

 delux

 v0.2.0

 Table of contents

 	💡 delux 💡

 	Changelog

 	Modules

 	Delux

 	Delux.Effects

 	Delux.Morse

 	Delux.Pattern

 	Delux.Program

 	Delux.RGB

💡 delux 💡

[image: CircleCI]
[image: Hex version]
de lux | Latin (roughly) for "of the light"
Use LEDs for your user interface
delux simplifies creating and running LED blink patterns for use as part of a
user interface for an embedded hardware. This library provides:
	Low overhead LED control via Linux's Sysclass interface - blink sequences
get compiled down so that they can be run inside the Linux kernel.
	Built-in LED effects for common use cases like blinking, cycling LED colors,
etc.
	Prioritization of LED effects
	Support for many physical LED configurations
	Nice textual descriptions of what the LED is doing to support remote debug

This library is primarily intended for devices with 1 to 10 LEDs. It's currently
not for Neopixels and other "smart" LEDs that are more typically found in larger
numbers, but could be used for a similar purpose.
Before diving in, some terminology is needed:
	LED - one light emitting element. This doesn't have to be an LED, but the
Linux kernel must think that it is and show a directory for it under
/sys/class/leds/.
	Indicator - a group of 1, 2, or 3 LEDs that a user would perceive as one. This
could be a lone green LED, or a red, green and blue LED in one package, or any
combination.
	Program - a one-time or repeating set of instructions for controlling an
indicator.
	Pattern - a low-level sequence of brightness and duration tuples for
controlling one LED
	Program priority - a user-provided name that determines which program is run
when multiple are scheduled. For example, a program that gives the user
feedback for pressing a button could take precedence over a program showing
network connection status

To give a flavor of how delux works, here's an example that configures delux
with one green LED and then blinks it at 2 Hz:
iex> Delux.start_link(indicators: %{default: %{green: "led0"}})
iex> Delux.render(Delux.Effects.blink(:green, 2))
iex> Delux.info()
green at 2 Hz
This starts Delux with one indicator, :default, that has a green LED known to
Linux as "led0". The Delux.Effects.blink/2 function creates a 2 Hz blinking
program for Delux to render. With nothing else specified, Delux.render/1 runs
the program on the default indicator at the default priority.
Built-in indicator programs
delux comes with helper functions for creating LED programs. It's also
possible to create your own. Here are the built-in ones:
	Function	Description
	Delux.Effects.off/0	Turn an indicator off
	Delux.Effects.on/2	Set the indicator to the specified color (within reason, that is. You can't make a green LED red, for example.)
	Delux.Effects.blink/3	Blink a color on and off at a fixed rate
	Delux.Effects.blip/3	Show two colors quickly in succession. E.g., use to show feedback from pressing a button.
	Delux.Effects.cycle/3	Cycle through a set of colors at a fixed rate
	Delux.Effects.waveform/2	Synthesize an LED pattern from a function
	Delux.Morse.encode/3	Send a string in Morse code

Before you use delux
It's worthwhile thinking about how you want your device's LEDs to behave before
writing any code.
The first step is to figure out what LEDs are available and how to group them
into indicators. To see what's available, list the directories in
/sys/class/leds. If something is missing, you'll likely need to adjust the
device tree configuration and make it appear. That's discussed somewhat below,
but this is device-specific, so you'll need to look elsewhere for precise
guides. After you've found the LEDs, group them and give them indicator names.
If you just have one indicator, call it :default. That will make delux's API
more convenient.
Step 2 is to decide what priorities make sense for your application. Only one
program per indicator can be run at a time. Every time that you set a program on
an indicator, it replaces any running programs for that indicator at that
priority. The default priorities probably suffice to start:
	:status - The lowest priority. This is for general device status like
whether networking is working and if the device is initializing and connected
to the back end.
	:notification - This is a medium priority. Use it to show transient things
like an alert that requires operator attention to clear.
	:user_feedback - This is the highest priority and for showing feedback to a
user. For example, it could blink the LED when user pushes a button so they
know that the device is doing something.

