs

 subtract(t(subscriber), subscriber, non_neg_integer()) :: t(subscriber)
when subscriber: any()

Remove some demand for one subscriber.
Once a subscriber reaches 0 demand, it is no longer tracked by Demands.

 Link to this function

 total(state)

 View Source

 Specs

 total(t(subscriber)) :: non_neg_integer() when subscriber: any()

The total demand of all subscribers.

Dispenser.MonitoredBuffer

A MonitoredBuffer contains most of the logic required to implement a GenServer that wraps a Buffer.
MonitoredBuffer combines a Buffer to track events and a SubscriptionManager to track subscribers.

 Anchor for this section

 Summary

 Types

 stats()

 Various statistics exposed by the MonitoredBuffer for use by debugging and metrics.

 t(event)

 The opaque internal state of the MonitoredBuffer.

 Functions

 append(state, events)

 Add events to the MonitoredBuffer.

 ask(state, subscriber, demand)

 Ask for events from the Buffer.

 assign_events(state)

 Given the current events and demands, returns the events to send to each subscriber.

 delete(state, subscriber)

 Stop monitoring and remove all demand from the given subscriber.

 down(state, subscriber, ref)

 Handle the down signal from a monitored subscriber.

 new(buffer)

 Create a new MonitoredBuffer that wraps the given Buffer.

 size(state)

 Get the number of events in the MonitoredBuffer.

 stats(state)

 Get various statistics about the MonitoredBuffer for use when debugging and generating metrics.

 Anchor for this section

Types

 Link to this type

 stats()

 View Source

 Specs

 stats() :: %{
 buffered: non_neg_integer(),
 subscribed: non_neg_integer(),
 demand: non_neg_integer()
}

Various statistics exposed by the MonitoredBuffer for use by debugging and metrics.
See stats/1

 Link to this opaque

 t(event)

 View Source

 (opaque)

 Specs

 t(event)

The opaque internal state of the MonitoredBuffer.

 Anchor for this section

Functions

 Link to this function

 append(state, events)

 View Source

 Specs

 append(t(event), [event]) :: {t(event), dropped :: non_neg_integer()}
when event: any()

Add events to the MonitoredBuffer.
If the MonitoredBuffer reaches its capacity, events will be dropped.

 Link to this function

 ask(state, subscriber, demand)

 View Source

 Specs

 ask(t(event), subscriber :: pid(), demand :: non_neg_integer()) :: t(event)
when event: any()

Ask for events from the Buffer.
These demands are met by calls to assign_events/1

 Link to this function

 assign_events(state)

 View Source

 Specs

 assign_events(t(event)) :: {t(event), [{subscriber :: pid(), [event]}]}
when event: any()

Given the current events and demands, returns the events to send to each subscriber.

 Link to this function

 delete(state, subscriber)

 View Source

 Specs

 delete(t(event), subscriber :: pid()) ::
 {:ok, t(event)} | {:error, :not_subscribed}
when event: any()

Stop monitoring and remove all demand from the given subscriber.

 Link to this function

 down(state, subscriber, ref)

 View Source

 Specs

 down(t(event), subscriber :: pid(), reference()) ::
 {:ok, t(event)} | {:error, :wrong_ref} | {:error, :not_subscribed}
when event: any()

Handle the down signal from a monitored subscriber.

 Link to this function

 new(buffer)

 View Source

 Specs

 new(Dispenser.Buffer.t(event, pid())) :: t(event) when event: any()

Create a new MonitoredBuffer that wraps the given Buffer.

 Link to this function

 size(state)

 View Source

 Specs

 size(t(event)) :: non_neg_integer() when event: any()

Get the number of events in the MonitoredBuffer.

 Link to this function

 stats(state)

 View Source

 Specs

 stats(t(event)) :: stats() when event: any()

Get various statistics about the MonitoredBuffer for use when debugging and generating metrics.

