

 cloister

 v0.15.0

 [image: Logo]

 Table of contents

 	Cloister

 	Configuration

 	Docker Friendly

 	Zero Cost Distribution

 	Modules

 	Cloister

 	Cloister.Listener

 	Cloister.Manager

 	Cloister.Monitor

 	Cloister.Node

Cloister [image: Kantox ❤ OSS] [image: Test] [image: Dialyzer]

The helper application to manage cluster of nodes.
Installation
	Add the dependency to your mix.exs file:

def deps do
 [
 {:cloister, "~> 0.5"},
 ...
]
end
	Make sure both :cloister and :libring applications are configured properly in your config.exs

config :cloister,
 sentry: ~w|node1@127.0.0.1 node2@127.0.0.1|a,
 consensus: 2
	Make sure :cloister application is started. This does not require any action unless you have the list of applications specified explicitly. If so, add :cloister there.

Changelog
	0.15.0 [BUG] fixed Cloister.multicast/multicall
	0.14.0 named isolated Finitomata supervision tree
	0.13.0 [BUG] fixed Cloister.state/0 adding groups (credits: @anthony-gonzalez-kantox)
	0.12.0 complete rewrite of cluster assembly based on Finitomata
	0.10.0 Cloister.siblings!/0 and Cloister.consensus/0, better tests
	0.9.0 Cloister.multiapply/4 to wrap :rpc.multicall/4
	0.7.0 magic? :: boolean() and loopback? :: boolean() config params to avoid cluster building in tests
	0.6.0 support many hashrings within the same cloister
	0.2.0 use Application.c:start_phase/3 callback to postpone application start until the consensus is reached

Documentation.

Configuration

Cloister is another cluster support library that aims to be a drop-in for cluster support in distributed environment.
It relies mainly on configuration because it’s started as a separate application before the main OTP application that uses it and relies on startup phases to block until the consensus is reached. For the very fine tuning, one might put :cloister into :included_applications and embed Cloister.Manager manually into the supervision tree. See Cloister.Application.start_phase/3 for the inspiration on how to wait till consensus is reached.
On a bird view, the config might look like:
config :cloister,
 # OTP application this cloister runs for
 otp_app: :my_app, # default: :cloister

 # the way the cloister knows how to build cluster
 sentry: :"cloister.local", # service name
 # or node list (default `[node()]`)
 # sentry: ~w[c1@127.0.0.1 c2@127.0.0.1]a

 # number of nodes to consider consensus
 consensus: 3, # default

 # listener to be called when the ring is changed
 listener: MyApp.Listener, # default: Stub

 # monitor to handle ring changes / don’t override
 monitor: MyApp.Monitor, # default: Stub

 # monitor options to pass to a monitor when created
 monitor_opts: [
 name: MyMonitor # default: monitor.name
]

 # additional modules to include into `Manager`’s supervision tree
 additional_modules: [Cloister.Void], # useful for tests / dev

 # the name of the `HashRing` to be used
 # if set, the _HashRing_ is assumed to be managed externally
 ring: :cloister, # default

 # manager configuration, used when cloister app is not started
 manager: [
 name: Cloister.Manager, # default
 state: [
 otp_app: :my_app, # default: :cloister
 additional_modules: [] # additional modules as above
]
]

