

 alchemy

 v0.6.9

 Table of contents

 	Getting Started

 	Modules

 	Alchemy.AuditLog

 	Alchemy.Cache

 	Alchemy.Channel

 	Alchemy.Client

 	Alchemy.Cogs

 	Alchemy.Embed

 	Alchemy.Events

 	Alchemy.Guild

 	Alchemy.Message

 	Alchemy.Permissions

 	Alchemy.User

 	Alchemy.Voice

 	Alchemy.Webhook

 	Mix Tasks

 	mix alchemy.init

Getting Started
After installing your dependencies and whatnot, it's time to write your bot!
(If you just want a template to work from, you can use mix alchemy.init
to generate one quickly.)
The first thing we need to do is define some kind of application for our bot.
Thankfully, the Application module encapsulates this need.
defmodule MyBot do
 use Application
 alias Alchemy.Client

 def start(_type, _args) do
 Client.start("your token here")
 end
end
The Client.start/2 function sets up the necessary client connections to discord;
because of this, not much can really be done before this function is called.
At this point, we have our bot running, but it does nothing! Let's add a command:
defmodule MyBot.Commands do
 use Alchemy.Cogs

 Cogs.def ping do
 Cogs.say "pong!"
 end
end
The first thing we do in this module is use Alchemy.Cogs this sets up our module
to be able to define commands, which we can later plug into our bot. We use the
Cogs.def macro to define a command; command definition is very similar to commands,
in fact, pattern matching and guards still work just as they would in normal functions, and in fact, they're very useful in writing useful commands!
 This command will get triggered anytime a user types
!ping in the chat. We can also change the command prefix using
Cogs.set_prefix/1. In the command itself, we simply send a message
back to the same channel with Cogs.say, and that's it!
Loading a Cog
Now to load the Cog into our application, all we need to do is use it:
def start(_type, _args) do
 run = Client.start("your token here")
 use MyBot.Commands
 run
end
This will load up all the commands we defined in the module, and make them
ready to use. We can also do this dynamically from the repl, use Module
will work there as well. If at any time we want to unload a module,
Cogs.unload/1 is quite handy. If we just need to disable a single command,
Cogs.disable/1 is also useful.
Adding the application to our mix
Now all we need to do to wire up this application, is to add it to our mix.exs:
def application do
 [mod: {Mybot, []}]
end
This makes our bot automatically start when we run our project.
Running our application
Now, to run this project, we have 2 options:
	use mix run --no-halt (the flags being necessary to
prevent the app from ending once our start/2 function finishes)
	or use iex -S mix to start our application in the repl.

Starting the application in the repl is very advantageous, as it allows
 you to interact with the bot live.
Using Voice
Alchemy also supports using discord's voice API to play audio.
We rely on ffmpeg for audio encoding,
as well as youtube-dl for streaming
audio from sites. Before the voice api can be used, you'll need to acquire
the latest versions of those from their sites (make sure you get ffmpeg
with opus support), and then configure the path to those executables in
alchemy like so:
in config.exs
config :alchemy,
 ffmpeg_path: "path/to/ffmpeg",
 youtube_dl_path: "path/to/youtube_dl"
Now you're all set to start playing some audio!
The first step is to connect to a voice channel with Alchemy.Voice.join/2,
then, you can start playing audio with Alchemy.Voice.play_file/2,
or Alchemy.Voice.play_url/2. Here's an example command to show off these
features:
Cogs.def play(url) do
 {:ok, id} = Cogs.guild_id()
 # joins the default channel for this guild
 # this will check if a connection already exists for you
 Voice.join(id, id)
 Voice.play_url(id, url)
 Cogs.say "Now playing #{url}"
end
Where to go now
I'd recommend taking a look at the Alchemy.Cogs module for more examples
of defining commands, and how to make use of pattern matching in them.
If you want to learn about event hooks, check out the Alchemy.Events module.
If you want to dig through the many api functions available, check out
Alchemy.Client.

Alchemy.AuditLog

This module contains functions and types related to audit logs.

 Anchor for this section

 Summary

 Types

 action()

 An enumeration of action types.

 change()

 The type of an audit log change.

 entry()

 An entry in an audit log.

 options()

 Additional information fields in an audit log based on action_type.

 snowflake()

 t()

 Represents the Audit Log information of a guild.

 Functions

 get_guild_log(guild, options \\ [])

 Returns an audit log entry for a guild.

 Anchor for this section

Types

 Link to this type

 action()

 Specs

 action() ::
 :guild_update
 | :channel_create
 | :channel_update
 | :channel_delete
 | :channel_overwrite_create
 | :channel_overwrite_update
 | :channel_overwrite_delete
 | :member_kick
 | :member_prune
 | :member_ban_add
 | :member_ban_remove
 | :member_update
 | :member_role_update
 | :role_create
 | :role_update
 | :role_delete
 | :invite_create
 | :invite_update
 | :invite_delete
 | :webhook_create
 | :webhook_update
 | :webhook_delete
 | :emoji_create
 | :emoji_update
 | :message_delete

An enumeration of action types.

 Link to this type

 change()

 Specs

 change() :: %Alchemy.AuditLog.Change{
 key: String.t(),
 new_value: any(),
 old_value: any()
}

The type of an audit log change.
	new_value
The new value after the change.
	old_value
The value prior to the change.
	key
The type of change that occurred. This also dictates the type of
new_value and old_value

more information on this relation

 Link to this type

 entry()

 Specs

 entry() :: %Alchemy.AuditLog.Entry{
 action_type: action(),
 changes: [change()],
 id: snowflake(),
 options: options(),
 reason: term(),
 target_id: String.t(),
 user_id: snowflake()
}

An entry in an audit log.
	target_id
The id of the affected entity.
	changes
The changes made to the target_id.
	user_id
The user who made the changes.
	id
The id of the entry
	action_type
The type of action that occurred
	options
Additional map of information for certain action types.
	reason
The reason for the change

 Link to this type

 options()

 Specs

 options() :: %{
 optional(:delete_member_days) => String.t(),
 optional(:members_removed) => String.t(),
 optional(:channel_id) => snowflake(),
 optional(:count) => integer(),
 optional(:id) => snowflake(),
 optional(:type) => String.t(),
 optional(:role_name) => String.t()
}

Additional information fields in an audit log based on action_type.
:member_prune -> [:delete_member_days, :members_removed]
:message_delete -> [:channel_id, :count]
:channel_overwrite_create | delete | update -> [:id, :type, :role_name]

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 t()

 Specs

 t() :: %Alchemy.AuditLog{
 audit_log_entries: [entry()],
 users: Alchemy.User.t(),
 webhooks: Alchemy.Webhook.t()
}

Represents the Audit Log information of a guild.
	webhooks
List of webhooks found in the Audit Log.
	user
List of users found in the Audit Log.
	audit_log_entries
List of entries in the Audit Log.

 Anchor for this section

Functions

 Link to this function

 get_guild_log(guild, options \\ [])

 Specs

 get_guild_log(snowflake(),
 user_id: snowflake(),
 action_type: action(),
 before: snowflake(),
 limit: integer()
) :: {:ok, t()} | {:error, term()}

Returns an audit log entry for a guild.
Requires :view_audit_log permission.

 Options

	user_id
Filters the log for a user id.
	action_type
The type of audit log event
	before
Filter the log before a certain entry id.
	limit
How many entries are returned (default 50, between 1 and 100).

Alchemy.Cache

This module provides a handful of useful functions to interact with the cache.
By default, Alchemy caches a great deal of information given to it, notably about
guilds. In general, using the cache should be prioritised over using the api
functions in Alchemy.Client. However, a lot of struct modules have "smart"
functions that will correctly balance the cache and the api, as well as use macros
to get information from the context of commands.

 Anchor for this section

 Summary

 Types

 snowflake()

 Functions

 channel(guild_id, channel_id)

 Retrieves a specific channel in a guild.

 emoji(guild_id, emoji_id)

 Retrieves a custom emoji by id in a guild.

 guild(guild_id)

 Fetches a guild from the cache by a given id.

 guild_id(channel_id)

 Gets the corresponding guild_id for a channel.

 load_guild_members(guild_id, username \\ "", limit \\ 0)

 Requests the loading of offline guild members for a guild.

 member(guild_id, member_id)

 Gets a member from a cache, by guild and member id.

 presence(guild_id, user_id)

 Gets the presence of a user in a certain guild.

 private_channel(channel_id)

 Fetches a private_channel in the cache by id of the channel.

 role(guild_id, role_id)

 Gets a specific role in a guild.

 search(section, filter)

 Searches across all guild for information.

 user()

 Gets the user struct for this client from the cache.

 voice_state(guild_id, user_id)

 Retrieves a user's voice state by id in a guild.

 Anchor for this section

Types

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Anchor for this section

Functions

 Link to this function

 channel(guild_id, channel_id)

 Specs

 channel(snowflake(), snowflake()) ::
 {:ok, Alchemy.Channel.t()} | {:error, String.t()}

Retrieves a specific channel in a guild.

 Link to this function

 emoji(guild_id, emoji_id)

 Specs

 emoji(snowflake(), snowflake()) ::
 {:ok, Alchemy.Guild.emoji()} | {:error, String.t()}

Retrieves a custom emoji by id in a guild.

 Link to this function

 guild(guild_id)

 Specs

 guild(snowflake()) :: {:ok, Alchemy.Guild.t()} | {:error, String.t()}

Fetches a guild from the cache by a given id.
By default, this method needs the guild_id, but keywords can be used to specify
a different id, and use the appropiate paths to get the guild using that.
In general there are "smarter" methods, that will deal with getting the id for you;
nonetheless, the need for this function sometimes exists.

 Keywords

	channel
Using this keyword will fetch the information for the guild a channel belongs to.

 Link to this function

 guild_id(channel_id)

 Specs

 guild_id(snowflake()) :: {:ok, snowflake()} | {:error, String.t()}

Gets the corresponding guild_id for a channel.
In case the channel guild can't be found, :none will be returned.
This is useful when the guild_id is needed for some kind of task, but there's no
need for getting the whole struct. Because of how the registry is set up, getting
the entire guild requires a whole extra step, that passes through this one anyways.

 Link to this function

 load_guild_members(guild_id, username \\ "", limit \\ 0)

Requests the loading of offline guild members for a guild.
Guilds should automatically get 250 offline members after the
:ready event, however, you can use this method to request a fuller
list if needed.
The username is used to only select members whose username starts
with a certain string; "" won't do any filtering. The limit
specifies the amount of members to get; 0 for unlimited.
There's a ratelimit of ~100 requests per shard per minute on this
function, so be wary of the fact that this might block a process.

 Link to this function

 member(guild_id, member_id)

 Specs

 member(snowflake(), snowflake()) ::
 {:ok, Alchemy.Guild.member()} | {:error, String.t()}

Gets a member from a cache, by guild and member id.

 Link to this function

 presence(guild_id, user_id)

 Specs

 presence(snowflake(), snowflake()) ::
 {:ok, Alchemy.Guild.Presence.t()} | {:error, String.t()}

Gets the presence of a user in a certain guild.
This contains info such as their status, and roles.

 Link to this function

 private_channel(channel_id)

 Specs

 private_channel(snowflake()) ::
 {:ok, Alchemy.Channel.dm_channel()} | {:error, String.t()}

Fetches a private_channel in the cache by id of the channel.
Takes a DMChannel id. Alternatively, user: user_id can be passed to find
the private channel related to a user.

 Link to this function

 role(guild_id, role_id)

 Specs

 role(snowflake(), snowflake()) ::
 {:ok, Alchemy.Guild.role()} | {:error, String.t()}

Gets a specific role in a guild.

 Link to this function

 search(section, filter)

 Specs

 search(atom(), (any() -> Boolean)) :: [struct()]

Searches across all guild for information.
The section is the type of object to search for. The possibilities are:
:guilds, :members, :roles, :presences, :voice_states, :emojis,
:channels
The filter is a function returning a boolean, that allows you to filter out
elements from this list.
The return type will be a struct of the same type of the section searched for.

 Examples

Cache.search(:members, fn x -> String.length(x.nick) < 10 end)
This will return a list of all members whose nickname is less than 10
characters long.
Cache.search(:roles, &match?(%{name: "Cool Kids"}, &1))
This is a good example of using the match?/2
function to filter against a pattern.
Cache.search(:guilds, &match?(%{name: "Test"}, &1))
Will match any guilds named "Test" in the cache.

 Link to this function

 user()

 Specs

 user() :: Alchemy.User.t()

Gets the user struct for this client from the cache.

 Examples

Cogs.def hello do
 Cogs.say "hello, my name is #{Cache.user().name}"
end

 Link to this function

 voice_state(guild_id, user_id)

 Specs

 voice_state(snowflake(), snowflake()) ::
 {:ok, Alchemy.Voice.state()} | {:error, String.t()}

Retrieves a user's voice state by id in a guild.

Alchemy.Channel

This module contains useful functions for operating on Channels.

 Anchor for this section

 Summary

 Types

 channel_category()

 Represents a channel category in a guild.

 datetime()

 dm_channel()

 Represents a private message between the bot and another user.

 group_dm_channel()

 Represents a dm channel between multiple users.

 hash()

 invite()

 Represents an Invite object along with the metadata.

 invite_channel()

 Represents the channel an invite is for

 invite_guild()

 Represents the guild an invite is for.

 overwrite()

 Represents a permission OverWrite object

 snowflake()

 t()

 The general channel type, representing one of 5 variants.

 text_channel()

 Represents a normal text channel in a guild

 voice_channel()

 Represents a voice channel in a guild.

