

    

        Corsica

        v1.3.0



    



  

    Table of contents

    
      



            	Corsica


            	Common issues





  	Modules
    

    	Corsica


    	Corsica.Router


    

  



      

    


  

    
Corsica
    

[image: hex.pm badge]
[image: CI]
[image: Coverage Status]
Corsica is a plug and a DSL for handling CORS requests.
Documentation can be found online.
[image: Nice Corsica pic]
(I had to include a nice pic because, let's be honest, CORS requests aren't the
most fun thing in the world, are they?)
Features
	Is compliant with the W3C CORS specification
	Provides both low-level CORS utilities as well as high-level facilities (like
  a built-in plug and a CORS-focused router)
	Handles preflight requests like a breeze
	Never sends any CORS headers if the CORS request is not valid (smaller
  requests, yay!)

Installation
Add the :corsica dependency to your project's mix.exs:
defp deps do
  [
    {:plug, "~> 1.0"},
    {:corsica, "~> 1.0"}
  ]
end
and then run $ mix deps.get.
Overview
You can use Corsica both as a plug as well as a router generator. To use it as a
plug, just plug it into your plug pipeline:
defmodule MyApp.Endpoint do
  plug Logger
  plug Corsica, origins: "http://foo.com"
  plug MyApp.Router
end
To gain finer control over which resources are CORS-enabled and with what
options, you can use the Corsica.Router module:
defmodule MyApp.CORS do
  use Corsica.Router,
    origins: ["http://localhost", ~r{^https?://(.*\.)?foo\.com$}],
    allow_credentials: true,
    max_age: 600

  resource "/public/*", origins: "*"
  resource "/*"
end

defmodule MyApp.Endpoint do
  plug Logger
  plug MyApp.CORS
  plug MyApp.Router
end
This is only a brief overview of what Corsica can do. To find out more, head to
the online documentation.
Common issues
Note that Corsica is compliant with the W3C CORS specification, which means CORS
response headers are not sent for invalid CORS requests. The documentation goes
into more detail about this, but it's worth noting so that the first impression
is not that Corsica is doing nothing. One common pitfall is not including CORS
request headers in your requests: this makes the request an invalid CORS
request, so Corsica won't add any CORS response headers. Be sure to add at least
the Origin header:
curl localhost:4000 -v -H "Origin: http://foo.com"

There is a dedicated page in the documentation that covers some of the common issues with CORS (and Corsica in part).
Contributing
If you find a bug, something unclear (including in the documentation!) or a
behaviour that is not compliant with the latest revision of the
official CORS specification, please open an issue on GitHub.
If you want to contribute to code or documentation, fork the repository and then
open a Pull Request
(how-to). Before
opening a Pull Request, make sure all the tests passes by running $ mix test
in your shell. If you're contributing to documentation, you can preview the
generated documentation locally by running:
mix docs

Documentation will be generated in the doc/ directory.
License
MIT &copy; 2015 Andrea Leopardi, see the license file.



  

    
Common issues
    

This page contains a list of common issues that can be encountered when setting up CORS and Corsica. These issues are not necessarily specific to Corsica but they bubble up in the Corsica issue tracker often enough to justify talking about them in the documentation.
Browser gives a Origin ... is therefore not allowed access error
When attempting to perform a CORS request to your server, your browser might log the following error in the console:
Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'example.com' is therefore not allowed access.

This is a generic response that means your server is not allowing the CORS request. Some common reasons that can cause this are listed below.
	The Corsica plug is lower than any handling router in your plug pipeline (such as Plug.Router, a Phoenix.Router, or Plug.Static). In order to be able to add CORS headers to responses and handle preflight requests, the Corsica plug (either with plug Corsica or as the router generated by use Corsica.Router) must be higher in the plug pipeline than plugs that send a response down the connection.

	The server doesn't recognize the origin (the browser's current URL) as an allowed origin. Check the :origins option passed to Corsica. Make sure it allows whatever site the browser is trying perform the CORS request from. For example, if you are running a local JavaScript app on http://localhost:8100, then the :origins option must contain http://localhost:8100 (or "*" to allow anything). Read the documentation for the Corsica module for more information on the possible values of the :origins option.