Dispenser.Server.BatchingBufferServer

A BatchingBufferServer is an example GenServer that uses Dispenser.Buffer.
It can receive events and send them to subscriber processes.
The BatchingBufferServer works like BufferServer, but tries to minimize the number of messages
sent to subscribers by only sending events when there is a large enough number of them.
Subscribers can control the flow by telling the BatchingBufferServer how many events they want, using ask/3.
See ask/3 for more information about how events are sent to subscribers.

 Anchor for this section

 Summary

 Types

 init_args(event)

 The arguments required to create a BatchingBufferServer.

 t(event)

 The opaque internal state of the BatchingBufferServer.

 Functions

 append(server, events)

 Add events to the BatchingBufferServer.

 ask(server, amount)

 Ask for events from the BatchingBufferServer.

 ask(server, subscriber, amount)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_args)

 Start a new BatchingBufferServer GenServer.

 stats(server)

 Get various statistics about the BatchingBufferServer for use when debugging and generating metrics.

 unsubscribe(server)

 Unsubscribe from the BatchingBufferServer.

 unsubscribe(server, subscriber)

 Anchor for this section

Types

 Link to this type

 init_args(event)

 View Source

 Specs

 init_args(event) :: %{
 buffer: Dispenser.Buffer.t(event, pid()),
 batch_size: pos_integer(),
 max_delay: pos_integer()
}

The arguments required to create a BatchingBufferServer.
:buffer defines the Buffer used internally by the BatchingBufferServer.
:batch_size defines the minimum batch size of events to gather before sending
them to subscribers.
:max_delay defines the maximum amount of time in milliseconds to wait for more events
when there are fewer than batch_size events in the buffer.
Once max_delay is reached, events will be sent to subscribers
even if there are fewer than batch_size events.
See start_link/1.

 Link to this opaque

 t(event)

 View Source

 (opaque)

 Specs

 t(event)

The opaque internal state of the BatchingBufferServer.

 Anchor for this section

Functions

 Link to this function

 append(server, events)

 View Source

 Specs

 append(GenServer.server(), [event]) :: {:ok, dropped :: non_neg_integer()}
when event: any()

Add events to the BatchingBufferServer.
If the buffer reaches its capacity, an error is returned with the number of events that were were dropped.

 Link to this function

 ask(server, amount)

 View Source

 Specs

 ask(GenServer.server(), non_neg_integer()) :: :ok

Ask for events from the BatchingBufferServer.
Events will be delivered asynchronously to the subscribed pid in the shape of:
{:handle_assigned_events, sender, events}
where:
	sender is the pid of this BatchingBufferServer.
	events is a list of events that were appended to the BatchingBufferServer.

 Link to this function

 ask(server, subscriber, amount)

 View Source

 Specs

 ask(GenServer.server(), pid(), non_neg_integer()) :: :ok

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(init_args(event)) :: {:ok, pid()} | {:error, term()}
when event: any()

Start a new BatchingBufferServer GenServer.
See init_args/0 and GenServer.start_link/2

 Link to this function

 stats(server)

 View Source

 Specs

 stats(GenServer.server()) :: Dispenser.MonitoredBuffer.stats()

Get various statistics about the BatchingBufferServer for use when debugging and generating metrics.

 Link to this function

 unsubscribe(server)

 View Source

 Specs

 unsubscribe(GenServer.server()) :: :ok | {:error, :not_subscribed}

Unsubscribe from the BatchingBufferServer.

 Link to this function

 unsubscribe(server, subscriber)

 View Source

 Specs

 unsubscribe(GenServer.server(), subscriber :: pid()) ::
 :ok | {:error, :not_subscribed}

Dispenser.Server.BufferServer

A BufferServer is an example GenServer that uses Dispenser.Buffer.
It can receive events and send them to subscriber processes.
Subscribers can control the flow by telling the BufferServer how many events they want, using ask/3.
See ask/3 for more information about how events are sent to subscribers.

 Anchor for this section

 Summary

 Types

 init_args(event)

 The arguments required to create a BufferServer.

 t(event)

 The opaque internal state of the BufferServer.