 Anchor for this section

Types

 Link to this type

 channel_category()

 Specs

 channel_category() :: %Alchemy.Channel.ChannelCategory{
 guild_id: snowflake(),
 id: snowflake(),
 name: String.t(),
 nsfw: Boolean.t(),
 permission_overwrites: [overwrite()],
 position: Integer
}

Represents a channel category in a guild.
	id
The id of this category

	guild_id
The of the guild this category belongs to

	position
The sorting position of this category

	permission_overwrites
An array of permission overwrites

	name
The name of this category

	nsfw
Whether or not this category is considered nsfw

 Link to this type

 datetime()

 Specs

 datetime() :: String.t()

 Link to this type

 dm_channel()

 Specs

 dm_channel() :: %Alchemy.Channel.DMChannel{
 id: snowflake(),
 last_message_id: snowflake() | nil,
 recipients: [Alchemy.User.t()]
}

Represents a private message between the bot and another user.
	id
The id of this channel

	recipients
A list of users receiving this channel

	last_message_id
The id of the last message sent, if any

 Link to this type

 group_dm_channel()

 Specs

 group_dm_channel() :: %Alchemy.Channel.GroupDMChannel{
 icon: String.t() | nil,
 id: snowflake(),
 last_message_id: snowflake() | nil,
 name: String.t(),
 owner_id: snowflake(),
 recipients: [Alchemy.User.t()]
}

Represents a dm channel between multiple users.
	id
The id of this channel

	owner_id
The id of the owner of this channel

	icon
The hash of the image icon for this channel, if it has one

	name
The name of this channel

	recipients
A list of recipients of this channel

	last_message_id
The id of the last message sent in this channel, if any

 Link to this type

 hash()

 Specs

 hash() :: String.t()

 Link to this type

 invite()

 Specs

 invite() :: %Alchemy.Channel.Invite{
 channel: invite_channel(),
 code: String.t(),
 created_at: datetime(),
 guild: invite_guild(),
 inviter: Alchemy.User.t(),
 max_age: Integer,
 max_uses: Integer,
 revoked: Boolean,
 temporary: Boolean,
 uses: Integer
}

Represents an Invite object along with the metadata.
	code
The unique invite code

	guild
The guild this invite is for

	channel
The channel this invite is for

	inviter
The user who created the invite

	uses
The amount of time this invite has been used

	max_uses
The max number of times this invite can be used

	max_age
The duration (seconds) after which the invite will expire

	temporary
Whether this invite grants temporary membership

	created_at
When this invite was created

	revoked
Whether this invite was revoked

 Link to this type

 invite_channel()

 Specs

 invite_channel() :: %Alchemy.Channel.Invite.InviteChannel{
 id: snowflake(),
 name: String.t(),
 type: String.t()
}

Represents the channel an invite is for
	id
The id of the channel

	name
The name of the channel

	type
The type of the channel, either "text" or "voice"

 Link to this type

 invite_guild()

 Specs

 invite_guild() :: %Alchemy.Channel.Invite.InviteGuild{
 icon: hash(),
 id: snowflake(),
 name: String.t(),
 splash: hash()
}

Represents the guild an invite is for.
	id
The id of the guild

	name
The name of the guild

	splash
The hash of the guild splash (or nil)

	icon
The hash of the guild icon (or nil)

 Link to this type

 overwrite()

 Specs

 overwrite() :: %Alchemy.OverWrite{
 allow: Integer,
 deny: Integer,
 id: String.t(),
 type: String.t()
}

Represents a permission OverWrite object
	id
role or user id

	type
either "role", or "member"

	allow
the bit set of that permission

	deny
the bit set of that permission

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 t()

 Specs

 t() ::
 text_channel()
 | voice_channel()
 | channel_category()
 | dm_channel()
 | group_dm_channel()

The general channel type, representing one of 5 variants.
The best way of dealing with this type is pattern matching against one of the 5 structs.

 Link to this type

 text_channel()

 Specs

 text_channel() :: %Alchemy.Channel.TextChannel{
 guild_id: snowflake(),
 id: snowflake(),
 last_message_id: snowflake() | nil,
 last_pin_timestamp: String.t() | nil,
 name: String.t(),
 nsfw: Boolean.t(),
 parent_id: snowflake() | nil,
 permission_overwrites: [overwrite()],
 position: Integer,
 topic: String.t() | nil
}

Represents a normal text channel in a guild
_ id
 The id of the channel
	guild_id
The id of the guild this channel belongs to

	position
The sorting position of this channel

	permission_overwrites
An array of %OverWrite{} structs

	name
The name of this channel

	topic
The topic of the channel

	nsfw
Whether or not the channel is considered nsfw

	last_message_id
The id of the last message sent in the channel, if any

	parent_id
The id of the category this channel belongs to, if any

	last_pin_timestamp
The timestamp of the last channel pin, if any

 Link to this type

 voice_channel()

 Specs

 voice_channel() :: %Alchemy.Channel.VoiceChannel{
 bitrate: Integer,
 guild_id: snowflake(),
 id: snowflake(),
 name: String.t(),
 nsfw: Boolean.t(),
 parent_id: snowflake() | nil,
 permission_overwrites: [overwrite()],
 position: Integer,
 user_limit: Integer
}

Represents a voice channel in a guild.
	id
The id of this channel

	guild_id
The id of the guild this channel belongs to

	position
The sorting position of this channel in the guild

	permission_overwrites
An array of permission overwrites for this channel

	name
The name of this channel

	nsfw
Whether or not this channel is considered nsfw

	bitrate
The bitrate for this channel

	user_limit
The max amount of users in this channel, 0 for no limit

	parent_id
The id of the category this channel belongs to, if any

Alchemy.Client

Represents a Client connection to the Discord API. This is the main public
interface for the REST API.
As you might have seen in other examples, this module is the main entry
point for Alchemy. start/2 will start up the necessary modules and caches
necessary to hook into discord. You generally want to do this before
you do any other work in your bot really.
Blocking
All the requests here will block the process using them. Since
all the event handles and commands created with this framework run
in concurrent processes, this isn't usually an issue. If you do
want to "fire and forget", it's easy to wrap these requests in a task.
Caching
In general, you should try and use the functions provided by Alchemy.Cache
over the requests in this module, because the cache functions will be much faster,
and avoid excess API requests.

 Anchor for this section

 Summary

 Types

 channel_id()

 message_id()

 snowflake()

 token()

 unicode()

 url()

 Functions

 add_member(guild_id, user_id, access_token, options \\ [])

 Adds a member in a guild.

 add_reaction(message, emoji)

 Adds a reaction to a message.

 add_role(guild_id, user_id, role_id)

 Adds a role to a member of a guild.

 ban_member(guild_id, user_id, days \\ 0)

 Bans a member from a guild.

 change_nickname(guild_id, name)

 Modifies the nickname of the current user.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 create_DM(user_id)

 Opens a new private channel with a user.

 create_channel(guild_id, name, options \\ [])

 Creates a new channel in a guild.

 create_invite(channel_id, options \\ [])

 Creates a new invite for a channel.

 create_role(guild_id, options)

 Creates a new role in the guild.

 delete_channel(channel_id)

 Deletes a channel from a guild.

 delete_integration(guild_id, integration_id)

 Removes an integration from a guild.

 delete_invite(invite_code)

 Deletes an invite.

 delete_message(message)

 Deletes a message.

 delete_messages(channel_id, messages)

 Deletes a list of messages.

 delete_reaction(message, emoji, user)

 Deletes a reaction added by another user.

 delete_role(guild_id, role_id)

 Removes a role from a guild.

 edit_channel(channel_id, options)

 Edits a channel in a guild, referenced by id.

 edit_embed(message, embed)

 Edits a previously sent embed.

 edit_guild(guild_id, options)

 Modifies a guild's settings.

 edit_integration(guild_id, integration_id, options)

 Edits an integration of a guild.

 edit_member(guild_id, user_id, options)

 Modifies a member in a guild.

 edit_message(message, content, opts \\ [])

 Edits a message's contents.

 edit_profile(options)

 Edits the client's user_name and/or avatar.

 edit_role(guild_id, role_id, options)

 Edits a preexisting role in a guild.

 get_DMs()

 Gets a list of private channels open with this user.

 get_bans(guild_id)

 Gets a list of users banned from this guild.

 get_channel(channel_id)

 Gets a channel by its ID. Works on both private channels, and guild channels.

 get_channel_invites(channel_id)

 Gets a list of invites for a channel.

 get_channels(guild_id)

 Returns a list of channel objects for a guild.

 get_current_guilds()

 Gets a list of guilds the client is currently a part of.

 get_guild(guild_id)

 Gets info about a certain guild.

 get_integrations(guild_id)

 Gets a list of integration objects for a guild.

 get_invite(invite_code)

 Gets the information for a single invite.

 get_invites(guild_id)

 Returns a list of invites for a guild.

 get_member(guild_id, user_id)

 Gets info for a member of a guild.

 get_member_list(guild_id, options \\ [])

 Gets a list of members from a guild.

 get_message(channel_id, message_id)

 Gets a message by channel, and message_id

 get_messages(channel_id, options)

 Gets up to 100 messages from a channel.

 get_pins(channel_id)

 Gets a list of pinned messages in a channel.

 get_prune_count(guild_id, days)

 Returns a count of members who would be kicked in a prune operation.

 get_reactions(arg1, emoji)

 Gets a list of users who reacted to message with a particular emoji.

 get_regions(guild_id)

 Returns a list of voice regions in a guild.

 get_roles(guild_id)

 Gets a list of roles available in a guild.

 get_user(client_id)

 Gets a user by their client_id.

 init(arg)

 Callback implementation for Supervisor.init/1.

 kick_member(guild_id, user_id)

 Kicks a member from a guild.

 leave_guild(guild_id)

 Makes the client leave a guild.

 list_voice_regions()

 Returns a list of all possible voice regions.

 move_channels(guild_id, pairs)

 Swaps the position of channels in a guild.

 move_roles(guild_id, pairs)

 Modifies the position of roles in a guild.

 pin(arg1)

 Pins a message to its channel.

 prune_guild(guild_id, days)

 Removes inactive members of a guild.

 remove_reaction(message, emoji)

 Removes a reaction on a message, posted by this user.

 remove_reactions(message)

 Removes all reactions from a message.

 remove_role(guild_id, user_id, role_id)

 Removes a role of a guild member.

 send_message(channel_id, content, options \\ [])

 Sends a message to a particular channel

 start(token, options \\ [])

 Starts up a new Client with the given token.

 sync_integration(guild_id, integration_id)

 Syncs a guild integration.

 trigger_typing(channel_id)

 Triggers the typing indicator.

 unban_member(guild_id, user_id)

 Unbans a user from the server.

 unpin(arg1)

 Removes a pinned message from a channel.

 update_status(idle_since \\ nil, game_info)

 Updates the status of the client.

 Anchor for this section

Types

 Link to this type

 channel_id()

 Specs

 channel_id() :: snowflake()

 Link to this type

 message_id()

 Specs

 message_id() :: snowflake()

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 token()

 Specs

 token() :: String.t()

 Link to this type

 unicode()

 Specs

 unicode() :: String.t()

 Link to this type

 url()

 Specs

 url() :: String.t()

 Anchor for this section

Functions

 Link to this function

 add_member(guild_id, user_id, access_token, options \\ [])

 Specs

 add_member(snowflake(), snowflake(), String.t(),
 nick: String.t(),
 roles: [snowflake()],
 mute: Boolean,
 deaf: Boolean,
 channel_id: snowflake()
) :: {:ok, nil} | {:error, term()}

Adds a member in a guild.
Each option requires different permissions.

 Options

	nick
The nickname of the user. Requires :manage_nicknames
	roles
A list of roles (ids) the user should have after the change.
Requires :manage_roles
	mute
Whether or not the user should be muted. Requires :mute_members
	deaf
Whether or not the user should be deafened. Requires :deafen_members
	channel_id
Voice channel to move the user too (if they are connected).
Requires :move_members, and permission to connect to that channel.

 Examples

Client.add_member(guild_id, user_id, "abc123", nick: "cool guy")

 Link to this function

 add_reaction(message, emoji)

 Specs

 add_reaction(
 Alchemy.Message.t() | {channel_id(), message_id()},
 unicode() | Alchemy.Reaction.Emoji.t()
) :: {:ok, nil} | {:error, term()}

Adds a reaction to a message.
This supports sending either a custom emoji object, or a unicode literal.
While sending raw unicode is technically possible, you'll usually run
into url encoding issues due to hidden characters if you try to send something like
"❤️️"; use \u2764 instead.

 Examples

Cogs.def heart do
 Client.add_reaction(message, "️\u2764")
end

 Link to this function

 add_role(guild_id, user_id, role_id)

 Specs

 add_role(snowflake(), snowflake(), snowflake()) :: {:ok, nil} | {:error, term()}

Adds a role to a member of a guild.
Requires the :manage_roles permission.

 Examples

Client.add_role(guild_id, user_id, role_id)

 Link to this function

 ban_member(guild_id, user_id, days \\ 0)

Bans a member from a guild.
This prevents a user from rejoining for as long as the ban persists,
as opposed to kick_member/2 which will just make them leave the server.
A days paramater can be set to delete x days of messages; limited to 7.

 Examples

Client.ban_member(guild_id, user_id, 1)

 Link to this function

 change_nickname(guild_id, name)

 Specs

 change_nickname(snowflake(), String.t()) :: {:ok, nil} | {:error, term()}

Modifies the nickname of the current user.

 Examples

Client.change_nickname(guild_id, "best bot")

 Link to this function

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 create_DM(user_id)

 Specs

 create_DM(snowflake()) :: Alchemy.Channel.dm_channel()

Opens a new private channel with a user.

 Examples

Cogs.def dm_me do
 Client.create_DM(message.author.id)
end

 Link to this function

 create_channel(guild_id, name, options \\ [])

 Specs

 create_channel(snowflake(), String.t(),
 voice: Boolean,
 bitrate: Integer,
 user_limit: Integer
) :: {:ok, Alchemy.Channel.t()} | {:error, term()}

Creates a new channel in a guild.
Requires the MANAGE_CHANNELS permission.