	The server doesn't allow the headers that the client is requesting. The client (such as the browser) can ask to use certain headers by sending a list of such headers in the Allow-Control-Request-Headers header included in the preflight request. For example, the client could ask to use Content-Type and Accept by passing Allow-Control-Request-Headers: Content-Type, Accept. The server (specifically, Corsica in this case) must respond to the preflight request and allow those headers by specifying them in the response Access-Control-Allow-Headers header.  You can use the :allow_headers option passed to Corsica. In the example above, you would have to pass something like allow_headers: ["content-type", "accept"].





  

    
Corsica 
    



      
Plug-based swiss-army knife for CORS requests.
Corsica provides facilities for dealing with
CORS requests
and responses. It provides:
	low-level functions that let you decide when and where to deal with CORS
requests and CORS response headers;
	a plug that handles CORS requests and responds to preflight requests;
	a router that can be used in your modules in order to turn them into CORS
handlers which provide fine control over dealing with CORS requests.

How it works
Corsica is compliant with the W3C CORS
specification. As per this specification, Corsica
doesn't put any CORS response headers in a connection that holds an invalid
CORS request. To know what "invalid" CORS request means, have a look at the
"Validity of CORS requests" section below.
When some options that are not mandatory and have no default value (such
:max_age) are not passed to Corsica (in one of the available ways to pass
options to it), the relative header will often not be sent at all. This is
compliant with the specification and at the same time it reduces the size of
the response, even if just by a handful of bytes.
The following is a list of all the CORS response headers supported by Corsica:
	Access-Control-Allow-Origin
	Access-Control-Allow-Methods
	Access-Control-Allow-Headers
	Access-Control-Allow-Credentials
	Access-Control-Allow-Private-Network
	Access-Control-Expose-Headers
	Access-Control-Max-Age

Using Corsica as a plug
When Corsica is used as a plug, it intercepts all requests; it only sets a
bunch of CORS headers for regular CORS requests, but it responds (with a 200 OK
and the appropriate headers) to preflight requests.
If you want to use Corsica as a plug, be sure to plug it in your plug
pipeline before any router-like plug: routers like Plug.Router (or
Phoenix.Router) respond to HTTP verbs as well as request urls, so if
Corsica is plugged after a router then preflight requests (which are
OPTIONS requests) will often result in 404 errors since no route responds to
them. Router-like plugs also include plugs like Plug.Static, which
respond to requests and halt the pipeline.
defmodule MyApp.Endpoint do
  plug Head
  plug Corsica, max_age: 600, origins: "*", expose_headers: ~w(X-Foo)
  plug Plug.Static
  plug MyApp.Router
end
Using Corsica as a router generator
When Corsica is used as a plug, it doesn't provide control over which urls
are CORS-enabled or with which options. In order to do that, you can use
Corsica.Router. See the documentation for Corsica.Router for more
information.
Origins
Allowed origins must be specified by passing the :origins options either when
using a Corsica-based router or when plugging Corsica in a plug pipeline. If
:origins is not provided, an error will be raised.
:origins can be a single value or a list of values. The origin of a request
(specified by the "origin" request header) will be considered a valid origin
if it "matches" at least one of the origins specified in :origins. What
"matches" means depends on the type of origin. Origins can be:
	strings - the actual origin and the allowed origin have to be identical
	regexes - the actual origin has to match the allowed regex (as per
Regex.match?/2)
	{module, function, args} tuples - module.function is called with
two extra arguments prepended to the given args: the current connection
and the actual origin; if it returns true the origin is accepted,
if it returns false the origin is not accepted

The value "*" can also be used to match every origin and reply with * as
the value of the access-control-allow-origin header. If "*" is used, it
must be used as the only value of :origins (that is, it can't be used inside
a list of accepted origins).
For example:
# Matches everything.
plug Corsica, origins: "*"

