

 ClusterConnect Smartcell

 v0.0.3

 Table of contents

 	ClusterConnectSmartcell

 	Modules

 	ClusterConnectSmartcell

ClusterConnectSmartcell

ClusterConnectSmartcell is a smart cell for Elixir Livebook that allows
connecting to a remote node in an Elixir cluster and optionally send a :erpc call.
HowTo
Installation
The package is published in hex and you can use it in your livebook setup section as
Mix.install([
 # ...
 {:cluster_connect_smartcell, "~> 0.0.1"}
 # ...
])
otherwise you can test the bleeding edge directly via github
Mix.install([
 # ...
 {:cluster_connect_smartcell, git: "https://github.com/zoten/cluster_connect_smartcell", ref: "master"}
 # ...
])
Usage
You will need:
	📖 a running Livebook
	🏝️ a running node running with a sname you can reach. See Erlang distribution documentation and have fun :)
	🥋 optionally, a command you want to trigger on the remote node

Once installed dependencies and added with the + Smart button the smart cell, you should see something like
[image: Screenshot]
Fill in the relevant parts and you should be good to go! Please note that:
	if any of the Module, Function or Arguments is empty, no :erpc will be performed

	at the moment Arguments shall be a manually crafted list. The screenshot in example will result in a call like
 :erpc.call(:"mynode@cluster_machine", My.Module.Name, :my_function_name, [[1, 2, 3], :argument2, option: true])
 that will call My.Module.Name.my_function_name/3 as
 My.Module.Name.my_function_name([1, 2, 3], :argument2, option: true)

Why?
Because I was preparing a learning tool for my colleagues and wondered how hard could it be to
write a smartcell for it (spoiler: not so hard! 🚀)
When is this useful?
When you want to have the ability to use livebook's goodies (e.g. graphs and charts) but they are not available in the remote node's runtime, and you don't want those runtime dependencies
How?
See Sources to see where the inspiration (and a lot of code) came from.
Please note I don't know any Vue at the moment, so be patient. I'm also very bad at styling, among the rest.
Notes
Gotchas
	Livebook process starts only as a sname node, so keep this in mind when connecting to a cluster
	creating the :erpc call means creating atoms where they may not exist in the context of the process running the livebook. You probably know what it means for the BEAM
	calling a :erpc means giving the caller total freedom on the target machine BEAM environment. Please, be aware of that and give access only to trusted people
	connection to the cluster via erlang distribution is subject to all of a series of attacks and problems you should be aware of before using this for any production use case

TODO
	tests. I know, I should have TDD'ed or something like that, but I really don't know how to test a smartcell right now, nor I wanted to set up cluster testing in the limited time I had to set up this
	more features (in random order)!	binding with variables created in livebook's context to use as arguments
	make the argument list a arg0, arg1, ... dynamic list instead of relying on the user to set up correctly a list of arguments
	cluster connection types (:hidden, etc)
	node list retrieved from epmd (for local usage) and after connection
	connection status indicator
	make cookie field a password field?
	allow also non-Elixir. prefixed modules (-> allow connecting and :erpc-ing to erlang nodes)

	set up some sort of CI

Contributing
Please note this is still a draft kind of project, that's why it is still < 0.1.x. However, any help is appreciated from the start!

Feel free to reach me via any means or directly file an issue/PR!
Sources
If the use of any of those sources has been deemed inappropriate by the author(s), please feel free to contact me by any means and I'll take proper actions
	main.css is almost totally copied from wonderful kino_vega_lite's chart_cell original work
	main.js and assets loading is totally based on from wonderful kino_vega_lite's chart_cell original work

Any idea on how to make this appropriation more explicit is welcome!