 Options

	voice
Setting this creates a new voice channel.
	bitrate
Sets the bitrate (bits) for a voice channel.
	user_limit
Sets the max amount of users for a voice channel.
	permission_overwrites
An overwrite for permissions in that channel

 Examples

Client.create_channel(guild_id)

 Link to this function

 create_invite(channel_id, options \\ [])

 Specs

 create_invite(snowflake(),
 max_age: Integer,
 max_uses: Integer,
 temporary: Boolean,
 unique: True
) :: {:ok, Alchemy.Channel.invite()} | {:error, term()}

Creates a new invite for a channel.
Requires the CREATE_INSTANT_INVITE permission.

 Options

	max_age
The duration (seconds) of the invite. 0 for never.

	max_uses
The max number of uses. 0 for unlimited.

	temporary
Whether this invite grants temporary membership.

	unique
When set, a similar invite won't try to be used.
Useful for creating unique one time use invites.

 Examples

Cogs.def invite do
 {:ok, invite} = Client.create_invite(message.channel_id, max_age: 0)
 Cogs.say("Here you go:\nhttps://discord.gg/#{invite.code}")
end

 Link to this function

 create_role(guild_id, options)

 Specs

 create_role(snowflake(),
 name: String.t(),
 permissions: Integer,
 color: Integer,
 hoist: Booean,
 mentionable: Boolean
) :: {:ok, Alchemy.Guild.role()} | {:error, term()}

Creates a new role in the guild.
Requires the :manage_roles permission.

 Options

	name
The name of the new role. Defaults to "new role"
	permissions
The set of permissions for that role. Defaults to the @everyone
permissions in that guild.
	color
The color of the role. Defaults to 0x000000
	hoist
When set to true, the role will be displayed seperately in the sidebar.
	mentionable
When set to true, allows the role to be mentioned.

 Examples

Client.create_role(guild_id, name: "the best role", color: 0x4bd1be)

 Link to this function

 delete_channel(channel_id)

 Specs

 delete_channel(snowflake()) :: {:ok, Alchemy.Channel.t()} | {:error, term()}

Deletes a channel from a guild.
Here's an example of how to deal with the possible return types using
pattern matching:
def my_delete(id) do
 {:ok, channel} = Client.delete_channel(id)
 case channel do
 %DMChannel{} -> "this is a private channel!"
 %TextChannel{} -> "this is a normal channel!"
 end
end

 Link to this function

 delete_integration(guild_id, integration_id)

 Specs

 delete_integration(snowflake(), snowflake()) :: {:ok, nil} | {:error, term()}

Removes an integration from a guild.
Requires the :manage_guild permission.

 Link to this function

 delete_invite(invite_code)

 Specs

 delete_invite(String.t()) :: {:ok, nil} | {:error, term()}

Deletes an invite.
After deletion the invite can no longer be used, as you might expect.

 Link to this function

 delete_message(message)

 Specs

 delete_message(Alchemy.Message.t() | {channel_id(), message_id()}) ::
 {:ok, nil} | {:error, term()}

Deletes a message.
Requires the MANAGE_MESSAGES permission for messages not sent by the user.

 Examples

content = "self destructing in 1s!!!"
{:ok, message} = Client.send_message(channel_id, content)
Process.sleep(1000)
Client.delete_message(message)

 Link to this function

 delete_messages(channel_id, messages)

 Specs

 delete_messages(snowflake(), [Alchemy.Message.t() | snowflake()]) ::
 {:ok, nil} | {:error, term()}

Deletes a list of messages.
Requires the MANAGE_MESSAGES permission for messages not posted by this user.
Can only delete messages up to 2 weeks old.
 Cogs.def countdown do
 {:ok, m1} = Cogs.say "3..."
 Process.sleep(1000)
 {:ok, m2} = Cogs.say "2..."
 Process.sleep(1000)
 {:ok, m3} = Cogs.say "1..."
 Process.sleep(1000)
 Client.delete_messages(message.channel, [m1, m2, m3])
 end

 Link to this function

 delete_reaction(message, emoji, user)

 Specs

 delete_reaction(
 Alchemy.Message.t() | {channel_id(), message_id()},
 unicode() | Alchemy.Reaction.Emoji.t(),
 snowflake() | Alchemy.User.t()
) :: {:ok, nil} | {:error, term()}

Deletes a reaction added by another user.
Requires the MANAGE_MESSAGES permission.

 Link to this function

 delete_role(guild_id, role_id)

 Specs

 delete_role(snowflake(), snowflake()) :: {:ok, nil} | {:error, term()}

Removes a role from a guild.
Requires the :manage_roles permission.

 Link to this function

 edit_channel(channel_id, options)

 Specs

 edit_channel(snowflake(),
 name: String.t(),
 position: Integer,
 topic: String.t(),
 bitrate: Integer,
 user_limit: Integer,
 nsfw: Boolean.t(),
 parent_id: snowflake()
) :: {:ok, Alchemy.Channel.t()} | {:error, term()}

Edits a channel in a guild, referenced by id.
All the paramaters are optional. Some are mutually exclusive. I.E.
you can't use voice only and text only parameters in the same request.

 Options

	name the name for the channel
	position the position in the left hand listing
	topic ~ text only ~ the topic of the channel
	bitrate ~ voice only ~ the bitrate, in bits, from 8000 to 96000, for
the voice channel to take
	user_limit ~ voice only ~ the max amount of users allowed in this channel.
From 1 to 99, or 0 for no limit.
	nsfw whether or not the channel is nsfw
	parent_id the id of the new parent category for a channel

 Examples

Client.edit_channel(id, name: "the best channel", position: 1)
{:ok, new_voice_channel} = Client.edit_channel(id, bitrate: 8000)

 Link to this function

 edit_embed(message, embed)

 Specs

 edit_embed(
 Alchemy.Message.t() | {channel_id(), message_id()},
 Alchemy.Embed.t()
) :: {:ok, Alchemy.Message.t()} | {:error, term()}

Edits a previously sent embed.
Note that this can be accomplished via edit_message/3 as well, but that requires
editing the content as well.
Cogs.def embed do
 embed = %Embed{description: "the best embed"}
 |> color(0xc13261)
 {:ok, message} = Embed.send(embed)
 Process.sleep(2000)
 Client.edit_embed(message, embed |> color(0x5aa4d4))
end

 Link to this function

 edit_guild(guild_id, options)

 Specs

 edit_guild(snowflake(),
 name: String.t(),
 region: snowflake(),
 verification_level: Integer,
 default_message_notifications: Integer,
 afk_channel_id: snowflake(),
 afk_timeout: snowflake(),
 icon: url(),
 splash: url()
) :: {:ok, Alchemy.Guild.t()} | {:error, term()}

Modifies a guild's settings.

 Options

	name
The name of the guild.
	region
The id of the voice region.
	verification_level
The level of verification of the guild.
	default_message_notifications
The default message notification settings.
	afk_channel_id
The id of the afk channel.
	afk_timeout
The afk timeout in seconds.
	icon
A url to the new icon. Must be a 128x128 jpeg image.
	splash
A url to the new splash screen. This is only available for partnered guilds.

 Examples

Client.edit_guild(guild_id, name: "new name")

 Link to this function

 edit_integration(guild_id, integration_id, options)

 Specs

 edit_integration(snowflake(), snowflake(),
 expire_behaviour: Integer,
 expire_grace_period: Integer,
 enable_emoticons: Boolean
) :: {:ok, nil} | {:error, term()}

Edits an integration of a guild.
Requires the :manage_guild permission.

 Options

	expire_behaviour
The behaviour when an integration subscription lapses.
	expire_grace_period
Period (seconds) where the integration ignores lapsed subscriptions.
	enable_emoticons
Whether or not emoticons should be synced for this integration.

 Link to this function

 edit_member(guild_id, user_id, options)

 Specs

 edit_member(snowflake(), snowflake(),
 nick: String.t(),
 roles: [snowflake()],
 mute: Boolean,
 deaf: Boolean,
 channel_id: snowflake()
) :: {:ok, nil} | {:error, term()}

Modifies a member in a guild.
Each option requires different permissions.

 Options

	nick
The nickname of the user. Requires :manage_nicknames
	roles
A list of roles (ids) the user should have after the change.
Requires :manage_roles
	mute
Whether or not the user should be muted. Requires :mute_members
	deaf
Whether or not the user should be deafened. Requires :deafen_members
	channel_id
Voice channel to move the user too (if they are connected).
Requires :move_members, and permission to connect to that channel.

 Examples

Client.edit_member(guild_id, user_id, nick: "cool guy")

 Link to this function

 edit_message(message, content, opts \\ [])

Edits a message's contents.

 Examples

{:ok, message} = Client.send_message(channel, "ping!")
Process.sleep(1000)
Client.edit_message(message, "not ping anymore!")

 Link to this function

 edit_profile(options)

 Specs

 edit_profile(username: String.t(), avatar: url()) ::
 {:ok, Alchemy.User.t()} | {:error, term()}

Edits the client's user_name and/or avatar.

 Options

	user_name A string specifiying the new user_name for the client
	avatar A link to an image for the client's avatar

 Examples

Will edit "behind the scenes"
Client.edit_profile(username: "NewGuy", avatar: "imgur.com/image.jpeg")
iex> {:ok, user} = Client.edit_profile(username: "NewName")
{:ok, Alchemy.User%{....

 Link to this function

 edit_role(guild_id, role_id, options)

 Specs

 edit_role(snowflake(), snowflake(),
 name: String.t(),
 permissions: Integer,
 color: Integer,
 hoist: Booean,
 mentionable: Boolean
) :: {:ok, Alchemy.Guild.role()} | {:error, term()}

Edits a preexisting role in a guild.
The same as create_role/2 except that this operates on a role that has already
been created. See that function for discussion.

 Link to this function

 get_DMs()

 Specs

 get_DMs() :: [Alchemy.Channel.dm_channel()]

Gets a list of private channels open with this user.

 Examples

Client.get_DMs()

 Link to this function

 get_bans(guild_id)

 Specs

 get_bans(snowflake()) :: {:ok, [Alchemy.User.t()]} | {:error, term()}

Gets a list of users banned from this guild.
Requires the :ban_members permission.

 Examples

{:ok, bans} = Client.get_bans(guild_id)

 Link to this function

 get_channel(channel_id)

 Specs

 get_channel(snowflake()) :: {:ok, Alchemy.Channel.t()} | {:error, term()}

Gets a channel by its ID. Works on both private channels, and guild channels.

 Examples

{:ok, channel} = Client.get_channel("id")

 Link to this function

 get_channel_invites(channel_id)

 Specs

 get_channel_invites(snowflake()) ::
 {:ok, [Alchemy.Channel.invite()]} | {:error, term()}

Gets a list of invites for a channel.
Only usable for guild channels.

 Examples

Cogs.def count_invites do
 {:ok, invites} = Client.get_channel_invites(message.channel_id)
 Cogs.say("there are #{length(invites)} invites active in this channel")
end

 Link to this function

 get_channels(guild_id)

 Specs

 get_channels(snowflake()) :: {:ok, [Alchemy.Channel.t()]} | {:error, term()}

Returns a list of channel objects for a guild.
As with most guild methods, the cache should be preferred
over the api if possible.

 Examples

Client.get_channels(guild_id)

 Link to this function

 get_current_guilds()

 Specs

 get_current_guilds() :: {:ok, [Alchemy.User.user_guild()]} | {:error, term()}

Gets a list of guilds the client is currently a part of.

 Examples

{:ok, guilds} = Client.current_guilds

 Link to this function

 get_guild(guild_id)

 Specs

 get_guild(snowflake()) :: {:ok, Alchemy.Guild.t()} | {:error, term()}

Gets info about a certain guild.
The info returned here doesn't contain as much info as contained in the cache.
For guilds the user is a part of, the cache should be preferred over this method.
Client.get_guild(id)

 Link to this function

 get_integrations(guild_id)

 Specs

 get_integrations(snowflake()) :: {:ok, %{}} | {:error, term()}

Gets a list of integration objects for a guild.
Requires the :manage_guild permission.

 Link to this function

 get_invite(invite_code)

 Specs

 get_invite(String.t()) :: {:ok, Alchemy.Channel.invite()} | {:error, term()}

Gets the information for a single invite.
Not to be confused with get_invites/1, which lists out the invites
in a guild. This merely gets the information relating to a single invite,
accessed by its code.

 Link to this function

 get_invites(guild_id)

 Specs

 get_invites(snowflake()) :: {:ok, [Alchemy.Channel.invite()]} | {:error, term()}

Returns a list of invites for a guild.
Requires the :manage_guild permission.

 Link to this function

 get_member(guild_id, user_id)

 Specs

 get_member(snowflake(), snowflake()) ::
 {:ok, Alchemy.Guild.member()} | {:error, term()}

Gets info for a member of a guild.
For guilds the bot is in, use the corresponding cache method instead.

 Examples

Client.get_member(guild_id, user_id)

 Link to this function

 get_member_list(guild_id, options \\ [])

 Specs

 get_member_list(snowflake(), limit: Integer, after: snowflake()) ::
 {:ok, [Alchemy.Guild.member()]} | {:error, term()}

Gets a list of members from a guild.

 Options

	limit
The number of members to fetch (max 1000).
	after
Setting this to a user id will only fetch members that joined after that person.

 Examples

Client.get_member_list(guild_id, limit: 10)

 Link to this function

 get_message(channel_id, message_id)

 Specs

 get_message(snowflake(), snowflake()) ::
 {:ok, Alchemy.Message.t()} | {:error, term()}

Gets a message by channel, and message_id
Use get_messages for a bulk request instead.