Clearing the program at one priority makes delux render the program on the
next lower priority or if there's no program, then the indicator is turned off.
Sometimes adding priorities can remove the need to write state machine code.
Once you feel good about the indicators and priority levels, it's time to
configure delux.
Configuration
After adding delux to your mix dependencies, add Delux to a supervision
tree of your choice. The childspec looks like:
 {Delux,
 name: MyIndicators,
 indicators: %{
 default: %{red: "led0:red", green: "led0:green", blue: "led0:blue"},
 indicator2: %{red: "led1"}
 }}
The above configuration shows two indicators. The first is called :default and
is an RGB indicator. The second is a lone red LED that's used as :indicator2.
As mentioned before, if you only have one indicator, call it :default.
Other options include setting the list of priorities and giving the Delux
GenServer a name. If you don't give the Delux GenServer a name, it will
register itself as a singleton and you won't have to pass the server name or pid
to any of the API calls.
Use
For sake of example, lets start the Delux GenServer the manual way by calling
start_link/1 directly. The usual way in your programs would be to add the
childspec to the supervision tree as shown earlier. Modify the LED names to
whatever you have.
iex> Delux.start_link(indicators: %{
 default: %{red: "led0:red", green: "led0:green", blue: "led0:blue"},
 indicator2: %{red: "led1"}
 })
After you have a Delux GenServer and running, call Delux.render/1 to turn on
the default indicator on the default priority:
iex> Delux.render(Delux.Effects.on(:white))
:ok
Even if you don't have an RGB indicator, passing :white should turn on all of
the LEDs that you do have.
If you have two indicators and want them to blink back and forth, you can try
this:
iex> Delux.render(%{
 default: Delux.Effects.cycle([:black, :white], 1),
 indicator2: Delux.Effects.cycle([:white, :black], 1)
 })
:ok
Finally, pass a second parameter to Delux.render/2 to assign the programs to
another priority.
Creating your own programs
Indicator programs are a collection of LED patterns and metadata as defined by
the Delux.Program struct. The helper functions in Delux.Effects and
Delux.Morse create these and can be used as examples.
The core of the program is an Delux.Pattern. There are three patterns per
program for each of the color channels.
Each pattern is a list of {value, duration} tuples where value is a number
from 0 to 1 and duration is an integer number of milliseconds. While delux
internally holds a number from 0 (off) to 1 (full on) for the LED's value at
that point in time, this gets scaled to an integer when sent to Linux. This
integer depends on the maximum brightness value for an LED. This is often just 1
since Linux can only turn the LED off and on. Sometimes Linux can set the LED to
multiple levels and in those cases, the maximum value will be greater than 1
(often 255). You don't need to worry about scaling other than to be aware that
fractional values will be rounded when sent to Linux and this will mess up
colors.
Linux interpolates the LED value over the duration between pairs of tuples. A
common idiom is to have 0 duration tuples to turn off interpolation. For
example, [{1, 100}, {1, 0}, {0, 100}, {0, 0}] turns the LED on for 100 ms and
then off for 100 ms without any interpolation.
See Linux's LED pattern trigger documentation at
leds-trigger-pattern.txt
for more info.
Linux kernel configuration
delux works in all official Nerves systems. If not using Nerves, you will need
to have CONFIG_LEDS_TRIGGER_PATTERN=y enabled your Linux kernel configuration.
The second step to using Linux's LED subsystem is to configure LEDs in the
device tree. You can't just use an arbitrary GPIO to turn on the LED like you
can with Circuits.GPIO. Linux needs to know about the GPIO. It's also possible
to hook up PWMs and LED drivers. See the LED
drivers for
options.
Tip
If you're using a BeagleBone, check out
Udo Schneider's blog post on device tree overlays

The following is an example device tree configuration for telling Linux about
GPIO-connected LEDs. It is platform-specific so you can't just copy/paste it.
It sets up two RGB LEDs and makes one blink early in the boot process.
/ {
 leds {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_leds>;
 compatible = "gpio-leds";

 led1_red {
 label = "led1:red";
 gpios = <&pio 0 7 GPIO_ACTIVE_LOW>;
 };
 led1_green {
 label = "led1:green";
 gpios = <&pio 4 15 GPIO_ACTIVE_LOW>;
 };
 led1_blue {
 label = "led1:blue";
 gpios = <&pio 4 4 GPIO_ACTIVE_LOW>;