ClusterConnectSmartcell

ClusterConnectSmartcell
ClusterConnectSmartcell is a smart cell for Elixir Livebook that allows
connecting to a remote node in an Elixir cluster and optionally send a :erpc call.
HowTo
Installation
The package is published in hex and you can use it in your livebook setup section as
Mix.install([
 # ...
 {:cluster_connect_smartcell, "~> 0.0.1"}
 # ...
])
otherwise you can test the bleeding edge directly via github
Mix.install([
 # ...
 {:cluster_connect_smartcell, git: "https://github.com/zoten/cluster_connect_smartcell", ref: "master"}
 # ...
])
Usage
You will need:
	📖 a running Livebook
	🏝️ a running node running with a sname you can reach. See Erlang distribution documentation and have fun :)
	🥋 optionally, a command you want to trigger on the remote node

Once installed dependencies and added with the + Smart button the smart cell, you should see something like
[image: Screenshot]
Fill in the relevant parts and you should be good to go! Please note that:
	if any of the Module, Function or Arguments is empty, no :erpc will be performed

	at the moment Arguments shall be a manually crafted list. The screenshot in example will result in a call like
 :erpc.call(:"mynode@cluster_machine", My.Module.Name, :my_function_name, [[1, 2, 3], :argument2, option: true])
 that will call My.Module.Name.my_function_name/3 as
 My.Module.Name.my_function_name([1, 2, 3], :argument2, option: true)

Why?
Because I was preparing a learning tool for my colleagues and wondered how hard could it be to
write a smartcell for it (spoiler: not so hard! 🚀)
When is this useful?
When you want to have the ability to use livebook's goodies (e.g. graphs and charts) but they are not available in the remote node's runtime, and you don't want those runtime dependencies
How?
See Sources to see where the inspiration (and a lot of code) came from.
Please note I don't know any Vue at the moment, so be patient. I'm also very bad at styling, among the rest.
Notes
Gotchas
	Livebook process starts only as a sname node, so keep this in mind when connecting to a cluster
	creating the :erpc call means creating atoms where they may not exist in the context of the process running the livebook. You probably know what it means for the BEAM
	calling a :erpc means giving the caller total freedom on the target machine BEAM environment. Please, be aware of that and give access only to trusted people
	connection to the cluster via erlang distribution is subject to all of a series of attacks and problems you should be aware of before using this for any production use case

TODO
	tests. I know, I should have TDD'ed or something like that, but I really don't know how to test a smartcell right now, nor I wanted to set up cluster testing in the limited time I had to set up this
	more features (in random order)!	binding with variables created in livebook's context to use as arguments
	make the argument list a arg0, arg1, ... dynamic list instead of relying on the user to set up correctly a list of arguments
	cluster connection types (:hidden, etc)
	node list retrieved from epmd (for local usage) and after connection
	connection status indicator
	make cookie field a password field?
	allow also non-Elixir. prefixed modules (-> allow connecting and :erpc-ing to erlang nodes)

	set up some sort of CI

Contributing
Please note this is still a draft kind of project, that's why it is still < 0.1.x. However, any help is appreciated from the start!

Feel free to reach me via any means or directly file an issue/PR!
Sources
If the use of any of those sources has been deemed inappropriate by the author(s), please feel free to contact me by any means and I'll take proper actions
	main.css is almost totally copied from wonderful kino_vega_lite's chart_cell original work
	main.js and assets loading is totally based on from wonderful kino_vega_lite's chart_cell original work

Any idea on how to make this appropriation more explicit is welcome!

 Anchor for this section

 Summary

 Functions

 child_spec(map)

 do_execute_remote_command(target_node, module, function, arguments)

 scan_binding(pid, binding, env)

 Try to identify possible autocompletion targets

 Anchor for this section

Functions

 Link to this function

 child_spec(map)

 View Source

 Link to this function

 do_execute_remote_command(target_node, module, function, arguments)

 View Source

 Link to this function

 scan_binding(pid, binding, env)

 View Source

Try to identify possible autocompletion targets
possible nodes: atoms contianing "@" character
possible secrets: atoms

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

