

 circuits_uart

 v1.4.5

 Table of contents

 	Circuits.UART

 	Changelog

 	Modules

 	Circuits.UART

 	Circuits.UART.Framing

 	Circuits.UART.Framing.FourByte

 	Circuits.UART.Framing.Line

 	Circuits.UART.Framing.None

Circuits.UART

[image: Hex version]
[image: API docs]
[image: build]
Circuits.UART allows you to use UARTs, serial ports, Bluetooth virtual serial
port connections and more in Elixir. Some highlights:
	Mac, Windows, Linux, and Nerves
	Enumerate serial ports
	Receive input via messages or by polling (active and passive modes)
	Add and remove framing on serial data - line-based framing included for use
with GPS, cellular, satellite and other modules
	Unit tests (uses the tty0tty virtual
null modem on Travis)

Looking for Nerves.UART? Circuits.UART is the new name. Everything else is
the same. Update your project by replacing all references to nerves_uart and
Nerves.UART to circuits_uart and Circuits.UART and you should be good.
Something doesn't work for you? Check out below and the
docs. Post a question on the Elixir
Forum or file an issue or PR.
Example use
Discover what serial ports are attached:
iex> Circuits.UART.enumerate
%{"COM14" => %{description: "USB Serial Port", manufacturer: "FTDI", product_id: 24577,
 vendor_id: 1027},
 "COM5" => %{description: "Prolific USB-to-Serial Comm Port",
 manufacturer: "Prolific", product_id: 8963, vendor_id: 1659},
 "COM16" => %{description: "Arduino Uno",
 manufacturer: "Arduino LLC (www.arduino.cc)", product_id: 67, vendor_id: 9025}}
Start the UART GenServer:
iex> {:ok, pid} = Circuits.UART.start_link
{:ok, #PID<0.132.0>}
The GenServer doesn't open a port automatically, so open up a serial port or
UART now. See the results from your call to Circuits.UART.enumerate/0 for what's
available on your system.
iex> Circuits.UART.open(pid, "COM14", speed: 115200, active: false)
:ok
This opens the serial port up at 115200 baud and turns off active mode. This
means that you'll have to manually call Circuits.UART.read to receive input. In
active mode, input from the serial port will be sent as messages. See the docs
for all options.
Write something to the serial port:
iex> Circuits.UART.write(pid, "Hello there\r\n")
:ok
See if anyone responds in the next 60 seconds:
iex> Circuits.UART.read(pid, 60000)
{:ok, "Hi"}
Input is reported as soon as it is received, so you may need multiple calls to
read/2 to get everything you want. If you have flow control enabled and stop
calling read/2, the port will push back to the sender when its buffers fill
up.
Enough with passive mode, let's switch to active mode:
iex> Circuits.UART.configure(pid, active: true)
:ok

iex> flush
{:circuits_uart, "COM14", "a"}
{:circuits_uart, "COM14", "b"}
{:circuits_uart, "COM14", "c"}
{:circuits_uart, "COM14", "\r"}
{:circuits_uart, "COM14", "\n"}
:ok
It turns out that COM14 is a USB to serial port. Let's unplug it and see what
happens:
iex> flush
{:circuits_uart, "COM14", {:error, :eio}}
Oops. Well, when it appears again, it can be reopened. In passive mode, errors
get reported on the calls to Circuits.UART.read/2 and Circuits.UART.write/3
Back to receiving data, it's a little annoying that characters arrive one by
one. That's because our computer is really fast compared to the serial port,
but if something slows it down, we could receive two or more characters at a
time. Rather than reassemble the characters into lines, we can ask circuits_uart
to do it for us:
iex> Circuits.UART.configure(pid, framing: {Circuits.UART.Framing.Line, separator: "\r\n"})
:ok
This tells circuits_uart to append a \r\n to each call to write/2 and to
report each line separately in active and passive mode. You can set this
configuration in the call to open/3 as well. Here's what we get now:
iex> flush
{:circuits_uart, "COM14", "abc"} # Note that the "\r\n" is trimmed
:ok
If your serial data is framed differently, check out the Circuits.UART.Framing
behaviour and implement your own. Circuits.UART.Framing.FourByte is a
particularly simple example of a framer.
You can also set a timeout so that a partial line doesn't hang around in the
receive buffer forever:
iex> Circuits.UART.configure(pid, rx_framing_timeout: 500)
:ok

Assume that the sender sent the letter "A" without sending anything else
for 500 ms.

iex> flush
{:circuits_uart, "COM14", {:partial, "A"}}
Sometimes it's easier to operate with the pid of the UART GenServer rather
than using the name of the port in active mode. An example of this is when you
want to send an acknowledgment back after a receive and you are using more than
one serial port at a time. You can do this with the id: :pid option to
open/1 or configure/1.
iex> Circuits.UART.configure(pid, id: :pid)
:ok