 /* Blink LED at 2 Hz (250 ms on, off) */
 linux,default-trigger = "timer";
 default-state = "on";
 led-pattern = <250 250>;
 };
 led2_red {
 label = "led2:red";
 gpios = <&pio 4 5 GPIO_ACTIVE_LOW>;
 };
 led2_green {
 label = "led2:green";
 gpios = <&pio 4 14 GPIO_ACTIVE_LOW>;
 };
 led2_blue {
 label = "led2:blue";
 gpios = <&pio 4 7 GPIO_ACTIVE_LOW>;
 };
 };
};
License
Copyright (C) 2022 SmartRent

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Changelog

v0.2.0 - 2022-08-26
	Changes	Register the Delux GenServer with a default name so that pids or names don't
need to be passed to all APIs. Since Delux is almost always used as a
singleton, this simplifies the API.

v0.1.3 - 2022-08-11
	Changes	Fix typespecs to remove warnings found by Dialyzer
	Update Delux.Effects.waveform/3 to support color atom names and check RGB
tuples for range. The latter fixes errors that get detected later on and are
more confusing to figure out.

v0.1.2 - 2022-08-11
	Changes	Improve Delux.Effects.waveform/3 so that it's easier to use and produces
shorter patterns. It now has examples in the docs and unit tests.

v0.1.1 - 2022-08-10
	Changes	Adjust timed pattern playback to minimize trimming LED programs.
Unfortunately, LED programs still get cut off at the end with this release.
If you're using Morse code, you'll see this. We plan on fixing this
completely in a future release.
	Support empty LED setups to simplify configuration of multi-target projects
and unit tests.

v0.1.0 - 2022-08-08
Initial release

Delux

Use LEDs for your user interface
delux simplifies creating and running LED blink patterns for use as part of a
user interface for an embedded hardware. This library provides:
	Low overhead LED control via Linux's Sysclass interface - blink sequences
get compiled down so that they can be run inside the Linux kernel.
	Built-in LED effects for common use cases like blinking, cycling LED colors,
etc.
	Prioritization of LED effects
	Support for many physical LED configurations
	Nice textual descriptions of what the LED is doing to support remote debug

This library is primarily intended for devices with 1 to 10 LEDs. It's currently
not for Neopixels and other "smart" LEDs that are more typically found in larger
numbers, but could be used for a similar purpose.
Before diving in, some terminology is needed:
	LED - one light emitting element. This doesn't have to be an LED, but the
Linux kernel must think that it is and show a directory for it under
/sys/class/leds/.
	Indicator - a group of 1, 2, or 3 LEDs that a user would perceive as one. This
could be a lone green LED, or a red, green and blue LED in one package, or any
combination.
	Program - a one-time or repeating set of instructions for controlling an
indicator.
	Pattern - a low-level sequence of brightness and duration tuples for
controlling one LED
	Program priority - a user-provided name that determines which program is run
when multiple are scheduled. For example, a program that gives the user
feedback for pressing a button could take precedence over a program showing
network connection status

To give a flavor of how delux works, here's an example that configures delux
with one green LED and then blinks it at 2 Hz:
iex> Delux.start_link(indicators: %{default: %{green: "led0"}})
iex> Delux.render(Delux.Effects.blink(:green, 2))
iex> Delux.info()
green at 2 Hz
This starts Delux with one indicator, :default, that has a green LED known to
Linux as "led0". The Delux.Effects.blink/2 function creates a 2 Hz blinking
program for Delux to render. With nothing else specified, Delux.render/1 runs
the program on the default indicator at the default priority.