 Examples

{:ok, message} = Client.get_message(channel, id)

 Link to this function

 get_messages(channel_id, options)

 Specs

 get_messages(snowflake(),
 around: snowflake(),
 before: snowflake(),
 after: snowflake(),
 limit: Integer
) :: {:ok, [Alchemy.Message.t()]} | {:error, term()}

Gets up to 100 messages from a channel.
around, before, after are all mutually exclusive.

 Options

	around will search for messages around the time of a particular message
	before will get messages before a certain message
	after will get messages after a certain message
	limit the number of messages to get. Defaults to 100

 Examples

{:ok, messages} = Client.get_messages(around: id, limit: 40)

 Link to this function

 get_pins(channel_id)

 Specs

 get_pins(snowflake()) :: {:ok, [Alchemy.Message.t()]} | {:error, term()}

Gets a list of pinned messages in a channel.

 Examples

Cogs.def pins do
 {:ok, pinned} = Client.get_pins(message.channel_id)
 Cogs.say("there are #{length(pinned)} pins in this channel.")
end

 Link to this function

 get_prune_count(guild_id, days)

 Specs

 get_prune_count(snowflake(), Integer) :: {:ok, nil} | {:error, term()}

Returns a count of members who would be kicked in a prune operation.
Days specifies the amount of days of inactivity to check for.
See prune_guild/2 for a discussion of this operation.

 Link to this function

 get_reactions(arg1, emoji)

 Specs

 get_reactions(
 Alchemy.Message.t() | {channel_id(), message_id()},
 unicode() | Alchemy.Reaction.Emoji.t()
) :: {:ok, [Alchemy.User.t()]} | {:error, term()}

Gets a list of users who reacted to message with a particular emoji.

 Examples

Cogs.def react do
 {:ok, message} = Cogs.say("react to this!")
 Process.sleep(10000)
 {:ok, users} = Client.get_reactions(message, "❤")
 Cogs.say("#{length(users)} users reacted with a ❤!")
end

 Link to this function

 get_regions(guild_id)

 Specs

 get_regions(snowflake()) :: {:ok, [Alchemy.VoiceRegion.t()]} | {:error, term()}

Returns a list of voice regions in a guild.

 Link to this function

 get_roles(guild_id)

 Specs

 get_roles(snowflake()) :: {:ok, [Alchemy.Guild.role()]} | {:error, term()}

Gets a list of roles available in a guild.
Requires the :manage_roles permission.

 Examples

Client.get_roles(guild_id)

 Link to this function

 get_user(client_id)

 Specs

 get_user(snowflake()) :: {:ok, Alchemy.User.t()} | {:error, term()}

Gets a user by their client_id.
"@me" can be passed to get the info
relevant to the Client.

 Examples

iex> {:ok, user} = Client.get_user("client_id")
{:ok, Alchemy.User%{....

 Link to this function

 init(arg)

Callback implementation for Supervisor.init/1.

 Link to this function

 kick_member(guild_id, user_id)

 Specs

 kick_member(snowflake(), snowflake()) :: {:ok, nil} | {:error, term()}

Kicks a member from a guild.
Not to be confused with ban_member/3.

 Examples

Client.kick_member(guild_id, user_id)

 Link to this function

 leave_guild(guild_id)

 Specs

 leave_guild(snowflake()) :: {:ok, nil} | {:error, term()}

Makes the client leave a guild.

 Examples

Client.leave_guild(guild_id)

 Link to this function

 list_voice_regions()

 Specs

 list_voice_regions() :: {:ok, [Alchemy.VoiceRegion.t()]} | {:error, term()}

Returns a list of all possible voice regions.

 Link to this function

 move_channels(guild_id, pairs)

 Specs

 move_channels(snowflake(), [{snowflake(), Integer}]) ::
 {:ok, nil} | {:error, term()}

Swaps the position of channels in a guild.

 Examples

alphabetizes a guild channel list
with {:ok, channels} <- Client.get_channels(guild_id) do
 channels
 |> Enum.sort_by(& &1.name)
 |> Stream.map(& &1.id)
 |> Enum.with_index
 |> (&Client.move_channels(guild_id, &1)).()
end

 Link to this function

 move_roles(guild_id, pairs)

 Specs

 move_roles(snowflake(), [{snowflake(), Integer}]) ::
 {:ok, [Alchemy.Guild.role()]} | {:error, term()}

Modifies the position of roles in a guild.
Takes a list of {id, position} where position is an integer starting at 0,
and id is the id of the role.
Returns a list of all the roles in the guild.
Requires the :manage_roles permission.

 Link to this function

 pin(arg1)

 Specs

 pin(Alchemy.Message.t() | {channel_id(), message_id()}) ::
 {:ok, nil} | {:error, term()}

Pins a message to its channel.

 Examples

Cogs.def pin_this do
 Client.pin(message)
end

 Link to this function

 prune_guild(guild_id, days)

 Specs

 prune_guild(snowflake(), Integer) :: {:ok, nil} | {:error, term()}

Removes inactive members of a guild.
Days allows you to specify the amount of days of inactivity necessary to be
kicked from the guild.
Requires the :manage_roles permission

 Examples

Client.prune_guild(guild_id,)

 Link to this function

 remove_reaction(message, emoji)

 Specs

 remove_reaction(
 Alchemy.Message.t() | {channel_id(), message_id()},
 unicode() | Alchemy.Reaction.Emoji.t()
) :: {:ok, nil} | {:error, term()}

Removes a reaction on a message, posted by this user.
This doesn't require the MANAGE_MESSAGES permission, unlike
delete_reaction.

 Example

Cogs.def indecisive do
Client.add_reaction(message, "❤")
Process.sleep(3000)
Client.remove_reaction(message, "❤")
end

 Link to this function

 remove_reactions(message)

 Specs

 remove_reactions(Alchemy.Message.t() | {channel_id(), message_id()}) ::
 {:ok, nil} | {:error, term()}

Removes all reactions from a message.
Requires the MANAGE_MESSAGES permission.

 Examples

Cogs.def psyche do
 {:ok, message} = Cogs.say("react to this")
 Process.sleep(10000)
 Client.delete_reactions(message)
end

 Link to this function

 remove_role(guild_id, user_id, role_id)

 Specs

 remove_role(snowflake(), snowflake(), snowflake()) ::
 {:ok, nil} | {:error, term()}

Removes a role of a guild member.
Requires the :manage_roles permission.

 Examples

Client.remove_role(guild_id, user_id, role_id)

 Link to this function

 send_message(channel_id, content, options \\ [])

Sends a message to a particular channel

 Options

	tts used to set whether or not a message should be text to speech
	embed used to send an Embed object along with the message
	file used to send a file along with the message

 Examples

{:ok, message} = Client.send_message(chan_id, "pong!")
Sending files along with messages is simple as well.Client.send_message(chan_id, "here you go!", file: "foo.txt")

 Link to this function

 start(token, options \\ [])

 Specs

 start(token(), [{:selfbot, snowflake()}]) :: {:ok, pid()}

Starts up a new Client with the given token.
An optional selfbot: id can be passed, indiciating that you're
using a user token instead of a normal bot token. SelfBots will only
respond to themselves, and certain functionalities of the API may
not work as well as for normal bots.

 Link to this function

 sync_integration(guild_id, integration_id)

 Specs

 sync_integration(snowflake(), snowflake()) :: {:ok, nil} | {:error, term()}

Syncs a guild integration.
Requires the :manage_guild permission.

 Link to this function

 trigger_typing(channel_id)

 Specs

 trigger_typing(snowflake()) :: {:ok, nil} | {:error, term()}

Triggers the typing indicator.
This shouldn't be used by bots usually.

 Examples

Cogs.def hard_math do
 Client.trigger_typing(message.channel_id)
 Process.sleep(3000)
 Cogs.say("done!")
end

 Link to this function

 unban_member(guild_id, user_id)

 Specs

 unban_member(snowflake(), snowflake()) :: {:ok, nil} | {:error, term()}

Unbans a user from the server.

 Examples

Client.unban_member(guild_id, user_id)

 Link to this function

 unpin(arg1)

 Specs

 unpin(Alchemy.Message.t() | {channel_id(), message_id()}) ::
 {:ok, nil} | {:error, term()}

Removes a pinned message from a channel.

 Examples

Cogs.def unpin do
 {:ok, [first|_]} = Client.get_pins(message.channel_id)
 Client.unpin(first)
end

 Link to this function

 update_status(idle_since \\ nil, game_info)

 Specs

 update_status(Integer, playing: String.t(), streaming: {String.t(), String.t()}) ::
 :ok | {:error, String.t()}

Updates the status of the client.
The status displays either "playing Game",
or a "streaming Game" message under the client, as well
setting an inactivity based on idleness.
playing: game specifies that you're playing, but not streaming
a game. streaming: {game, twitch} acts in a similar way, except
that it will also have a link to that twitch stream. You should only
pass in the handle, and not the full stream link, i.e. "foobar" instead
of "twitch.tv/foobar".
idle_since can be specified, using
unix time, in milliseconds, to indicate for how long the client has been idle.

 Note on ratelimiting

This functionality is heavily ratelimited, at a rate of 1 req / 12s.
Because of this, this function will automatically error after 24s of
waiting. Because of how long this may take, you might want to run
this in a new task.

 Examples

Client.update_status("Alchemy")

Alchemy.Cogs

This module provides quite a bit of sugar for registering commands.
To use the macros in this module, it must be used. This also defines a
__using__ macro for that module, which will then allow these commands
to be loaded in the main application via use
Example Module
defmodule Example do
 use Alchemy.Cogs

 Cogs.def ping do
 Cogs.say "pong"
 end

 Cogs.def echo do
 Cogs.say "please give me a word to echo"
 end
 Cogs.def echo(word) do
 Cogs.say word
 end
end
This defines a basic Cog, that can now be loaded into our application via use.
The command created from this module are "!ping", and "!echo",
("!" is merely the default prefix, it could be anything from "?", to "SHARKNADO").
The ping command is straight forward, but as you can see, the echo command
takes in an argument. When you define a command, the handler will
try and get arguments up to the max arity of that command;
in this case, echo has a max arity of one, so the parser will pass up to
one argument to the function. In the case that the parser can't get enough
arguments, it will pass a lower amount. We explicitly handle this case
here, in this case sending a useful error message back.
Shared names across multiple modules
If I define a command ping in module A, and a ping in module B,
which ping should become the command? In general, you should avoid doing
this, but the module used last will override previously loaded commands
with a matching name.
Parsing
The way the parser works is simple: a message is first decomposed into
parts:
prefix <> command <> " " <> rest
If the prefix doesn't match, the message is ignored. If it does match,
a new Task is started to handle this event. This task will try and find
the function corresponding to the command called, and will return preemptively
if no such function is found. After that, rest is passed to the parser,
which will try and extract arguments to pass to the function. The default
parsing method is simply splitting by whitespace.
Thankfully,
you can define a custom parser for a command via Cogs.set_parser/2. This
parser will act upon rest, and parse out the relevant arguments.
The message argument
When you define a function with Cogs.def the function gets expanded
to take an extra message parameter, which is the message triggering
the command. This contains a lot of useful information, and is what
enables a lot of the other macros to work. Because of this,
be wary of naming something else message.
Loading and Unloading
Loading a cog merely requires having started the client:
use Example
If you need to remove this cog from the handler:
Cogs.unload(Example)
Or you just want to disable a single function:
Cogs.disable(:ping)

 Anchor for this section

 Summary

 Types

 parser()

 Functions

 all_commands()

 Returns a map from command name (string) to the command information.

 def(func, body)

 Registers a new command, under the name of the function.

 disable(command)

 Disables a command.

 group(str)

 Makes all commands in this module sub commands of a group.

 guild()

 Gets the guild struct from which a command was triggered.

 guild_id()

 Gets the id of the guild from which a command was triggered.

 guild_permissions()

 Returns the base permissions for a member in a guild.

 member()

 Gets the member that triggered a command.

 permissions()

 Returns the permission bitset of the current member in the channel the command
was called from.

 say(content, options \\ [])

 Sends a message to the same channel as the message triggering a command.

 set_parser(name, parser)

 Allows you to register a custom message parser for a command.

 set_prefix(prefix)

 Sets the client's command prefix to a specific string.

 unload(module)

 Unloads a module from the handler.

 wait_for(type, fun)

 Halts the current command until an event is received.

 wait_for(type, condition, fun)

 Waits for a specific event satisfying a condition.

 Anchor for this section

Types

 Link to this type

 parser()

 Specs

 parser() :: (String.t() -> Enum.t())

 Anchor for this section

Functions

 Link to this function

 all_commands()

 Specs

 all_commands() :: map()

Returns a map from command name (string) to the command information.
Each command is either {module, arity, function_name}, or
{module, arity, function_name, parser}.
This can be useful for providing some kind of help command, or telling
a user if a command is defined, e.g. :
Cogs.def iscommand(maybe) do
 case Cogs.all_commands()[maybe] do
 nil -> Cogs.say "#{maybe} is not a command"
 _ -> Cogs.say "#{maybe} is a command"
 end
end

 Link to this macro

 def(func, body)

 (macro)

Registers a new command, under the name of the function.
This macro modifies the function definition, to accept an extra
message parameter, allowing the message that triggered the command to be passed,
as a t:Alchemy.Message/0

 Examples

Cogs.def ping do
 Cogs.say "pong"
end
In this case, "!ping" will trigger the command, unless another prefix has been set
with set_prefix/1
Cogs.def mimic, do: Cogs.say "Please send a word for me to echo"
Cogs.def mimic(word), do: Cogs.say word
Messages will be parsed, and arguments will be extracted, however,
to deal with potentially missing arguments, pattern matching should be used.
So, in this case, when a 2nd argument isn't given, an error message is sent back.