# Matches one of the given origins
plug Corsica, origins: ["http://foo.com", "http://bar.com"]

# Matches the given regex
plug Corsica, origins: ~r{^https?://(.*.?)foo.com$}
The value of the "access-control-allow-origin" header
The :origins option directly influences the value of the
access-control-allow-origin response header. When :origins is "*", the
access-control-allow-origin header is set to * as well. If the request's
origin is allowed and :origins is something different than "*", then you
won't see that value as the value of the access-control-allow-origin header:
the value of this header will be the request's origin (which is mirrored).
This behaviour is intentional: it's compliant with the W3C CORS specification
and at the same time it provides the advantage of "hiding" all the allowed
origins from the client (which only sees its origin as an allowed origin).
The "vary" header
When Corsica is configured such that the access-control-allow-origin response
header will vary depending on the origin request header then a vary: origin
response header will be set.
Options
Besides :origins, the options that can be passed to the use macro, to
Corsica.Router.resource/2 and to the Corsica plug (along with their default
values) are:
	:allow_methods - a list of HTTP methods (as binaries) or :all. This is the list
of methods allowed in the access-control-request-method header of preflight
requests. If the method requested by the preflight request is in this list or is
a simple method (HEAD, GET, or POST), then that method is always allowed.
The methods specified by this option are returned in the access-control-allow-methods
response header. Defaults to ["PUT", "PATCH", "DELETE"] (which means these methods
are allowed alongside simple methods). If the value of this option is :all, all
request methods are allowed and only the method in access-control-request-method is
returned as the value of the access-control-allow-methods header.

	:allow_headers - a list of headers (as binaries) or :all. This is the list
of headers allowed in the access-control-request-headers header of preflight
requests. If a header requested by the preflight request is in this list or is a
simple header (Accept, Accept-Language, or Content-Language), then that
header is always allowed. The headers specified by this option are returned in the
access-control-allow-headers response header. Defaults to [] (which means only
the simple headers are allowed). If the value of this option is :all, all request
headers are allowed and only the headers in access-control-request-headers are
returned as the value of the access-control-allow-headers header.

	:allow_credentials - a boolean. If true, sends the
access-control-allow-credentials with value true. If false, prevents
that header from being sent at all. If :origins is set to "*" and
:allow_credentials is set to true, then the value of the
access-control-allow-origin header will always be the value of the
origin request header (as per the W3C CORS specification) and not *.
Defaults to false.

	:allow_private_network - a boolean. If true, sets the value of the
access-control-allow-private-network header used with preflight requests, which
indicates that a resource can be safely shared with external networks. If false,
the access-control-allow-private-network is not sent at all. Defaults to false.

	:expose_headers - a list of headers (as binaries). Sets the value of
the access-control-expose-headers response header. This option does
not have a default value; if it's not provided, the
access-control-expose-headers header is not sent at all.

	:max_age - an integer or a binary. Sets the value of the
access-control-max-age header used with preflight requests. This option
does not have a default value; if it's not provided, the
access-control-max-age header is not sent at all.

	:log - see the "Logging" section below. Defaults to false.


Responding to preflight requests
When the request is a preflight request and a valid one (valid origin, valid
request method, and valid request headers), Corsica directly sends a response
to that request instead of just adding headers to the connection (so that a
possible plug pipeline can continue). To do this, Corsica halts the
connection (through Plug.Conn.halt/1) and sends a response.
Validity of CORS requests
"Invalid CORS request" can mean that a request doesn't have an Origin header
(so it's not a CORS request at all) or that it's a CORS request but:
	the Origin request header doesn't match any of the allowed origins
	the request is a preflight request but it requests to use a method or
some headers that are not allowed (via the Access-Control-Request-Method
and Access-Control-Request-Headers headers)

Logging
Corsica supports basic logging functionalities; it can log whether a CORS
request is a valid one, what CORS headers are added to a response and similar
information. Corsica distinguishes between three "types" of logs:
	"rejected" logs, for when the request is "rejected" in the CORS perspective,
e.g., it's not allowed
	"invalid" logs, for when the request is not a simple CORS request or not a
CORS preflight request
	"accepted" logs, for when the request is a valid and accepted CORS request

It's possible to configure these logs with the :log option, which is a
keyword list with the :rejected, :invalid, and :accepted options. These
options specify the logging level of each type of log. The defaults values for
each level are:
	rejected: :warn
	invalid: :debug
	accepted: :debug

false can be used as the value of a level for a log type to suppress that
type completely. false can also be used as the value of the :log option
directly to suppress all logs.
The default value for the :log option is [] (which means all is logged
according to the default log levels specified above).
For example:
plug Corsica, log: [rejected: :error]
plug Corsica, log: false
plug Corsica, log: [rejected: :info, accepted: false]

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          call(conn, opts)

        


          Callback implementation for Plug.call/2.