 Anchor for this section

 Summary

 Types

 indicator_config()

 Configuration for an indicator

 indicator_name()

 The name for one indicator

 options()

 Delux configuration options

 priority()

 Priority of an indicator program

 Functions

 adjust_brightness(server \\ __MODULE__, percent)

 Adjust the overall brightness of all indicators

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear(server \\ __MODULE__, priority \\ :status)

 Clear out any programs set at the specified priority

 info(server \\ __MODULE__, indicator \\ :default)

 Print out info about an indicator

 info_as_ansidata(server \\ __MODULE__, indicator \\ :default)

 Return user-readable information about an indicator

 render(server \\ __MODULE__, program, priority \\ :status)

 Update one or more indicators to a new program

 start_link(options)

 Start an Delux GenServer

 Anchor for this section

Types

 Link to this type

 indicator_config()

 View Source

 @type indicator_config() :: %{
 optional(:red) => String.t(),
 optional(:green) => String.t(),
 optional(:blue) => String.t()
}

Configuration for an indicator
Specify the Linux LED name for each LED. Single LED indicators should use a
color that's close or just choose :red.

 Link to this type

 indicator_name()

 View Source

 @type indicator_name() :: atom()

The name for one indicator
An indicator may be composed of multiple LEDs, but they're arranged such that
it looks like one light source to someone looking at it. For example, an RGB
LED has 3 LEDs inside of it.
These can be anything you want. If you don't explicitly specify indicator
names, an indicator named :default is used.

 Link to this type

 options()

 View Source

 @type options() :: [
 led_path: String.t(),
 priorities: [priority()],
 indicators: %{required(indicator_name()) => indicator_config()},
 name: atom() | nil
]

Delux configuration options
	:led_path - the path to the LED directories (defaults to "/sys/class/leds")
	:priorities - a list of priority atoms from lowest to highest. Defaults to [:status, :notification, :user_feedback]
	:indicators - a map of indicator names to their configurations
	:name - register the Delux GenServer using this name. Defaults to Delux. Specify nil to not register a name.

 Link to this type

 priority()

 View Source

 @type priority() :: atom()

Priority of an indicator program
Priorities determine which program is rendered when more than one can be
shown at the same time. The default priority is :status which is also the
lowest priority. The :notification and :user_feedback priorities are
higher. For example, rendering visual feedback to the user pressing a button
can be assigned to the :user_feedback priority so the user knows that the
button pressed worked regardless of what else is happening.

 Anchor for this section

Functions

 Link to this function

 adjust_brightness(server \\ __MODULE__, percent)

 View Source

 @spec adjust_brightness(GenServer.server(), 0..100) :: :ok

Adjust the overall brightness of all indicators
Effects are adjusted based on the value passed.
NOTE: This is not fully supported yet!

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 clear(server \\ __MODULE__, priority \\ :status)

 View Source

 @spec clear(GenServer.server(), priority()) :: :ok

Clear out any programs set at the specified priority
If this means that no programs at any priority are set, the indicator is
turned off.

 Link to this function

 info(server \\ __MODULE__, indicator \\ :default)

 View Source

 @spec info(GenServer.server(), indicator_name()) :: IO.ANSI.ansidata()

Print out info about an indicator
This is handy when you can't physically see an indicator. It's intended for
users at the IEx prompt. For programmatic use, see info_as_ansidata/2.

 Link to this function

 info_as_ansidata(server \\ __MODULE__, indicator \\ :default)

 View Source

 @spec info_as_ansidata(GenServer.server(), indicator_name()) :: IO.ANSI.ansidata()

Return user-readable information about an indicator

 Link to this function

 render(server \\ __MODULE__, program, priority \\ :status)

 View Source

 @spec render(
 GenServer.server(),
 %{required(indicator_name()) => Delux.Program.t() | nil}
 | Delux.Program.t()
 | nil,
 priority()
) :: :ok

Update one or more indicators to a new program
Passing nil for the program removes the program running at the specified
priority. This is the same as calling clear/2.