 Functions

 append(server, events)

 Add events to the BufferServer.

 ask(server, amount)

 Ask for events from the BufferServer.

 ask(server, subscriber, amount)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_args)

 Start a new BufferServer GenServer.

 stats(server)

 Get various statistics about the BufferServer for use when debugging and generating metrics.

 unsubscribe(server)

 Unsubscribe from the BufferServer.

 unsubscribe(server, subscriber)

 Anchor for this section

Types

 Link to this type

 init_args(event)

 View Source

 Specs

 init_args(event) :: %{buffer: Dispenser.Buffer.t(event, pid())}

The arguments required to create a BufferServer.
:buffer defines the Buffer used internally by the BufferServer.
See start_link/1.

 Link to this opaque

 t(event)

 View Source

 (opaque)

 Specs

 t(event)

The opaque internal state of the BufferServer.

 Anchor for this section

Functions

 Link to this function

 append(server, events)

 View Source

 Specs

 append(GenServer.server(), [event]) :: {:ok, dropped :: non_neg_integer()}
when event: any()

Add events to the BufferServer.
If the buffer reaches its capacity, an error is returned with the number of events that were were dropped.

 Link to this function

 ask(server, amount)

 View Source

 Specs

 ask(GenServer.server(), non_neg_integer()) :: :ok

Ask for events from the BufferServer.
Events will be delivered asynchronously to the subscribed pid in the shape of:
{:handle_assigned_events, sender, events}
where:
	sender is the pid of this BufferServer.
	events is a list of events that were appended to the BufferServer.

 Link to this function

 ask(server, subscriber, amount)

 View Source

 Specs

 ask(GenServer.server(), subscriber :: pid(), non_neg_integer()) :: :ok

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(init_args(event)) :: {:ok, pid()} | {:error, term()}
when event: any()

Start a new BufferServer GenServer.
See init_args/0 and GenServer.start_link/2

 Link to this function

 stats(server)

 View Source

 Specs

 stats(GenServer.server()) :: Dispenser.MonitoredBuffer.stats()

Get various statistics about the BufferServer for use when debugging and generating metrics.

 Link to this function

 unsubscribe(server)

 View Source

 Specs

 unsubscribe(GenServer.server()) :: :ok | {:error, :not_subscribed}

Unsubscribe from the BufferServer.

 Link to this function

 unsubscribe(server, subscriber)

 View Source

 Specs

 unsubscribe(GenServer.server(), pid()) :: :ok | {:error, :not_subscribed}

Dispenser.SubscriptionManager

SubscriptionManager handles monitoring and demonitoring subscribers

 Anchor for this section

 Summary

 Types

 t()

 The opaque internal state of the SubscriptionManager.

 Functions

 demonitor(state, subscriber)

 Stop monitoring the given subscriber.

 down(state, subscriber, ref)

 Handle the down signal from a monitored subscriber.

 monitor(state, subscriber)

 Monitor the given pid using Process.monitor/1.
Callers must handle the :DOWN message from this pid.

 new()

 size(state)

 Get the number of currently monitored subscribers.

 Anchor for this section

Types

 Link to this opaque

 t()

 View Source

 (opaque)

 Specs

 t()

The opaque internal state of the SubscriptionManager.

 Anchor for this section

Functions

 Link to this function

 demonitor(state, subscriber)

 View Source

 Specs

 demonitor(t(), pid()) :: {:ok, t()} | {:error, :not_subscribed}

Stop monitoring the given subscriber.

 Link to this function

 down(state, subscriber, ref)

 View Source

 Specs

 down(t(), pid(), reference()) ::
 {:ok, t()} | {:error, :wrong_ref} | {:error, :not_subscribed}

Handle the down signal from a monitored subscriber.

 Link to this function

 monitor(state, subscriber)

 View Source

 Specs

 monitor(t(), pid()) :: t()

Monitor the given pid using Process.monitor/1.
Callers must handle the :DOWN message from this pid.

 Link to this function

 new()

 View Source

 Specs

 new() :: t()

 Link to this function

 size(state)

 View Source

 Specs

 size(t()) :: non_neg_integer()

Get the number of currently monitored subscribers.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