      


      
        
          cors_req?(conn)

        


          Checks whether a given connection holds a CORS request.



      


      
        
          init(opts)

        


          Callback implementation for Plug.init/1.



      


      
        
          preflight_req?(conn)

        


          Checks whether a given connection holds a preflight CORS request.



      


      
        
          put_cors_preflight_resp_headers(conn, opts)

        


          Adds CORS response headers to a preflight request to conn.



      


      
        
          put_cors_simple_resp_headers(conn, opts)

        


          Adds CORS response headers to a simple CORS request to conn.



      


      
        
          send_preflight_resp(conn, status \\ 200, body \\ "", opts)

        


          Sends a CORS preflight response regardless of the request being a valid CORS
request or not.



      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    call(conn, opts)


      
       
       View Source
     


  


  

Callback implementation for Plug.call/2.

  



  
    
      
      Link to this function
    
    cors_req?(conn)


      
       
       View Source
     


  


  

      

          @spec cors_req?(Plug.Conn.t()) :: boolean()


      


Checks whether a given connection holds a CORS request.
This function doesn't check if the CORS request is a valid CORS request: it
just checks that it's a CORS request, that is, it has an Origin request
header.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Plug.init/1.

  



  
    
      
      Link to this function
    
    preflight_req?(conn)


      
       
       View Source
     


  


  

      

          @spec preflight_req?(Plug.Conn.t()) :: boolean()


      


Checks whether a given connection holds a preflight CORS request.
This function doesn't check that the preflight request is a valid CORS
request: it just checks that it's a preflight request. A request is considered
to be a CORS preflight request if and only if its request method is OPTIONS
and it has a Access-Control-Request-Method request header.
Note that if a request is a valid preflight request, that makes it a valid
CORS request as well. You can thus call just preflight_req?/1 instead of
preflight_req?/1 and cors_req?/1.

  



  
    
      
      Link to this function
    
    put_cors_preflight_resp_headers(conn, opts)


      
       
       View Source
     


  


  

Adds CORS response headers to a preflight request to conn.
This function assumes nothing about conn. If conn holds an invalid CORS
request or an invalid preflight request, then conn is returned unchanged;
the absence of CORS headers will be interpreted as an invalid CORS response by
the browser (according to the W3C spec).
If the request is a valid CORS request, the following headers will be added to
the response:
	Access-Control-Allow-Origin
	Access-Control-Allow-Methods
	Access-Control-Allow-Headers

and the following headers will optionally be added (based on the value of the
corresponding options):
	Access-Control-Allow-Credentials (if the :allow_credentials option is
true)
	Access-Control-Allow-Private-Network (if the :allow_private_network option is
true)
	Access-Control-Max-Age (if the :max_age option is present)


  
  options

  
  Options


This function accepts the same options accepted by the Corsica plug
(described in the documentation for the Corsica module), including :log
for logging.

  
  examples

  
  Examples


put_cors_preflight_resp_headers conn, [
  max_age: 86400,
  allow_headers: ~w(X-Header),
  allow_private_network: true,
  origins: ~r/w+.foo.com$/
]

  



  
    
      
      Link to this function
    
    put_cors_simple_resp_headers(conn, opts)


      
       
       View Source
     


  


  

Adds CORS response headers to a simple CORS request to conn.
This function assumes nothing about conn. If conn holds an invalid CORS
request or a request whose origin is not allowed, conn is returned
unchanged; the absence of CORS headers will be interpreted as an invalid CORS
response by the browser (according to the W3C spec).
If the CORS request is valid, the following response headers are set:
	Access-Control-Allow-Origin

and the following headers are optionally set (if the corresponding option is
present):
	Access-Control-Expose-Headers (if the :expose_headers option is
present)
	Access-Control-Allow-Credentials (if the :allow_credentials option is
true)


  
  options

  
  Options


This function accepts the same options accepted by the Corsica plug
(described in the documentation for the Corsica module), including :log
for logging.

  
  examples

  
  Examples


conn
|> put_cors_simple_resp_headers(origins: "*", allow_credentials: true)
|> send_resp(200, "Hello!")