 Link to this function

 start_link(options)

 View Source

 @spec start_link(options()) :: GenServer.on_start()

Start an Delux GenServer
See t:options() for configuration options

Delux.Effects

Functions for creating a variety of LED patterns

 Anchor for this section

 Summary

 Types

 options()

 Option effects (none yet)

 Functions

 blink(c, frequency, options \\ [])

 Blink an indicator

 blip(c1, c2, options \\ [])

 Create a transient two color sequence

 cycle(colors, frequency, options \\ [])

 Cycle between colors

 off()

 All LEDs off

 on(c, options \\ [])

 Set an indicator to the specified color

 waveform(fun, period, options \\ [])

 Create a program from an arbitrary function

 Anchor for this section

Types

 Link to this type

 options()

 View Source

 @type options() :: []

Option effects (none yet)

 Anchor for this section

Functions

 Link to this function

 blink(c, frequency, options \\ [])

 View Source

 @spec blink(Delux.RGB.color(), number(), options()) :: Delux.Program.t()

Blink an indicator
This returns a pattern that blinks the specified color at a 50% duty cycle.
The pattern starts on and then goes off.

 Link to this function

 blip(c1, c2, options \\ [])

 View Source

 @spec blip(Delux.RGB.color(), Delux.RGB.color(), options()) :: Delux.Program.t()

Create a transient two color sequence
The first color is shown for 20 ms. 10 ms in, the second color is shown for
20 ms. The Effects is a quick flash of light that can be used to show
feedback to a button. Total duration of the Effects is 40 ms.

 Link to this function

 cycle(colors, frequency, options \\ [])

 View Source

 @spec cycle([Delux.RGB.color()], number(), options()) :: Delux.Program.t()

Cycle between colors
Colors are shown with equal duration determined from the specified frequency.

 Link to this function

 off()

 View Source

 @spec off() :: Delux.Program.t()

All LEDs off

 Link to this function

 on(c, options \\ [])

 View Source

 @spec on(Delux.RGB.color(), options()) :: Delux.Program.t()

Set an indicator to the specified color

 Link to this function

 waveform(fun, period, options \\ [])

 View Source

 @spec waveform(
 (Delux.Pattern.milliseconds() -> Delux.RGB.color()),
 Delux.Pattern.milliseconds(),
 keyword()
) :: Delux.Program.t()

Create a program from an arbitrary function
Pass in a function that takes times in milliseconds and returns colors. The
returned pattern piecewise linearly interpolates the waveform.
Here's an example of a 0.5 Hz blue sine wave:
Effects.waveform(fn t -> {0, 0, 0.5 + 0.5 *:math.cos(:math.pi() * t / 1000)} end, 2000)
When trying this, keep in mind that if the LEDs in the indicator don't support
varying levels of brightness, it won't look like a sine wave.
Options
	:time_step - the number of milliseconds between each sample. Defaults to 100 ms.

Delux.Morse

Functions for Morse code patterns

 Anchor for this section

 Summary

 Types

 options()

 Functions

 encode(c, string, options \\ [])

 Convert a string to an indicator program

 Anchor for this section

Types

 Link to this type

 options()

 View Source

 @type options() :: [{:words_per_minute, number()}]

 Anchor for this section

Functions

 Link to this function

 encode(c, string, options \\ [])

 View Source

 @spec encode(Delux.RGB.color(), String.t(), options()) :: Delux.Program.t()

Convert a string to an indicator program
Options:
	:words_per_minute - the rate at which to send the message

Delux.Pattern

Utility functions for handling element sequences for one LED

 Anchor for this section

 Summary

 Types

 element()

 Value, duration for one component

 milliseconds()

 Integer durations in milliseconds

 t()

 A sequence of elements

 Functions

 pwm(pattern, percent)

 PWM a sequence of elements

 simplify(other)

 Reduce the number of transitions in a sequence

 to_iodata(pattern, max_b)

 Convert a pattern to iodata

 Anchor for this section

Types

 Link to this type

 element()

 View Source

 @type element() :: {Delux.RGB.component(), milliseconds()}

Value, duration for one component
Values are 0 to 1 and durations are in milliseconds.

 Link to this type

 milliseconds()

 View Source

 @type milliseconds() :: non_neg_integer()

Integer durations in milliseconds

 Link to this type

 t()

 View Source

 @type t() :: [element()]

A sequence of elements
These get processed into the pattern string that's sent to Linux.

 Anchor for this section

Functions

 Link to this function

 pwm(pattern, percent)

 View Source

 @spec pwm(t(), 0..100) :: t()

PWM a sequence of elements
The resulting sequence will only be fully on or fully off. See
caveats in Program.adjust_brightness_pwm/2.
IMPORTANT: This function is VERY incomplete right now. It requires
much more thought to work around flickering issues at low PWM rates.