 Link to this function

 disable(command)

 Specs

 disable(atom()) :: :ok

Disables a command.
If you want to remove a whole module from the cogs, use Cogs.unload/1.
This will stop a command from being triggered. The only way to reenable the
command is to reload the module with use.

 Examples

defmodule Example do
 use Alchemy.Cogs

 Cogs.def ping, do: Cogs.say "pong"

 Cogs.def foo, do: Cogs.say "bar"
end
Client.start(@token)
use Example
Cogs.disable(:foo)
Only ping will be triggerable now.
use Example
At runtime this will add foo back in, given it's still in the module.

 Link to this macro

 group(str)

 (macro)

Makes all commands in this module sub commands of a group.

 Examples

defmodule C do
 use Alchemy.Cogs

 Cogs.group("cool")

 Cogs.def foo, do: Cogs.say "foo"
end
To use this foo command, one has to type !cool foo, from there on
arguments will be passed like normal.
The relevant parsing will be done in the command task, as if there
were a command !cool that redirected to subfunctions. Because of this,
Cogs.disable/1 will not be able to disable the subcommands, however,
Cogs.unload/1 still works as expected. Reloading a grouped module
will also disable removed commands, unlike with ungrouped modules.

 Link to this macro

 guild()

 (macro)

Gets the guild struct from which a command was triggered.
If only the id is needed, see :guild_id/0

 Examples

Cogs.def guild do
 {:ok, %Alchemy.Guild{name: name}} = Cogs.guild()
 Cogs.say(name)
end

 Link to this macro

 guild_id()

 (macro)

Gets the id of the guild from which a command was triggered.
Returns {:ok, id}, or {:error, why}. Will never return ok outside
of a guild, naturally.
This is to be used when the guild_id is necessary for an operation,
but the full guild struct isn't needed.

 Link to this macro

 guild_permissions()

 (macro)

Returns the base permissions for a member in a guild.
Functions similarly to permissions.

 Link to this macro

 member()

 (macro)

Gets the member that triggered a command.
Returns either {:ok, member}, or {:error, why}. Will not return
ok if the command wasn't run in a guild.
As opposed to message.author, this comes with a bit more info about who
triggered the command. This is useful for when you want to use certain information
in a command, such as permissions, for example.

 Link to this macro

 permissions()

 (macro)

Returns the permission bitset of the current member in the channel the command
was called from.
If you just want the base permissions of the member in the guild,
see guild_permissions.
Returns {:ok, perms}, or {:error, why}. Fails if not called from
a guild, or the guild or the member couldn't be fetched from the cache.

 Example

Cogs.def perms do
 with {:ok, permissions} <- Cogs.permissions() do
 Cogs.say "Here's a list of your permissions `#{Permissions.to_list(permissions)}`"
 end
end

 Link to this macro

 say(content, options \\ [])

 (macro)

Sends a message to the same channel as the message triggering a command.
This can only be used in a command defined with Cogs.def
This is just a thin macro around Alchemy.Client.send_message/2

 Examples

Cogs.def ping, do: Cogs.say("pong!")

 Link to this macro

 set_parser(name, parser)

 (macro)

Allows you to register a custom message parser for a command.
The parser will be applied to part of the message not used for command matching.
prefix <> command <> " " <> rest

 Examples

Cogs.set_parser(:echo, &List.wrap/1)
Cogs.def echo(rest) do
 Cogs.say(rest)
end

 Link to this function

 set_prefix(prefix)

 Specs

 set_prefix(String.t()) :: :ok

Sets the client's command prefix to a specific string.
This will only work after the client has been started
Example
Client.start(@token)
Cogs.set_prefix("!!")

 Link to this function

 unload(module)

 Specs

 unload(atom()) :: :ok

Unloads a module from the handler.
If you just want to disable a single command, use Cogs.disable/1

 Examples

Client.start(@token)
use Commands2
Turns out we want to stop using Commands2 commands in our bot, so we
can simply unload the module:
Cogs.unload(Commands2)
Now none of the commands defined in that module will be accessible. If
we want to reverse that, we can merely do:
use Commands2
and reload them back in.

 Link to this macro

 wait_for(type, fun)

 (macro)

Halts the current command until an event is received.
The event type is an item corresponding to the events in Alchemy.Events,
i.e. on_message_edit -> Cogs.wait_for(:message_edit, ...). The fun
is the function that gets called with the relevant event arguments; see
Alchemy.Events for more info on what events have what arguments.
The :message event is a bit special, as it will specifically wait for
a message not triggered by a bot, in that specific channel, unlike other events,
which trigger generically across the entire bot.
The process will kill itself if it doesn't receive any such event
for 20s.

 Examples

Cogs.def color do
 Cogs.say "What's your favorite color?"
 Cogs.wait_for :message, fn msg ->
 Cogs.say "#{msg.content} is my favorite color too!"
 end
end
Cogs.def typing do
 Cogs.say "I'm waiting for someone to type.."
 Cogs.wait_for :typing, fn _,_,_ ->
 Cogs.say "Someone somewhere started typing..."
 end

 Link to this macro

 wait_for(type, condition, fun)

 (macro)

Waits for a specific event satisfying a condition.
Same as wait_for/2, except this takes an extra condition that needs to be
met for the waiting to handle to trigger.

 Examples

Cogs.def foo do
 Cogs.say "Send me foo"
 Cogs.wait_for(:message, & &1.content == "foo", fn _msg ->
 Cogs.say "Nice foo man!"
 end)
Note that, if no event of the given type is received after 20s, the process
will kill itself, it's possible that this will never get met, but
no event satisfying the condition will ever arrive, essentially rendering
the process a waste. To circumvent this, it might be smart to send
a preemptive kill message:
self = self()
Task.start(fn ->
 Process.sleep(20_000)
 Process.exit(self, :kill)
)
Cogs.wait_for(:message, fn x -> false end, fn _msg ->
 Cogs.say "If you hear this, logic itself is falling apart!!!"
end)

Alchemy.Embed

A module containing structs and functions relative to Embeds.
Embeds allow you to format messages in a structured, and quite pretty way; much more
than can be done with simple text.
For a basic idea of how embeds work, check this
link.
Example Usage
Cogs.def embed do
 %Embed{}
 |> title("The BEST embed")
 |> description("the best description")
 |> image("http://i.imgur.com/4AiXzf8.jpg")
 |> Embed.send
end
Note that this is equivalent to:
Cogs.def embed do
 %Embed{title: "The BEST embed",
 description: "the best description",
 image: "http://i.imgur.com/4AiXzf8.jpg"}
 |> Embed.send
end
File Attachments
The fields that take urls can also take a special "attachment"
url referencing files uploaded alongside the embed.
Cogs.def foo do
 %Embed{}
 |> image("attachment://foo.png")
 |> Embed.send("", file: "foo.png")
end

 Anchor for this section

 Summary

 Types

 attachment()

 Represents a file attached to an embed.

 author()

 Represents the author of an embed.

 field()

 Represents a field in an embed.

 footer()

 Represents an Embed footer.

 image()

 Represents the image of an embed.

 provider()

 Represents the provider of an embed.

 t()

 thumbnail()

 Represents the thumnail of an embed.

 url()

 video()

 Represents a video attached to an embed.

 Functions

 author(embed, author)

 Adds author information to an embed.

 color(embed, integer)

 Sets the color of an embed

 description(embed, string)

 Adds a description to an embed.

 field(embed, name, value, options \\ [])

 Adds a field to an embed.

 footer(embed, footer)

 Adds a footer to an embed.

 image(embed, url)

 Sets the main image of the embed.

 send(embed, content \\ "", options \\ [])

 Sends an embed to the same channel as the message triggering a command.

 thumbnail(embed, url)

 Adds a thumbnail to an embed.

 timestamp(embed, time)

 Adds a timestamp to an embed.

 title(embed, string)

 Adds a title to an embed.

 url(embed, url)

 Sets the url for an embed.

 Anchor for this section

Types

 Link to this type

 attachment()

 Specs

 attachment() :: %Alchemy.Attachment{
 filename: String.t(),
 height: Integer | nil,
 id: String.t(),
 proxy_url: url(),
 size: Integer,
 url: url(),
 width: Integer | nil
}

Represents a file attached to an embed.
	id
The attachment id

	filename
The name of the file attached

	size
The size of the file attached

	url
The source url of a file

	proxy_url
A proxied url of a file

	height
The height of the file, if it's an image

	width
The width of a file, if it's an image

 Link to this type

 author()

 Specs

 author() :: %Alchemy.Embed.Author{
 icon_url: url(),
 name: String.t(),
 proxy_icon_url: url(),
 url: url()
}

Represents the author of an embed.
	name
The name of the author

	url
The author's url

	icon_url
A link to the author's icon image

	proxy_icon_url
A proxied url for the author's icon image

 Link to this type

 field()

 Specs

 field() :: %Alchemy.Embed.Field{
 inline: Boolean,
 name: String.t(),
 value: String.t()
}

Represents a field in an embed.
	name
The title of the field

	value
The text of the field

	inline
Whether or not the field should be aligned with other inline fields.

 Link to this type

 footer()

 Specs

 footer() :: %Alchemy.Embed.Footer{
 icon_url: url(),
 proxy_icon_url: url(),
 text: String.t()
}

Represents an Embed footer.
	text
The text of the footer

	icon_url
The url of the image in the footer

	proxy_icon_url
The proxied url of the footer's icon. Setting this when sending an embed serves
no purpose.

 Link to this type

 image()

 Specs

 image() :: %Alchemy.Embed.Image{
 height: Integer,
 proxy_url: url(),
 url: url(),
 width: Integer
}

Represents the image of an embed.
	url
A link to this image

The following parameters shouldn't be set when sending embeds:
	proxy_url
A proxied url of the image

	height
The height of the image.

	width
The width of the image.

 Link to this type

 provider()

 Specs

 provider() :: %Alchemy.Embed.Provider{name: String.t(), url: url()}

Represents the provider of an embed.
This is usually comes from a linked resource (youtube video, etc.)
	name
The name of the provider

	url
The source of the provider

 Link to this type

 t()

 Specs

 t() :: %Alchemy.Embed{
 author: author(),
 color: Integer,
 description: String.t(),
 fields: [field()],
 footer: footer(),
 image: image(),
 provider: provider(),
 thumbnail: thumbnail(),
 timestamp: String.t(),
 title: String.t(),
 type: String.t(),
 url: String.t(),
 video: video()
}

 Link to this type

 thumbnail()

 Specs

 thumbnail() :: %Alchemy.Embed.Thumbnail{
 height: Integer,
 proxy_url: url(),
 url: url(),
 width: Integer
}

Represents the thumnail of an embed.
	url
A link to the thumbnail image.

	proxy_url
A proxied link to the thumbnail image

	height
The height of the thumbnail

	width
The width of the thumbnail

 Link to this type

 url()

 Specs

 url() :: String.t()

 Link to this type

 video()

 Specs

 video() :: %Alchemy.Embed.Video{height: Integer, url: url(), width: Integer}

Represents a video attached to an embed.
Users can't set this themselves.
	url
The source of the video

	height
The height of the video

	width
The width of the video

 Anchor for this section

Functions

 Link to this function

 author(embed, author)

 Specs

 author(
 t(),
 [name: String.t(), url: url(), icon_url: url()] | Alchemy.Embed.Author.t()
) :: t()

Adds author information to an embed.
Note that the proxy_icon_url, height, and width fields have no effect,
when using a pre-made Author struct.

 Options

	name
The name of the author.

	url
The url of the author.

	icon_url
The url of the icon to display.

 Examples

Cogs.def embed do
 %Embed{}
 |> author(name: "John",
 url: "https://discord.com/developers"
 icon_url: "http://i.imgur.com/3nuwWCB.jpg")
 |> Embed.send
end

 Link to this function

 color(embed, integer)

 Specs

 color(t(), Integer) :: t()

Sets the color of an embed
Color should be 3 byte integer, with each byte representing a single
color component; i.e. 0xRrGgBb

 Examples

Cogs.def embed do
 {:ok, message} =
 %Embed{description: "the best embed"}
 |> color(0xc13261)
 |> Embed.send
 Process.sleep(2000)
 Client.edit_embed(message, embed |> color(0x5aa4d4))
end

 Link to this function

 description(embed, string)

 Specs

 description(t(), String.t()) :: t()

Adds a description to an embed.
Cogs.def embed(description) do
 %Embed{}
 |> title("generic title")
 |> description(description)
 |> Embed.send
end

 Link to this function

 field(embed, name, value, options \\ [])

Adds a field to an embed.
Fields are appended when using this method, so the order you pipe them in,
is the order they'll end up when sent. The name and value must be non empty
strings. You can have a maximum of 25 fields.

 Parameters

	name
The title of the embed.

	value
The text of the field

 Options

	inline
When setting this to true, up to 3 fields can appear side by side,
given they are all inlined.

 Examples

%Embed{}
|> field("Field1", "the best field!")
|> field("Inline1", "look a field ->")
|> field("Inline2", "<- look a field")

 Link to this function

 footer(embed, footer)

 Specs

 footer(t(), [text: String.t(), icon_url: url()] | Alchemy.Embed.Footer.t()) ::
 t()

Adds a footer to an embed.
Note that the proxy_icon_url field has no effect,
when using a pre-made Footer struct.

 Options

	text
The content of the footer.

	icon_url
The icon the footer should have

 Examples

Cogs.def you do
 %Embed{}
 |> footer(text: "<- this is you",
 icon_url: message.author |> User.avatar_url)
 |> Embed.send
end

 Link to this function

 image(embed, url)

 Specs

 image(t(), url()) :: t()

Sets the main image of the embed.