  



    

    

  
    
      
      Link to this function
    
    send_preflight_resp(conn, status \\ 200, body \\ "", opts)


      
       
       View Source
     


  


  

Sends a CORS preflight response regardless of the request being a valid CORS
request or not.
This function assumes nothing about conn. If it's a valid CORS preflight
request with an allowed origin, CORS headers are set by calling
put_cors_preflight_resp_headers/2 and the response is sent with status
status and body body. conn is halted before being sent.
The response is always sent because if the request is not a valid CORS
request, then no CORS headers will be added to the response. This behaviour
will be interpreted by the browser as a non-allowed preflight request, as
expected.
For more information on what headers are sent with the response if the
preflight request is valid, look at the documentation for
put_cors_preflight_resp_headers/2.

  
  options

  
  Options


This function accepts the same options accepted by the Corsica plug
(described in the documentation for the Corsica module), including :log
for logging.

  
  examples

  
  Examples


This function could be used to manually build a plug that responds to
preflight requests. For example:
defmodule MyRouter do
  use Plug.Router
  plug :match
  plug :dispatch

  options "/foo",
    do: Corsica.send_preflight_resp(conn, origins: "*")
  get "/foo",
    do: send_resp(conn, 200, "ok")
end

  


        

      



  

    
Corsica.Router 
    



      
A router to handle and respond to CORS requests.
This module provides facilities for creating
Plug.Router-based routers that
handle CORS requests. A generated router will handle a CORS request by:
	responding to it if it's a preflight request (refer to
Corsica.send_preflight_resp/4 for more information) or
	adding the right CORS headers to the Plug.Conn connection if it's a
valid CORS request.

When a module calls use Corsica.Router, it can pass the same options that
can be passed to the Corsica plug to the use call. Look at the
documentation for the Corsica module for more information about these
options.
CORS rules in a Corsica.Router can be defined through the resource/2
macro.
Examples
defmodule MyApp.CORS do
  use Corsica.Router,
    origins: ["http://foo.com", "http://bar.com"],
    allow_credentials: true,
    max_age: 600

  resource "/*"

  # We can override single settings as well.
  resource "/public/*", allow_credentials: false
end
Now in your application's endpoint:
defmodule MyApp.Endpoint do
  plug Plug.Head
  plug MyApp.CORS
  plug Plug.Static
  plug MyApp.Router
end
Note that a Corsica.Router router will always define a match-all route after
the resource routes; this match-all route will simply return the connection
unchanged, effectively continuing with the plug pipeline.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          resource(route, opts \\ [])

        


          Defines a CORS-enabled resource.



      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this macro
    
    resource(route, opts \\ [])


      
       
       View Source
     


      (macro)

  


  

Defines a CORS-enabled resource.
This macro takes advantage of the macros defined by
Plug.Router (like options/3
and match/3) in order to define regular Plug.Router-like routes that
efficiently match on the request url; the bodies of the autogenerated routes
just perform a couple of checks before calling either
Corsica.put_cors_simple_resp_headers/2 or Corsica.send_preflight_resp/4.
Note that if the request is a CORS preflight request (whether it's a valid one
or not), a response is immediately sent to the client (whether the request is
a valid one or not). This behaviour, combined with the definition of an
additional OPTIONS route to route, makes Corsica.Router ideal to just
put before any router in a plug pipeline, letting it handle preflight requests
by itself.
The options given to resource/2 are merged with the default options like it
happens with the rest of the functions in the Corsica module. The resource/2
macro also accepts the following options (similar to Plug.Router.match/3):
	:host - the host which the route should match. Defaults to nil, meaning
no host match, but can be a string like "example.com" or a string ending with .,
like "subdomain.", for a subdomain match.


  
  examples

  
  Examples


resource "/foo", origins: "*"
resource "/wildcards/are/ok/*", max_age: 600
resource "/only/on/subdomain", host: "mysubdomain."

  


        

      



  !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&amp;").replace(/</g,"&lt;").replace(/>/g,"&gt;").replace(/"/g,"&quot;")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});