 Link to this function

 simplify(other)

 View Source

 @spec simplify(t()) :: t()

Reduce the number of transitions in a sequence
This reduces the length of the pattern and in some cases makes it
use less of the CPU to run. It's useful for programmatically
generated patterns that can take inputs that generate lots
of repeating sequences.

 Link to this function

 to_iodata(pattern, max_b)

 View Source

 @spec to_iodata(t(), non_neg_integer()) :: iolist()

Convert a pattern to iodata

Delux.Program

Create LED patterns
See https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/leds/leds-trigger-pattern.txt

 Anchor for this section

 Summary

 Types

 t()

 Program information for one indicator

 Functions

 adjust_brightness_pwm(pattern, percent)

 Adjust the brightness of a pattern

 ansi_description(pattern)

 Return a description with nice ANSI colors

 simplify(pattern)

 Reduce the number of transitions in a pattern

 text_description(pattern)

 Return an unformatted description of the pattern

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Delux.Program{
 blue: Delux.Pattern.t(),
 description: IO.ANSI.ansidata(),
 duration: Delux.Pattern.milliseconds() | :infinity,
 green: Delux.Pattern.t(),
 red: Delux.Pattern.t()
}

Program information for one indicator

 Anchor for this section

Functions

 Link to this function

 adjust_brightness_pwm(pattern, percent)

 View Source

 @spec adjust_brightness_pwm(t(), 0..100) :: t()

Adjust the brightness of a pattern
This modifies the pattern to optionally dim it by blinking the LED at 50 Hz.
It is not an efficient way of dimming LEDs since the blinking is done on the processor by the kernel.

 Link to this function

 ansi_description(pattern)

 View Source

 @spec ansi_description(t()) :: IO.ANSI.ansidata()

Return a description with nice ANSI colors
The description is returned as IO.ANSI.ansidata(). Use IO.ANSI.format/1 to
expect escape codes for display with IO.puts/1.

 Link to this function

 simplify(pattern)

 View Source

 @spec simplify(t()) :: t()

Reduce the number of transitions in a pattern
This reduces the length of the pattern and in some cases makes it
use less of the CPU to run. It's useful for programmatically
generated patterns that can take inputs that generate lots
of repeating sequences.

 Link to this function

 text_description(pattern)

 View Source

 @spec text_description(t()) :: String.t()

Return an unformatted description of the pattern
See ansi_description/1 for colorized description

Delux.RGB

Utilities for RGB tuples

 Anchor for this section

 Summary

 Types

 color()

 component()

 Colors components go from 0 (off) to 1 (brightest)

 t()

 An RGB triplet

 Functions

 new(color)

 Create a new RGB tuple

 to_ansidata(color, prefix \\ "")

 Convert a color to a human-readable ansidata

 Anchor for this section

Types

 Link to this type

 color()

 View Source

 @type color() ::
 :black
 | :red
 | :yellow
 | :green
 | :cyan
 | :blue
 | :magenta
 | :white
 | :on
 | :off
 | t()

 Link to this type

 component()

 View Source

 @type component() :: 0 | 1 | float()

Colors components go from 0 (off) to 1 (brightest)

 Link to this type

 t()

 View Source

 @type t() :: {component(), component(), component()}

An RGB triplet
Note that accuracy of the color depends on the LEDs in use. The color should
be recognizable, but Delux doesn't support calibration.

 Anchor for this section

Functions

 Link to this function

 new(color)

 View Source

 @spec new(color()) :: t()

Create a new RGB tuple
You can pass in a tuple or a color name.

 Link to this function

 to_ansidata(color, prefix \\ "")

 View Source

 @spec to_ansidata(color(), String.t()) :: IO.ANSI.ansidata()

Convert a color to a human-readable ansidata
iex> RGB.to_ansidata(:red, "This is ")
[:red, "This is ", "red"]
iex> RGB.to_ansidata({0, 0.5, 1}, "This is ")
["This is ", "{0, 0.5, 1}"]

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