Assume some data was received

iex> receive do
...> {:circuits_uart, pid, _} ->
...> Circuits.UART.write(pid, "ack")
...> end
:ok
Installation
To install circuits_uart:
	Add circuits_uart to your list of dependencies in mix.exs:

 def deps do
 [{:circuits_uart, "~> 1.3"}]
 end
	Check that the C compiler dependencies are satisified (see below)

	Run mix deps.get and mix compile

C compiler dependencies
Since this library includes C code, make, gcc, and Erlang header and
development libraries are required.
On Linux systems, this usually requires you to install the build-essential and
erlang-dev packages. For example:
sudo apt-get install build-essential erlang-dev

On Macs, run gcc --version or make --version. If they're not installed, you
will be given instructions.
On Windows, if you're obtaining circuits_uart from hex.pm, you'll need MinGW
to compile the C code. I use Chocolatey and install
MinGW by running the following in an administrative command prompt:
choco install mingw

On Nerves, you're set - just add circuits_uart to your mix.exs. Nerves
contains everything needed by default. If you do use Nerves, though, keep in
mind that the C code is crosscompiled for your target hardware and will not work
on your host (the port will crash when you call start_link or enumerate. If
you want to try out circuits_uart on your host machine, the easiest way is to
either clone the source or add circuits_uart as a dependency to a regular
(non-Nerves) Elixir project.
Building and running the unit tests
The standard Elixir build process applies. Clone circuits_uart or download a
source release and run:
mix deps.get
mix compile

The unit tests require two serial ports connected via a NULL modem cable to run.
Define the names of the serial ports in the environment before running the
tests. For example,
export CIRCUITS_UART_PORT1=ttyS0
export CIRCUITS_UART_PORT2=ttyS1

If you're on Windows or Linux, you don't need real serial ports. For linux,
download and install tty0tty. Load the
kernel module and specify tnt0 and tnt1 for the serial ports. Check the
tty0tty README.md, but this should looks something like:
cd tty0tty/module
make
sudo cp tty0tty.ko /lib/modules/$(uname -r)/kernel/drivers/misc/
sudo depmod
sudo modprobe tty0tty
sudo chmod 666 /dev/tnt*

export CIRCUITS_UART_PORT1=tnt0
export CIRCUITS_UART_PORT2=tnt1

On Windows, download and install
com0com (Look for version 2.2.2.0
if the latest hasn't been signed). The ports on Windows are CNCA0 and CNCB0.
Then run:
mix test

If you're using tty0tty, the tests will run at full speed. Real serial ports
seem to take a fraction of a second to close and re-open. I added a gratuitous
delay to each test to work around this. It likely can be much shorter.
On MacOS, download and install socat. You can install it via Homebrew. Once you have it installed and ready to go, run the following command. You will need to change <USERNAME> to your current system username
sudo socat -d -d -d -d -lf /tmp/socat pty,link=/dev/dummy1,raw,echo=0,user=<USERNAME>,group=staff link=/dev/dummy2,raw,echo=0,user=<USERNAME>,group=staff

Once that opens, in a separate terminal emulator, set the Circuits ENVars, and go about your testing
export CIRCUITS_UART_PORT1=/dev/dummy1
export CIRCUITS_UART_PORT2=/dev/dummy2
mix test

FAQ
Do I have to use Nerves?
No, this project doesn't have any dependencies on any Nerves components. The
desire for some serial port library features on Nerves drove us to create it,
but we also have host-based use cases. To be useful for us, the library must
remain crossplatform and have few dependencies. We're just developing it under
the Nerves umbrella.
How can I use the serial port on Linux without sudo?
Serial port files are almost always owned by the dialout group. Add yourself
to the dialout group by running sudo adduser yourusername dialout. Then log
out and back in again, and you should be able to access the serial port.
Debugging tips
If you're having trouble and suspect the C code, edit the Makefile to enable
debug logging. See the Makefile for instructions on how to do this. Debug
logging is appended to a file by default, but can be sent to stderr or another
location by editing src/circuits_uart.c.
If you're on Linux, the tty0tty emulated null modem removes the flakiness of
real serial port drivers if that's the problem. The serial port monitor
jpnevulator is useful for monitoring the
hardware signals and dumping data as hex byte values.
On OSX and Windows, I've found that PL2303-based serial ports can be flakey.
First, make sure that you don't have a counterfeit PL2303. On Windows, they show
up in device manager with a warning symbol. On OSX, they seem to hang when
closing the port. Non-counterfeit PL2303-based serial ports can pass the unit
tests on Windows 10, but I have not been able to get them to pass on OSX.
FTDI-based serial ports appear to work better on both operating systesm.
ei_copy why????
You may have noticed Erlang's erl_interface code copy/pasted into
src/ei_copy. This is only used on Windows to work around issues linking to
the distributed version of erl_interface. That was compiled with Visual
Studio. This project uses MinGW, and even though the C ABIs are the same between
the compilers, Visual Studio adds stack protection calls that I couldn't figure
out how to work around.
How does Circuits.UART communicate with the serial port?
Circuits.UART uses a Port and C code.
Elixir/Erlang ports have nothing to do with the serial ports of the operating
system. They share the same name but are different concepts.
I see weird things happening on my UART using nerves
By default nerves is configured so Linux and the Elixir console is redirected
to the serial0 interface. As a result, while using this interface, the buffer might
be full of debug logs from your application, which could cause the port to timeout
when you are writing to it, or attempting to drain it :port_timed_out.
To disable this "pollution" you will have to edit:
	erlinit.config and comment -c ttyAMA0
	cmdline.txt and comment console=serial0,115200