 Examples

%Embed{}
|> image("http://i.imgur.com/4AiXzf8.jpg")

 Link to this macro

 send(embed, content \\ "", options \\ [])

 (macro)

Sends an embed to the same channel as the message triggering a command.
This macro can't be used outside of Alchemy.Cogs commands.
See Alchemy.Client.send_message/3 for a list of options that can be
passed to this macro.

 Examples

Cogs.def blue do
 %Embed{}
 |> color(0x1d3ad1)
 |> description("Hello!")
 |> Embed.send("Here's an embed, and a file", file: "foo.txt")
end

 Link to this function

 thumbnail(embed, url)

 Specs

 thumbnail(t(), url()) :: t()

Adds a thumbnail to an embed.

 Examples

%Embed{}
|> thumbnail("http://i.imgur.com/4AiXzf8.jpg")

 Link to this function

 timestamp(embed, time)

 Specs

 timestamp(t(), DateTime.t()) :: DateTime.t()

Adds a timestamp to an embed.
Note that the Datetime object will get converted to an iso8601 formatted string.

 Examples

%Embed{} |> timestamp(DateTime.utc_now())

 Link to this function

 title(embed, string)

 Specs

 title(t(), String.t()) :: t()

Adds a title to an embed.

 Examples

Cogs.def title(string) do
 %Embed{}
 |> title(string)
 |> Embed.send
end

 Link to this function

 url(embed, url)

 Specs

 url(t(), url()) :: t()

Sets the url for an embed.

 Examples

Cogs.def embed(url) do
 %Embed{}
 |> url(url)
 |> Embed.send
end

Alchemy.Events

This module provides raw Event hooks into the various events supplied by
the gateway.
To use the macros in this module, it must be used. This also defines
a __using__ macro for that module, which will then allow those hooks
to be loaded in the main application via use.
Example Usage
defmodule Example do
 use Alchemy.Events

 Events.on_message(:inspect)
 def inspect(message) do
 IO.inspect message.content
 end
end

defmodule Application do
 use Application
 alias Alchemy.Client

 def start(_type, _args) do
 run = Client.start(@token)
 use Example
 run
 end

end

 Anchor for this section

 Summary

 Functions

 disable(module, function)

 Unhooks a function from the event handler.

 on_DMChannel_create(func)

 Registers a handle triggering whenever a user starts a DM with the client.

 on_DMChannel_delete(func)

 Registers a handle triggering whenever a user closes a DM with the client.

 on_bulk_delete(func)

 Registers a handle triggering whenever messages get bulk deleted from a channel.

 on_channel_create(func)

 Registers a handle triggering whenever a channel gets created.

 on_channel_delete(func)

 Registers a handle triggering whenever a guild channel gets removed.

 on_channel_update(func)

 Registers a handle triggering whenever a guild channel gets updated.

 on_emoji_update(func)

 Registers a handle triggering whenever a guild's emojis get updated.

 on_guild_join(func)

 Registers a handle triggering whenever this client joins a guild.

 on_guild_leave(func)

 Registers a handle triggering whenever the client leaves a guild.

 on_guild_online(func)

 Registers a handle triggering whenever a guild comes back online.

 on_guild_update(func)

 Registers a handle triggering whenever a guild gets updated.

 on_integrations_update(func)

 Registers a handle triggering whenever a guild's integrations get updated.

 on_member_chunk(func)

 Registers a handle triggering whenever a shard receives a member
chunk.

 on_member_join(func)

 Registers a handle triggering whenever a member joins a guild.

 on_member_leave(func)

 Registers a handle triggering when a member leaves a guild.

 on_member_update(func)

 Registers a handle triggering when the status of a member changes in a guild.

 on_message(func)

 Registers a handle triggering whenever a message gets sent.

 on_message_delete(func)

 Registers a handle triggering whenever a single message gets deleted.

 on_message_edit(func)

 Registers a handle triggering whenever a message gets edited.

 on_presence_update(func)

 Registers a handle triggering whenever the presence of a user gets updated
in a guild.

 on_reaction_add(func)

 Registers a handle triggering whenever a user reacts to a message.

 on_reaction_remove(func)

 Registers a handle triggering whenever a user deletes a reaction to a message.

 on_reaction_remove_all(func)

 Registere a handle triggering whenever a user deletes all reactions to a message.

 on_ready(func)

 Registers a handle triggering whenever a shard receives a
READY event.

 on_role_create(func)

 Registers a handle triggering whenever a role gets created in a guild.

 on_role_delete(func)

 Registers a handle triggering whenever a role gets deleted from a guild.

 on_role_update(func)

 Registers a handle triggering whenever a role gets updated in a guild.

 on_settings_update(func)

 Registers a handle triggering whenever this user changes their settings.

 on_typing(func)

 Registers a handle triggering whenever a user starts typing in a channel.

 on_user_ban(func)

 Registers a handle triggering whenever a user gets banned from a guild.

 on_user_unban(func)

 Registers a handle triggering whenever a user gets unbanned from a guild.

 on_user_update(func)

 Registers a handle triggering whenever this user changes.

 on_voice_update(func)

 Registers a handle triggering whenever someone leaves / joins a voice
channel.

 unload(module)

 Unloads all the hooks in a module from the handler.

 Anchor for this section

Functions

 Link to this function

 disable(module, function)

 Specs

 disable(atom(), atom()) :: :ok

Unhooks a function from the event handler.
If you want to unhook all the functions in a module, see Events.unload/1.
Because you can have multiple hooks with the same name, this function takes
both the module and the function name.

 Examples

defmodule Annoying do
 use Alchemy.Events

 Events.on_message(:inspect)
 def inspect(message), do: IO.inspect message.content
end
This function is annoying us, so we can easily disable it:
Events.disable(Annoying, :inspect)
If we want to turn it back on, we can of course do
use Annoying

 Link to this macro

 on_DMChannel_create(func)

 (macro)

Registers a handle triggering whenever a user starts a DM with the client.
args : Alchemy.Channel.dm_channel
As opposed to on_channel_create, this event gets triggered when a user
starts a direct message with this client.

 Examples

Events.on_DMChannel_create(:foo)
def foo(%DMChannel{recipients: [user|_]}) do
 IO.inspect user.name <> " just DMed me!"
end

 Link to this macro

 on_DMChannel_delete(func)

 (macro)

Registers a handle triggering whenever a user closes a DM with the client.
args : Alchemy.Channel.dm_channel

 Link to this macro

 on_bulk_delete(func)

 (macro)

Registers a handle triggering whenever messages get bulk deleted from a channel.
args : [snowflake], snowflake
Receives a list of message ids that were deleted, and the channel they were
deleted from.

 Link to this macro

 on_channel_create(func)

 (macro)

Registers a handle triggering whenever a channel gets created.
args : Alchemy.Channel.t
As opposed to on_DMChannel_create, this gets triggered when a channel gets
created in a guild, and not when a user starts a DM with this client.

 Examples

Events.on_channel_create(:foo)
def foo(channel), do: IO.inspect channel.name

 Link to this macro

 on_channel_delete(func)

 (macro)

Registers a handle triggering whenever a guild channel gets removed.
args : Alchemy.Channel.t

 Link to this macro

 on_channel_update(func)

 (macro)

Registers a handle triggering whenever a guild channel gets updated.
args : Alchemy.Channel.t

 Examples

Events.on_channel_update(:foo)
def foo(channel) do
 IO.inspect "#{channel.name} was updated"
end

 Link to this macro

 on_emoji_update(func)

 (macro)

Registers a handle triggering whenever a guild's emojis get updated.
args : [Guild.emoji], snowflake
Receives a list of the current emojis in the guild, after this event, and the
id of the guild itself.

 Link to this macro

 on_guild_join(func)

 (macro)

Registers a handle triggering whenever this client joins a guild.
args : Alchemy.Guild.t
A good amount of these events fire when the client initially connects
to the gateway, and don't actually represent the client joining a new guild.

 Link to this macro

 on_guild_leave(func)

 (macro)

Registers a handle triggering whenever the client leaves a guild.
args : snowflake
The id of the guild the client left gets sent to the hook.

 Link to this macro

 on_guild_online(func)

 (macro)

Registers a handle triggering whenever a guild comes back online.
args : Alchemy.Guild.t
Sometimes due to outages, or other problems, guild may go offline.
This can be checked via guild.unavailable. This event gets triggered whenever
a guild comes back online after an outage.

 Link to this macro

 on_guild_update(func)

 (macro)

Registers a handle triggering whenever a guild gets updated.
args : Alchemy.Guild.t
A guild gets updated for various reasons, be it a member or role edition,
or something else. The guild updated with this new info will be sent to the hook.

 Link to this macro

 on_integrations_update(func)

 (macro)

Registers a handle triggering whenever a guild's integrations get updated.
args : snowflake
Like other guild events, the info doesn't actually come through this event,
but through on_guild_update. This hook is merely useful for reacting
to the event having happened.

 Link to this macro

 on_member_chunk(func)

 (macro)

Registers a handle triggering whenever a shard receives a member
chunk.
This event gets sent after a shard has requested offline guild
member info for a guild.
args : snowflake, [Alchemy.Guild.GuildMember]
Receives the id of the guild the members are from, and a list
of members loaded.

 Link to this macro

 on_member_join(func)

 (macro)

Registers a handle triggering whenever a member joins a guild.
args : snowflake
The information of the member doesn't actually come through this event,
but through on_guild_update.

 Link to this macro

 on_member_leave(func)

 (macro)

Registers a handle triggering when a member leaves a guild.
args : Alchemy.User.t, snowflake
Receives the user that left the guild, and the id of the guild they've left.

 Link to this macro

 on_member_update(func)

 (macro)

Registers a handle triggering when the status of a member changes in a guild.
args : Alchemy.Guild.Guild.member, snowflake
Receives the member that was updated, and the guild they belong to.

 Link to this macro

 on_message(func)

 (macro)

Registers a handle triggering whenever a message gets sent.
args : Alchemy.Message.t

 Examples

use Alchemy.Events

Events.on_message(:ping)
def ping(msg), do: IO.inspect msg.content

 Link to this macro

 on_message_delete(func)

 (macro)

Registers a handle triggering whenever a single message gets deleted.
args : snowflake, snowflake
Receives the id of the message that was deleted, and the channel it was deleted
from.

 Link to this macro

 on_message_edit(func)

 (macro)

Registers a handle triggering whenever a message gets edited.
args : snowflake, snowflake
Receives the id of the message that was edited, and the channel it was
edited in.

 Link to this macro

 on_presence_update(func)

 (macro)

Registers a handle triggering whenever the presence of a user gets updated
in a guild.
args : Alchemy.Presence.t
The presence struct here may be very incomplete.

 Link to this macro

 on_reaction_add(func)

 (macro)

Registers a handle triggering whenever a user reacts to a message.
args : snowflake, snowflake, snowflake %{"animated" => boolean, "id" => integer, "name" => String.t}
Receives the id of the user that reacted, the channel_id where it happened, the message_id and the emoji

 Link to this macro

 on_reaction_remove(func)

 (macro)

Registers a handle triggering whenever a user deletes a reaction to a message.
args : snowflake, snowflake, snowflake, %{"animated" => boolean, "id" => integer, "name" => String.t}
Receives the id of the user that reacted/deleted, the channel_id where it happened, the message_id and the emoji

 Link to this macro

 on_reaction_remove_all(func)

 (macro)

Registere a handle triggering whenever a user deletes all reactions to a message.
args : snowflake, snowflake
Receives the channel_id and message_id

 Link to this macro

 on_ready(func)

 (macro)

Registers a handle triggering whenever a shard receives a
READY event.
This event gets sent after a shard connects with the gateway,
filling the cache with info about the guilds the bot is in.
args : Integer, Integer
Receives the shard number (starting at 0), and the total amount of shards.
After this event has been received, most of the information in
the cache should be failed.

 Link to this macro

 on_role_create(func)

 (macro)

Registers a handle triggering whenever a role gets created in a guild.
args : Alchemy.Guild.role, snowflake
Receives the new role, as well as the id of the guild that it belongs to.

 Link to this macro

 on_role_delete(func)

 (macro)

Registers a handle triggering whenever a role gets deleted from a guild.
args : snowflake, snowflake
Receives the id of the role that was deleted, and the id of the guild it was
deleted from.

 Link to this macro

 on_role_update(func)

 (macro)

Registers a handle triggering whenever a role gets updated in a guild.
args : Alchemy.Guild.role, Alchemy.Guild.role, snowflake
Receives the old role, the new role and the id of the guild that it belongs
to. The old role may be nil if it was not already cached when the event
was received.

 Link to this macro

 on_settings_update(func)

 (macro)

Registers a handle triggering whenever this user changes their settings.
args : String.t, String.t
Receives the username and avatar hash of the new settings.

 Link to this macro

 on_typing(func)

 (macro)

Registers a handle triggering whenever a user starts typing in a channel.
args : snowflake, snowflake, Integer
Receives the id of the user, the channel, and a timestamp (unix seconds) of
the typing event.

 Link to this macro

 on_user_ban(func)

 (macro)

Registers a handle triggering whenever a user gets banned from a guild.
args : Alchemy.User.t, snowflake
The user, as well as the id of the guild they were banned from get passed
to the hook.

 Example

Events.on_user_ban(:cancel_ban)
def cancel_ban(user, guild) do
 Client.unban_member(guild, user.id)
end

 Link to this macro

 on_user_unban(func)

 (macro)

Registers a handle triggering whenever a user gets unbanned from a guild.
args : Alchemy.User.t, snowflake
Recieves the user struct, as well as the id of the guild from which the user
has been unbanned.

 Examples

Events.on_user_unban(:reban)
def reban(user, guild) do
 Client.ban_member(guild_id, user.id)
end

 Link to this macro

 on_user_update(func)

 (macro)

Registers a handle triggering whenever this user changes.
args : Alchemy.User.t
Receives the new information for this user.