Docker Friendly

Cloister is being developed with the drop-in support of Docker. Distributed Erlang is a charm to work with unless your DevOps team is engaged in containerizing the whole universe. They usually have many cryptic arguments full of words you as an old-school software engineer would barely understand, and sooner or later you are faced with a fact that now we run everything in a dockerized environment, which means no one can guarantee your application has an IP/DNS, or would not have automatically restarted depending on the current moon phase.
I am exaggerating a bit, but this is it: you cannot prepare the release hardcoding longnames in vm.args and/or env.sh anymore. You should be ready to handle spontaneous restarts of containers (and therefore your ErlangVM instances) gracefully. And you are probably still in a need to test it locally, as well as in containerized environment.
That is where cloister might step into to help. It takes care about the cluster handling, based on either the list of node names (IP/DNS, old school,) or a service name exposed by docker. It uses Application.start_phase/3 to ensure the cluster is started before letting the boot process to continue. It also provides a callback when the topology of the cluster changes (new node added, node shut down, etc.)
Dev Environment, no Docker
All one needs to start playing with cloister is to add a dependency to mix.exs file and put some config:
config :cloister,
 otp_app: :cloister_test,
 sentry: ~w|node1@127.0.0.1 node2@127.0.0.1|a,
 consensus: 1
That config would instruct Cloister to use :cloister_test as the main OTP app and the name of the HashRing behind. It would expect nodes :"node1@127.0.0.1" and :"node2@127.0.0.1" to exist and it’ll try to connect to them, but as soon as it sees itself, and consensus parameter is set to 1, it won’t worry about others and report the successful cluster assembly.
[image: :nonode@nohost startup]

Test Environment, no Docker
To test the distributed environment outside of Docker, one might use test_cluster_task package that effectively starts the distributed environment before running tests. To use it, simply add {:test_cluster_task, "~> 0.3"} to the dependencies list of your application and use mix test.cluster or set the alias in mix.exs project:
def project do
 [
 ...,
 aliases: [test: ["test.cluster"]]
]
end
[image: :"cloister_test_0@127.0.0.1" startup]

Releases for Docker Environment
OK, now it’s time to add Docker to the equation. Cloister is smart enough to distinguish the list of node vs. the service name when passed to :sentry config option. When it’s an atom, Cloister will shut down the :net_kernel application and restart it in distributed mode. For that to work, one must explicitly specify export RELEASE_DISTRIBUTION=none in rel/env.sh.eex file for releases.
Our config would now look like:
config :cloister,
 otp_app: :cloister_test,
 sentry: :"cloister_test.local",
 consensus: 3
Here, :"cloister_test.local" is the name of service to be used for nodes discovery and at least three nodes up would be expected for it to pass the warming phase. The application startup chain would be blocked until at least three nodes are up and connected.
We would also need a Dockerfile which is the typical one, built from elixir:$ELIXIR_VERSION and with epmd -d explicitly started before the application itself. Also we’d need docker-compose.yml, declaring the service like below.
version: '3.1'

services:
 cloister_test:
 build: .
 networks:
 local:
 aliases:
 - cloister_test.local
 environment:
 - CLOISTER_TEST_CLUSTER_ADDRESS=cloister_test.local

networks:
 local:
 driver: bridge
Once done, one might build the composed image and start it with three instances of the application:
docker-compose build
docker-compose up --scale cloister_test=3 --remove-orphans

After some debug info, it’d spit out:
[image: :"cloister_test@172.26.0.*" startup]
All three instances are up and connected, ready to perform their work.

Tips and Tweaks
Cloister relies mainly on configuration because it’s started as a separate application before the main OTP application that uses it and relies on startup phases to block until the consensus is reached. For the very fine tuning, one might put :cloister into :included_applications and embed Cloister.Manager manually into the supervision tree. See Cloister.Application.start_phase/3 for the inspiration on how to wait till consensus is reached.
Also, one might start and manage HashRing on their own by setting :ring option in config. Cloister would expect the ring to be started and handled by the consumer application.
The whole configuration is described on Configuration page.

Zero Cost Distribution

Cloister provides a callback on cluster topology changes, which makes it easy to perform some additional setup when the cluster is up.
But what if we want to distribute our processing without actually writing the support for running in distributed mode? For that one might use Tarearbol.DynamicManager abstraction.
Let’s say we receive gazillions of messages from some message broker and need to process them asynchronously. The typical application would use Cloister as the cluster manager and Tarearbol.DynamicManager as the workload processor. Our goal would be to build absolutely transparent system, allowing horizontal scaling out of the box. We cannot just spawn another node in a hope that everything would be fine because the processor is determined by a HashRing backed up by Cloister and the message would be fed from the message broker by the random—currently available—node. Of course we might ask Cloister about who is to process this message, and send the message directly to this process, but this would potentially suffer from back pressure issues either blocking the broker queue, or overflowing the target process mailbox.
The easiest solution would be to store incoming messages in local store, that would be consumed by our workers. The dataflow would look somewhat like
[image: Cloister + Tarearbol Data Flow]

That would be a no-brainer at all, if we were working in legacy running instances. But here we have a dockerized environment. Containers might appear, and disappear almost at random. And we want to handle each topology change gracefully.
Topology Change Listener
First of all, we need to supply our own inmplementation of topology change listener, as described in Configuration.
config :cloister,
 otp_app: :my_app,
 listener: MyApp.CloisterListener,
 ...
And the boilerplate for the implementation would be that
defmodule MyApp.CloisterListener do
 @moduledoc false

 @behaviour Cloister.Listener
 require Logger

 @impl Cloister.Listener
 def on_state_change(_from, %Cloister.Monitor{status: :up}) do
 Logger.info("Cluster is up")
 end

 def on_state_change(from, %Cloister.Monitor{status: status}) do
 Logger.debug("Cluster state change #{from} → #{status}")
 end
So far, so good. Now we want to support distributed mnesia here. Let’s suppose we might survive several seconds blackout on topology changes, and we use this mnesia as a cache, so it does not contain billions of records. We would simply load the existing cache content into memory, recreate mnesia for new topology and feed it with the data from memory. There are many more elegant and robust solutions, but for our demonstration purposes that scenario is perfectly fine.
Let’s change the former on_state_change/2 clause to do that.
@impl Cloister.Listener
def on_state_change(_from, %Cloister.Monitor{status: :up}) do
 this = node()
 others = Node.list()
 nodes = [this | others]

 # voluntarily select a master node
 if match?([^this | _], Enum.sort(nodes)) do
 load_data_into_memory() # the implementation is out of scope

 Enum.each(@tables, :mnesia.delete_table/1)

 :mnesia.stop()
 :mnesia.delete_schema(nodes)
 :mnesia.create_schema(nodes)
 :mnesia.start()

 Enum.each(@tables, &:mnesia.create_table(&1, disk: nodes))
 :mnesia.wait_for_tables(@tables)

 load_data_from_memory() # the implementation is out of scope

 # deploy this to other nodes
 unless nodes == [this] do
 :mnesia.change_config(:extra_db_nodes, others)
 Enum.each(others, &:mnesia.change_table_copy_type(:schema, &1, :disc_copies))

 for table <- :mnesia.system_info(:tables),
 table in @tables,
 {^this, type} <- :mnesia.table_info(table, :where_to_commit),
 do: Enum.each(others, &:mnesia.add_table_copy(table, &1, type))
 end
 end
end
We are done! Now the topology change would enforce the renewal of mnesia configuration. It surely might be done in more sophisticated way by e. g. deleting schemas on remote nodes and restarting mnesia there, but this is also good enough.
OK, it’s now time to serve processors.
DynamicManager Implementation
As described in the documentation, Tarearbol.DynamicManager expects a worker definition. Let’s provide it.
defmodule MyApp.WorkProcessor do
 @moduledoc false

 use Tarearbol.DynamicManager

 @impl Tarearbol.DynamicManager
 def children_specs do
 # start million processes, handling entities named like "foo_42"
 for i <- 1..1_000_000, do: {"foo_#{i}", []}, into: %{}
 end

 @impl Tarearbol.DynamicManager
 def perform(foo, payload) do
 if Cloister.mine?(foo),
 do: {:replace, foo, perform_work()},
 else: {:ok, DateTime.utc_now()}
 end

 @impl Tarearbol.DynamicManager
 def handle_state_change(state), do: state

 @impl Tarearbol.DynamicManager
 def handle_timeout(_state), do: :ok

 @spec perform_work :: [any()]
 defp perform_work do
 for record <- :mnesia.select(...), do: ...
 end
end
We are all set now. Once came from the broker, the message gets stored in mnesia. Then the worker for this key gets the message(es) from there and does whatever it needs.
When the new node is being added/removed, Cloister would change the state into :rehashing, rebuild the mnesia database and continue processing messages with a new cluster topology.