 Link to this macro

 on_voice_update(func)

 (macro)

Registers a handle triggering whenever someone leaves / joins a voice
channel.
args : Alchemy.Voice.state
Receives the corresponding voice state.

 Link to this function

 unload(module)

 Specs

 unload(atom()) :: :ok

Unloads all the hooks in a module from the handler.
If you just want to disable a single function from triggering,
see Events.disable/1.

 Examples

Client.start(@token)
use MyEvents
If we want to remove this hooks at any point, we can simply do
Events.unload(MyEvents)
And, to set hook the module back up, all we need to do is:
use MyEvents

Alchemy.Guild

Guilds represent a collection of users in a "server". This module contains
information about the types, and subtypes related to guilds, as well
as some useful functions related to them.

 Anchor for this section

 Summary

 Types

 emoji()

 Represents a custom emoji in a guild.

 integration()

 Represents an guild's integration with a service, (i.e. twitch)

 integration_account()

 Represents the account of an integration.

 member()

 Represents a member in a guild.

 presence()

 Represents the presence of a user in a guild.

 role()

 Represents a role in a guild.

 snowflake()

 t()

 Represents a guild.

 timestamp()

 An iso_8601 timestamp.

 Functions

 highest_role(guild, member)

 Finds the highest ranked role of a member in a guild.

 icon_url(guild, type \\ "png", size \\ 256)

 Get the icon image URL for the given guild.
If the guild does not have any icon, returns nil.

 Anchor for this section

Types

 Link to this type

 emoji()

 Specs

 emoji() :: %Alchemy.Guild.Emoji{
 id: String.t(),
 managed: Boolean,
 name: String.t(),
 require_colons: Boolean,
 roles: [String.t()]
}

Represents a custom emoji in a guild.
The string representation of this struct will be the markdown
necessary to use it. i.e. Cogs.say("#{emoji}") will send the emoji.
	id
The id of this emoji.
	name
The name of this emoji.
	roles
A list of role ids who can use this role.
	require_colons
Whether or not this emoji must be wrapped in colons.
	managed
Whether or not this emoji is managed.

 Link to this type

 integration()

 Specs

 integration() :: %Alchemy.Guild.Integration{
 account: integration_account(),
 enabled: Boolean,
 expire_behaviour: Integer,
 expire_grace_period: Integer,
 id: snowflake(),
 name: String.t(),
 role_id: snowflake(),
 synced_at: timestamp(),
 syncing: Boolean,
 type: String.t(),
 user: Alchemy.User.t()
}

Represents an guild's integration with a service, (i.e. twitch)
	id
The id of the integration.
	name
The name of the integration.
	type
Integration type; youtube, twitch, etc.
	enabled
Whether or not the integration is enabled.
	syncing
Whether or not the integration is syncing.
	role_id
The id of the role associated with "subscribers" to this integration.
	expire_behaviour
The behaviour of expiring subscribers.
	expire_grace_period
The grace period before expiring subscribers.
	user
The user for this integration.
	account
The integration's account information.
	synced_at
When this integration was last synced.

 Link to this type

 integration_account()

 Specs

 integration_account() :: %Alchemy.Guild.Integration.Account{
 id: snowflake(),
 name: String.t()
}

Represents the account of an integration.
	id
The id of the account.
	name
The name of the account.

 Link to this type

 member()

 Specs

 member() :: %Alchemy.Guild.GuildMember{
 deaf: Boolean,
 joined_at: timestamp(),
 mute: Boolean,
 nick: String.t() | nil,
 roles: [snowflake()],
 user: Alchemy.User.t()
}

Represents a member in a guild.
	user
A user struct containing information about the underlying user.
	nick
An optional nickname for this member.
	roles
A list of ids corresponding to roles the member has.
	joined_at
The timestamp of when this member joined the guild.
	deaf
Whether the user is currently deafened.
	mute
Whether the user is currently muted.

 Link to this type

 presence()

 Specs

 presence() :: %Alchemy.Guild.Presence{
 game: String.t() | nil,
 guild_id: snowflake(),
 roles: [snowflake()],
 status: String.t(),
 user: Alchemy.User.t()
}

Represents the presence of a user in a guild.
	user
The user this presence is for.
	roles
A list of role ids this user belongs to.
	game
The current activity of the user, or nil.
	guild_id
The id of the guild this presences is in.
	status
"idle", "online", or "offline"

 Link to this type

 role()

 Specs

 role() :: %Alchemy.Guild.Role{
 color: Integer,
 hoist: Boolean,
 id: snowflake(),
 managed: Boolean,
 mentionable: Boolean,
 name: String.t(),
 permissions: Integer,
 position: Integer
}

Represents a role in a guild.
	id
The id of the role.
	name
The name of the role.
	color
The color of the role.
	hoist
Whether the role is "hoisted" above others in the sidebar.
	position
The position of the role in a guild.
	permissions
The bitset of permissions for this role. See the Permissions module
for more information.
	managed
Whether this role is managed by an integration.
	mentionable
Whether this role is mentionable.

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 t()

 Specs

 t() :: %Alchemy.Guild{
 afk_channel_id: String.t() | nil,
 afk_timeout: Integer,
 channels: [Alchemy.Channel.t()],
 default_message_notifications: Integer,
 embed_enabled: Boolean,
 emojis: [emoji()],
 features: [String.t()],
 icon: String.t(),
 id: snowflake(),
 joined_at: timestamp(),
 large: Boolean,
 member_count: Integer,
 members: [member()],
 mfa_level: Integer,
 name: String.t(),
 owner_id: snowflake(),
 presences: [Alchemy.Guild.Presence.t()],
 region: String.t(),
 roles: [Guild.role()],
 splash: String.t() | nil,
 unavailable: Boolean,
 verification_level: Integer,
 voice_states: [Alchemy.Voice.state()]
}

Represents a guild.
	id
The id of this guild.

	name
The name of this guild.

	icon
The image hash of the icon image.

	splash
The image hash of the splash image. Not a lot of guilds have a hash.

	owner_id
The user id of the guild's owner.

	region
The region of the guild.

	afk_channel_id
The id of the afk channel, if the guild has one.

	afk_timeout
The afk timeout in seconds.

	embed_enabled
Whether this guild is embeddable.

	verification_level
The level of verification this guild requires.

	default_message_notifications
The default message notifications level.

	roles
A list of the roles in this server.

	emojis
A list of custom emojis in this server.

	features
A list of guild features.

	mfa_level
The required mfa level for the guild.

The following fields will be missing for guilds accessed from outside the Cache:
	joined_at
The timestamp of guild creation.
	large
Whether or not this guild is considered "large".
	unavailable
This should never be true for guilds.
	member_count
The number of members a guild contains.
	voice_states
A list of voice states of the guild.
	members
A list of members in the guild.
	channels
A list of channels in the guild.
	presences
A list of presences in the guild.

 Link to this type

 timestamp()

 Specs

 timestamp() :: String.t()

An iso_8601 timestamp.

 Anchor for this section

Functions

 Link to this function

 highest_role(guild, member)

 Specs

 highest_role(t(), member()) :: role()

Finds the highest ranked role of a member in a guild.
This is useful, because the permissions and color
of the highest role are the ones that apply to that member.

 Link to this function

 icon_url(guild, type \\ "png", size \\ 256)

 Specs

 icon_url(t(), String.t(), 16..2048) :: String.t()

Get the icon image URL for the given guild.
If the guild does not have any icon, returns nil.

 Parameters

	type: The returned image format. Can be any of jpg, jpeg, png, or webp.
	size: The desired size of the returned image. Must be a power of two.
If the parameters do not match these conditions, an ArgumentError is raised.

Alchemy.Message

This module contains the types and functions related to messages in discord.

 Anchor for this section

 Summary

 Types

 emoji()

 Represents an emoji used to react to a message.

 mention_type()

 reaction()

 Represents a reaction to a message.

 snowflake()

 t()

 Represents a message in a channel.

 timestamp()

 Represents an iso8601 timestamp.

 Functions

 find_mentions(content, type)

 Finds a list of mentions in a string.

 Anchor for this section

Types

 Link to this type

 emoji()

 Specs

 emoji() :: %Alchemy.Reaction.Emoji{id: String.t() | nil, name: String.t()}

Represents an emoji used to react to a message.
	id
The id of this emoji. nil if this isn't a custom emoji.
	name
The name of this emoji.

 Link to this type

 mention_type()

 Specs

 mention_type() :: :roles | :nicknames | :channels | :users

 Link to this type

 reaction()

 Specs

 reaction() :: %Alchemy.Reaction{
 count: Integer,
 emoji: Alchemy.Reaction.Emoji.t(),
 me: Boolean
}

Represents a reaction to a message.
	count
Times this specific emoji reaction has been used.
	me
Whether this client reacted to the message.
	emoji
Information about the emoji used.

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 t()

 Specs

 t() :: %Alchemy.Message{
 attachments: [Alchemy.Attachment.t()],
 author: Alchemy.User.t(),
 channel_id: snowflake(),
 content: String,
 edited_timestamp: String | nil,
 embeds: [Alchemy.Embed.t()],
 id: snowflake(),
 mention_everyone: Boolean,
 mention_roles: [snowflake()],
 mentions: [Alchemy.User.t()],
 nonce: snowflake(),
 pinned: Boolean,
 reactions: [Alchemy.Reaction.t()],
 timestamp: timestamp(),
 tts: Boolean,
 webhook_id: String.t() | nil
}

Represents a message in a channel.
	id
The id of this message.
	author
The user who sent this message. This field will be very incomplete
if the message originated from a webhook.
	content
The content of the message.
	timestamp
The timestamp of the message.
	edit_timestamp
The timestamp of when this message was edited, if it ever was.
	tts
Whether this was a tts message.
	mention_everyone
Whether this message mentioned everyone.
	mentions
A list of users this message mentioned.
	mention_roles
A list of role ids this message mentioned.
	attachments
A list of attachments to the message.
	embeds
A list of embeds attached to this message.
	reactions
A list of reactions to this message.
	nonce
Used for validating a message was sent.
	pinned
Whether this message is pinned.
	webhook_id
The id of the webhook that sent this message, if it was sent by a webhook.

 Link to this type

 timestamp()

 Specs

 timestamp() :: String.t()

Represents an iso8601 timestamp.

 Anchor for this section

Functions

 Link to this function

 find_mentions(content, type)

 Specs

 find_mentions(String.t(), mention_type()) :: [snowflake()]

Finds a list of mentions in a string.
4 types of mentions exist:
	roles
A mention of a specific role.
	nicknames
A mention of a user by nickname.
	users
A mention of a user by name, or nickname.
	:channels
A mention of a channel.

Alchemy.Permissions

This module contains useful functions for working for the permission
bitsets discord provides.
To combine the permissions of an overwrite
with the permissions of a role, the bitwise ||| can be used.
Example Usage
Cogs.def perms(role_name) do
 {:ok, guild} = Cogs.guild()
 role = hd Enum.filter(guild.roles, & &1.name == role_name)
 Cogs.say(inspect Permissions.to_list(role.permission))
end
This simple command prints out the list of permissions a role has avaiable.
Permission List
	:create_instant_invite
Allows the creation of instant invites.
	:kick_members
Allows the kicking of members.
	:ban_members
Allows the banning of members.
	:administrator
Allows all permissions, and bypasses channel overwrites.
	:manage_channels
Allows management and editing of channels.
	:manage_guild
Allows management and editing of the guild.
	:add_reactions
Allows adding reactions to message.
	:view_audit_log
Allows for viewing of audit logs.
	:read_messages
Allows reading messages in a channel. Without this, the user won't
even see the channel.
	:send_messages
Allows sending messages in a channel.
	:send_tts_messages
Allows sending text to speech messages.
	:manage_messages
Allows for deletion of other user messages.
	:embed_links
Links sent with this permission will be embedded automatically
	:attach_files
Allows the user to send files, and images
	:read_message_history
Allows the user to read the message history of a channel
	:mention_everyone
Allows the user to mention the special @everyone and @here tags
	:use_external_emojis
Allows the user to use emojis from other servers.
	:connect
Allows the user to connect to a voice channel.
	:speak
Allows the user to speak in a voice channel.
	:mute_members
Allows the user to mute members in a voice channel.
	:deafen_members
Allows the user to deafen members in a voice channel.
	:move_members
Allows the user to move members between voice channels.
	:use_vad
Allows the user to use voice activity detection in a voice channel
	:change_nickname
Allows the user to change his own nickname.
	:manage_nicknames
Allows for modification of other user nicknames.
	:manage_roles
Allows for management and editing of roles.
	:manage_webhooks
Allows for management and editing of webhooks.
	:manage_emojis
Allows for management and editing of emojis.

 Anchor for this section

 Summary

 Types

 permission()

 Functions

 channel_permissions(member, guild, channel_id)

 Gets the actual permissions of a member in a guild channel.

 channel_permissions!(member, guild, channel_id)

 Banged version of channel_permissions/3

 contains?(bitset, permission)

 Checks for the presence of a permission in a permission bitset.

 to_bitset(list)

 Converts a list of permission atoms into a bitset. This is the reverse operation of to_list/1.

 to_list(bitset)

 Converts a permission bitset into a legible list of atoms. This is the reverse operation of to_bitset/1.

 Anchor for this section

Types

 Link to this type

 permission()

 Specs

 permission() :: atom()

 Anchor for this section

Functions

 Link to this function

 channel_permissions(member, guild, channel_id)

Gets the actual permissions of a member in a guild channel.
This will error if the channel_id passed isn't in the guild.
This will mismatch if the wrong structs are passed, or if the guild
doesn't have a channel field.