Cloister

Cloister is a consensus helper for clusters.
It is designed to be a configurable drop-in for transparent cluster support.
Supported options
	:otp_app (atom/0) - OTP application this cloister runs for. The default value is :cloister.

	:sentry - Required. The way the cloister knows how to build cluster; might be a service name or a node list.
E. g. :"cloister.local" or ~w[c1@127.0.0.1 c2@127.0.0.1]a. Default [node()].

	:consensus (non_neg_integer/0) - Required. Number of nodes to consider consensus. The default value is 1.

	:listener (atom/0) - Listener to be called when the ring is changed. The default value is Cloister.Listener.Default.

	:additional_modules - Additional modules to include into Cloister.Manager’s supervision tree.

	:ring (atom/0) - The name of the HashRing to be used.
If set, the HashRing is assumed to be managed externally.

	:manager (non-empty keyword/0) - Set of options to configure Cloister.Manager when started in a supervision tree.
	:name (atom/0) - Name of the Manager process.

	:state (non-empty keyword/0) - The parameters to configure the Manager ouside of Cloister application.
	:otp_app (atom/0) - Required.

	:additional_modules

	:monitor_opts (non-empty keyword/0) - Fine Cloister.Monitor’s tuning.
	:name (atom/0) - Required. Name of the Monitor process.

	:loopback? (boolean/0) - Use loopback interface in FQ node name? The default value is false.

	:magic? (boolean/0) - When false, allows to avoid node reinitialization The default value is true.

 Anchor for this section

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 mine?(term)

 Returns true if the hashring points to this node for the term given, false otherwise

 multiapply(nodes \\ nil, m, f, a)

 Applies the function given as m, f, a on all the nodes given as a first parameter.

 multicall(name, request)

 See Cloister.Node.multicall/2.

 multicall(nodes, name, request)

 See Cloister.Node.multicall/3.

 multicast(name, request)

 See Cloister.Node.multicast/2.

 multicast(nodes, name, request)

 See Cloister.Node.multicast/3.

 ring()

 Returns the ring from current node cloister monitor state

 siblings()

 See Cloister.Monitor.siblings/0.

 siblings!()

 See Cloister.Monitor.siblings!/0.

 state()

 See Cloister.Monitor.state/0.

 whois(group \\ nil, term)

 Returns who would be chosen by a hash ring for the term in the group given

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 mine?(term)

 View Source

 @spec mine?(term :: any()) :: boolean() | {:error, :no_such_ring}

Returns true if the hashring points to this node for the term given, false otherwise

 Link to this function

 multiapply(nodes \\ nil, m, f, a)

 View Source

 @spec multiapply(nil | [node()], module(), atom(), list()) :: any()

Applies the function given as m, f, a on all the nodes given as a first parameter.
If no nodes are given, it defaults to Cloister.siblings/0.

 Link to this function

 multicall(name, request)

 View Source

See Cloister.Node.multicall/2.

 Link to this function

 multicall(nodes, name, request)

 View Source

See Cloister.Node.multicall/3.

 Link to this function

 multicast(name, request)

 View Source

See Cloister.Node.multicast/2.

 Link to this function

 multicast(nodes, name, request)

 View Source

See Cloister.Node.multicast/3.

 Link to this function

 ring()

 View Source

 @spec ring() :: atom()

Returns the ring from current node cloister monitor state

 Link to this function

 siblings()

 View Source

See Cloister.Monitor.siblings/0.

 Link to this function

 siblings!()

 View Source

See Cloister.Monitor.siblings!/0.

 Link to this function

 state()

 View Source

See Cloister.Monitor.state/0.

 Link to this function

 whois(group \\ nil, term)

 View Source

 @spec whois(group :: atom(), term :: any()) ::
 node()
 | {:error, {:invalid_ring, :no_nodes}}
 | {:error, {:not_our_ring, atom()}}

Returns who would be chosen by a hash ring for the term in the group given

Cloister.Listener behaviour

The behavior to be implemented by Cloister.Monitor listeners.

 Anchor for this section

 Summary

 Callbacks

 on_state_change(from, state)

 Passed to the Cloister.Monitor.start_link/1 and is being called
on each subsequent monitored node state change.

 Anchor for this section

Callbacks

 Link to this callback

 on_state_change(from, state)

 View Source

 @callback on_state_change(
 from :: Cloister.Monitor.Fsm.state(),
 state :: Cloister.Monitor.t()
) :: :ok

Passed to the Cloister.Monitor.start_link/1 and is being called
on each subsequent monitored node state change.
Listeners are obliged to handle :up, :rehashing and :stopping events.

Cloister.Manager

Use this module to start Cloister manually inside the application
supervision tree instead of running it as an application (default.)
This is not recommended and requires better understanding of internals.
Also, :cloister must be put into :included_applications section
of your application mix.exs to prevent the application from starting up
during the dependent applications starting phase.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts the cloister manager process in the supervision tree

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

 @spec start_link(opts :: keyword()) :: GenServer.on_start()

Starts the cloister manager process in the supervision tree

Cloister.Monitor

The actual process that performs the monitoring of the cluster and invokes callbacks.
This process is started and supervised by Cloister.Manager.

 Anchor for this section

 Summary

 Types

 monitor()

 Monitor state

 node_type()

 Type of the node as it has been started

 t()

 The monitor internal state

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 nodes!(timeout \\ 1000)

 deprecated

 Rehashes the ring and returns the current state

 siblings(name \\ __MODULE__)

 Returns the nodes in the cluster that are connected to this one in the same group

 start_link(opts \\ [])

 Used to start Cloister.Monitor.

 state(name \\ __MODULE__)

 Returns an internal state of the Node

 Anchor for this section

Types

 Link to this type

 monitor()

 View Source

 @type monitor() :: %{fsm: Finitomata.fsm_name(), ring: atom(), groups: [node()]}

Monitor state

 Link to this type

 node_type()

 View Source

 @type node_type() :: :longnames | :shortnames | :nonode

Type of the node as it has been started

 Link to this type

 t()

 View Source

 @type t() :: %Cloister.Monitor{
 otp_app: atom(),
 consensus: pos_integer(),
 listener: module(),
 monitor: module(),
 started_at: DateTime.t(),
 alive?: boolean(),
 clustered?: boolean(),
 sentry?: boolean(),
 ring: atom()
}

The monitor internal state

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 nodes!(timeout \\ 1000)

 View Source

 This function is deprecated. Use `siblings/0` instead.

Rehashes the ring and returns the current state

 Link to this function

 siblings(name \\ __MODULE__)

 View Source

 @spec siblings(module()) :: [node()] | {:error, :no_such_ring}

Returns the nodes in the cluster that are connected to this one in the same group

 Link to this function

 start_link(opts \\ [])

 View Source

 @spec start_link(opts :: keyword()) :: GenServer.on_start()

Used to start Cloister.Monitor.
Internally called by Cloister.Manager.start_link/1. In most cases
 you don’t need to start Monitor process explicitly.

 Link to this function

 state(name \\ __MODULE__)

 View Source

 @spec state(module()) :: monitor()

Returns an internal state of the Node

Cloister.Node

The abstraction level allowing milticalls and multicasts across the whole cluster.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 multicall(nodes \\ [node() | Node.list()], name, request)

 Casts the request to all the nodes passed as a parameter.

 multicast(nodes \\ [node() | Node.list()], name, request)

 Casts the request to all the nodes connected to this node

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 multicall(nodes \\ [node() | Node.list()], name, request)

 View Source

 @spec multicall(nodes :: [node()], name :: GenServer.name(), request :: term()) :: [
 term()
]

Casts the request to all the nodes passed as a parameter.

 Link to this function

 multicast(nodes \\ [node() | Node.list()], name, request)

 View Source

 @spec multicast(nodes :: [node()], name :: GenServer.name(), request :: term()) ::
 :abcast

Casts the request to all the nodes connected to this node

(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