 Link to this function

 channel_permissions!(member, guild, channel_id)

Banged version of channel_permissions/3

 Link to this function

 contains?(bitset, permission)

 Specs

 contains?(Integer, permission()) :: Boolean

Checks for the presence of a permission in a permission bitset.
This should be preferred over using :perm in Permissions.to_list(x)
because this works directly using bitwise operations, and is much
more efficient then going through the permissions.

 Examples

Permissions.contains?(role.permissions, :manage_roles)

 Link to this function

 to_bitset(list)

 Specs

 to_bitset([permission()]) :: Integer

Converts a list of permission atoms into a bitset. This is the reverse operation of to_list/1.

 Examples

bitset = Permissions.to_bitset([:send_messages, :speak])

 Link to this function

 to_list(bitset)

 Specs

 to_list(Integer) :: [permission()]

Converts a permission bitset into a legible list of atoms. This is the reverse operation of to_bitset/1.
For checking if a specific permission is in that list, use contains?/2
instead.

 Examples

permissions = Permissions.to_list(role.permissions)

Alchemy.User

This module contains functions and types related to discord users.

 Anchor for this section

 Summary

 Types

 snowflake()

 t()

 Represents a discord User. The default values exist to cover missing fields.

 token()

 url()

 user_guild()

 A shortened version of a Guild struct, through the view of a User.

 Functions

 avatar_url(user)

 Used to get the url for a user's avatar

 avatar_url(user, type, size)

 mention(user)

 Returns a string that mentions a user when used in a message

 Anchor for this section

Types

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 t()

 Specs

 t() :: %Alchemy.User{
 avatar: String.t(),
 bot: Boolean,
 discriminator: String.t(),
 email: :hidden | String.t(),
 id: String.t(),
 username: String.t(),
 verified: :hidden | Boolean
}

Represents a discord User. The default values exist to cover missing fields.
	id
represents a unique user id

	username
represents a user's current username

	discriminator
4 digit tag to differenciate usernames

	avatar
A string representing their avatar hash. Use avatar_url to
get the corresponding url from a User object

	bot
Whether or not the user is a bot - default: false

A bot usually doesn't have the authorization necessary to access these 2, so
they're usually missing.
	verified
Whether the account is verified - default: :hidden

	email
The user's email - default: :hidden

 Link to this type

 token()

 Specs

 token() :: String.t()

 Link to this type

 url()

 Specs

 url() :: String.t()

 Link to this type

 user_guild()

 Specs

 user_guild() :: %Alchemy.UserGuild{
 icon: String.t(),
 id: snowflake(),
 name: String.t(),
 owner: Boolean,
 permissions: Integer
}

A shortened version of a Guild struct, through the view of a User.
	id
Represents the guild's id.

	name
Represents the guild's name.

	icon
A string representing the guild's icon hash.

	owner
Whether the user linked to the guild owns it.

	permissions
Bitwise of the user's enabled/disabled permissions.

 Anchor for this section

Functions

 Link to this function

 avatar_url(user)

Used to get the url for a user's avatar
type must be one of "png", "webp", "jpg", "gif"
size must be one of 128, 256, 512, 1024, 2048

 Examples

> User.avatar_url(user)
https://cdn.discordapp.com/avatars/...

 Link to this function

 avatar_url(user, type, size)

 Specs

 avatar_url(t(), String.t(), Integer) :: url()

 Link to this function

 mention(user)

Returns a string that mentions a user when used in a message

Alchemy.Voice

Contains the types and functions related to voice communication with discord.
To use the functions in this module, make sure to configure the paths
to ffmpeg, as well as youtube-dl, like so:
config :alchemy,
 ffmpeg_path: "path/to/ffmpeg"
 youtube_dl_path: "path/to/youtube-dl"
If these are not configured, the necessary supervisors for maintaining
voice connections won't be started, and you'll run into errors when trying
to use the functions in this module.

 Anchor for this section

 Summary

 Types

 audio_options()

 Represents the audio options that can be passed to different play methods.

 region()

 Represents a voice region.

 snowflake()

 state()

 Represents the state of a user's voice connection.

 Functions

 join(guild, channel, timeout \\ 6000)

 Joins a voice channel in a guild.

 leave(guild)

 Disconnects from voice in a guild.

 listen_for_end(guild)

 Lets this process listen for the end of an audio track in a guild.

 play_file(guild, file_path, options \\ [])

 Starts playing a music file on a guild's voice connection.

 play_iodata(guild, data, options \\ [])

 Starts playing audio from an iodata, or a stream of iodata.

 play_url(guild, url, options \\ [])

 Starts playing audio from a url.

 stop_audio(guild)

 Stops playing audio on a guild's voice connection.

 wait_for_end(guild, timeout \\ :infinity)

 Blocks the current process until audio has stopped playing in a guild.

 which_channel(guild)

 Returns which channel the client is connected to in a guild.

 Anchor for this section

Types

 Link to this type

 audio_options()

 Specs

 audio_options() :: [{:vol, integer()}]

Represents the audio options that can be passed to different play methods.

 Options

	vol audio volume, in %. Can go above 100 to multiply, e.g. 150.

 Link to this type

 region()

 Specs

 region() :: %Alchemy.VoiceRegion{
 custom: Boolean,
 deprecated: Boolean,
 id: snowflake(),
 name: String.t(),
 optimal: Boolean,
 sample_hostname: String.t(),
 sample_port: Integer,
 vip: Boolean
}

Represents a voice region.
	id
Represent the unique ID for this region.
	name
The name of this region.
	sample_hostname
An example hostname for the region.
	sample_port
An example port for the region.
	vip
True if this is a vip-only server.
	optimal
True for a single server that is closest to the client.
	deprecated
Whether this is a deprecated voice region.
	custom
Whether this is a custom voice region.

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 state()

 Specs

 state() :: %Alchemy.VoiceState{
 channel_id: snowflake(),
 deaf: Boolean,
 guild_id: snowflake() | nil,
 mute: Boolean,
 self_deaf: Boolean,
 self_mute: Boolean,
 session_id: String.t(),
 suppress: Boolean,
 user_id: snowflake()
}

Represents the state of a user's voice connection.
	guild_id
The guild id this state is for.
	channel_id
The channel id this user is connected to.
	user_id
The id of the user this state belongs to.
	session_id
The session id for this voice state.
	deaf
Whether this user is deafened by the server.
	mute
Whether this user is muted by the server.
	self_deaf
Whether this user is locally deafened.
	self_mute
Whether this user is locally muted.
	suppress
Whether this user is muted by the current user.

 Anchor for this section

Functions

 Link to this function

 join(guild, channel, timeout \\ 6000)

 Specs

 join(snowflake(), snowflake(), integer()) :: :ok | {:error, String.t()}

Joins a voice channel in a guild.
Only one voice connection per guild is possible with the api.
If you're already connected to the guild, this will not restart the
voice connections, but instead just move you to the channel.
This function also checks if you're already connected to this channel,
and does nothing if that is the case.
The timeout will be spread across 2 different message receptions,
i.e. a timeout of 6000 will only wait 3s at every reception.

 Link to this function

 leave(guild)

 Specs

 leave(snowflake()) :: :ok | {:error, String.t()}

Disconnects from voice in a guild.
Returns an error if the connection hadn’t been established.

 Link to this function

 listen_for_end(guild)

 Specs

 listen_for_end(snowflake()) :: :ok | {:error, String.t()}

Lets this process listen for the end of an audio track in a guild.
This will subscribe this process up until the next time an audio track
ends, to react to this, you'll want to handle the message in some way, e.g.
Voice.listen_for_end(guild)
receive do
 {:audio_stopped, ^guild} -> IO.puts "audio has stopped"
end
This is mainly designed for use in genservers, or other places where you don't
want to block. If you do want to block and wait immediately, try
wait_for_end/2 instead.

 Examples

Use in a genserver:
def handle_info({:audio_stopped, guild}, state) do
 IO.puts "audio has stopped in #{guild}"
 Voice.listen_for_end(guild)
 {:noreply, state}
end

 Link to this function

 play_file(guild, file_path, options \\ [])

 Specs

 play_file(snowflake(), Path.t(), audio_options()) :: :ok | {:error, String.t()}

Starts playing a music file on a guild's voice connection.
Returns an error if the client isn't connected to the guild,
or if the file does not exist.

 Examples

Voice.join("666", "666")
Voice.play_file("666", "cool_song.mp3")

 Link to this function

 play_iodata(guild, data, options \\ [])

 Specs

 play_iodata(snowflake(), iodata() | Enumerable.t(), audio_options()) ::
 :ok | {:error, String.t()}

Starts playing audio from an iodata, or a stream of iodata.
Similar to play_url/2 except it doesn't create a stream from
youtube-dl for you.

 Link to this function

 play_url(guild, url, options \\ [])

 Specs

 play_url(snowflake(), String.t(), audio_options()) :: :ok | {:error, String.t()}

Starts playing audio from a url.
For this to work, the url must be one of the
supported sites.
This function does not check the validity of this url, so if it's invalid,
an error will get logged, and no audio will be played.

 Link to this function

 stop_audio(guild)

 Specs

 stop_audio(snowflake()) :: :ok | {:error, String.t()}

Stops playing audio on a guild's voice connection.
Returns an error if the connection hadn't been established.

 Link to this function

 wait_for_end(guild, timeout \\ :infinity)

 Specs

 wait_for_end(snowflake(), integer() | :infinity) :: :ok | {:error, String.t()}

Blocks the current process until audio has stopped playing in a guild.
This is a combination of listen_for_end/1 and a receive block,
however this will return an error if the provided timeout is exceeded.
This is useful for implementing automatic track listing, e.g.
def playlist(guild, tracks) do
 Enum.map(tracks, fn track ->
 Voice.play_file(guild, track)
 Voice.wait_for_end(guild)
 end)
end

 Link to this function

 which_channel(guild)

 Specs

 which_channel(snowflake()) :: snowflake() | nil

Returns which channel the client is connected to in a guild.
Returns nil if there is no connection.

Alchemy.Webhook

 Anchor for this section

 Summary

 Types

 snowflake()

 t()

 Functions

 create(channel_id, name, options \\ [])

 Creates a new webhook in a channel.

 delete(webhook)

 Deletes a webhook.

 edit(webhook, options)

 Modifies the settings of a webhook.

 in_channel(channel_id)

 Returns a list of all webhooks in a channel.

 in_guild(guild_id)

 Returns a list of all webhooks in a guild.

 send(webhook, arg, options \\ [])

 Sends a message to a webhook.

 Anchor for this section

Types

 Link to this type

 snowflake()

 Specs

 snowflake() :: String.t()

 Link to this type

 t()

 Specs

 t() :: %Alchemy.Webhook{
 avatar: String.t() | nil,
 channel_id: snowflake(),
 guild_id: snowflake() | nil,
 id: snowflake(),
 name: String.t() | nil,
 token: String.t(),
 user: Alchemy.User.t() | nil
}

 Anchor for this section

Functions

 Link to this function

 create(channel_id, name, options \\ [])

 Specs

 create(snowflake(), String.t(), [{:avatar, String.t()}]) ::
 {:ok, t()} | {:error, term()}

Creates a new webhook in a channel.
The name parameter is mandatory, and specifies the name of the webhook.
of course.

 Options

	avatar
A link to a 128x128 image to act as the avatar of the webhook.

 Examples

{:ok, hook} = Webhook.create("66666", "The Devil")

 Link to this function

 delete(webhook)

 Specs

 delete(t()) :: {:ok, t()} | {:error, term()}

Deletes a webhook.
All you need for this is the webhook itself.

 Examples

{:ok, wh} = Webhook.create("666", "Captain Hook")
Webhook.delete(wh)

 Link to this function

 edit(webhook, options)

 Specs

 edit(t(), name: String.t(), avatar: String.t()) :: {:ok, t()} | {:error, term()}

Modifies the settings of a webhook.
Note that the user field of the webhook will be missing.

 Options

	name
The name of the webhook.
	avatar
A link to a 128x128 icon image.

 Examples

{:ok, hook} = Webhook.create("6666", "Captian Hook")
Let's fix that typo:
Webhook.edit(hook, name: "Captain Hook")

 Link to this function

 in_channel(channel_id)

 Specs

 in_channel(snowflake()) :: {:ok, [t()]} | {:error, term()}

Returns a list of all webhooks in a channel.

 Examples

{:ok, [%Webhook{} | _]} = Webhook.in_channel("6666")

 Link to this function

 in_guild(guild_id)

 Specs

 in_guild(atom()) :: {:ok, [t()]} | {:error, term()}

Returns a list of all webhooks in a guild.

 Examples

{:ok, [%Webhook{} | _]} = Webhook.in_guild("99999")

 Link to this function

 send(webhook, arg, options \\ [])

 Specs

 send(t(), {:embed, Alchemy.Embed.t()} | {:content, String.t()},
 avatar_url: String.t(),
 username: String.t(),
 tts: Boolean
) :: {:ok, nil} | {:error, term()}

Sends a message to a webhook.
type must be one of :embed, :content; :embed requiring an Embed.t
struct, and :content requiring a string.

 Options

	avatar_url
A link to an image to replace the one the hook has, for this message.
	username
The username to override to hook's, for this message.
	tts
When set to true, will make the message TTS

 Examples

{:ok, hook} = Webhook.create("66", "Captain Hook")
Webhook.send(hook, {content: "ARRRRRGH!"})
For a more elaborate example:user = Cache.user()
embed = %Embed{}
 |> description("I'm commandeering this vessel!!!")
 |> color(0x3a83b8)
Webhook.send(hook, {:embed, embed},
 avatar_url: User.avatar_url(user),
 username: user.username)

mix alchemy.init

 Anchor for this section

 Summary

 Functions

 run(_)

 Anchor for this section

Functions

 Link to this function

 run(_)

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