To learn how to edit those files in your nerves setup you can check the advanced
configuration documentation of nerves:
https://hexdocs.pm/nerves/advanced-configuration.html#overwriting-files-in-the-root-filesystem
Acknowledgments
When building this library,
node-serialport and
QtSerialPort where incredibly helpful
in helping to define APIs and point out subtleties with platform-specific serial
port code. Sadly, I couldn't reuse their code, but I feel indebted to the
authors and maintainers of these libraries, since they undoubtedly saved me
hours of time debugging corner cases. I have tried to acknowledge them in the
comments where I have used strategies that I learned from them.

Changelog

v1.4.5
	Bug fix	Gracefully handle Process.info/2 returning nil (:heart: @tonnenpinguin)

v1.4.4
	Improvements	Fix MacOS deprecation warning. Thanks to @tonnenpinguin for the fix.

v1.4.3
This release doesn't contain any new features. Most of the changes relate to
updating dependencies and CI to make the project more pleasant to maintain.
	Improvements	Minor documentation fixes and build message cleanup.

v1.4.2
	Bug fix	Updated non-standard UART speed configuration to use the newer termios2 API
on Linux. This fixes a custom speed issue that was seen when using the older
API. Thanks to Tom Boland for reporting the issue and providing a fix.

v1.4.1
	Bug fix	Remove unneeded terminate/2 that could crash under some situations.

v1.4.0
	New Feature	Add Circuits.UART.controlling_process/2. This assigns a new controlling
process Pid to a uart in similar to OTP functions like
:gen_udp.controlling_process/2. Thanks to Robin Hilliard for adding this.

v1.3.2
	Bug fixes	Fix incorrect switch in C that caused flow control enum to be incorrect.
Thanks to Lee Bannard

v1.3.1
	Bug fixes
	Lengthen timeouts on messages sent to ports. This provides more slack time
on heavily loaded uniprocessor devices that were missing timeouts by ~100 ms
periodically.
	Move C object files and the port executable to under the _build directory.
This makes it easier to switch between host/target builds especially when
using Elixir 1.8's mix target feature.

	Improvements
	Handle iodata on Circuits.UART.write in addition to binaries and
charlists.

v1.3.0
Rebrand to Circuits.UART. No features or bugs were fixed in this version. To
upgrade, you will need to rename all occurences of nerves_uart to
circuits_uart and Nerves.UART to Circuits.UART.
v1.2.1
	Bug fixes	Added missing ignore parity option to parity checking choices
	Fix compiler warnings when built using newer versions of gcc

v1.2.0
	Improvements	Added id: pid option. In active mode, this causes the receive
notification messages to contain the pid of the Circuits.UART GenServer that
sends them. Thanks to Tallak Tveide for this improvement.
	Added find_pids/0 diagnostic utility for finding lost Circuits.UART pids.
This is handy when you need to close a serial port and don't know the pid.
	Added configuration/1 to get the current configuration of a UART.

v1.1.1
The mix.exs file has the Elixir requirement bumped from 1.3 to 1.4. This was
done to fix a Dialyzer warning caused by a change in arguments to
System.monotonic_time/1 with newer versions of Erlang and Elixir.
Unfortunately this broke compilation under Elixir 1.3.
	Bug fixes	Removed unnecessary open failure notification message. The failure gets
returned from the open call already and the notification was due to an
unfortunate path through the Linux file handle polling code.
	Various Windows fixes:	Fixed unhandled tx ready event seen during big transfers at 250000.
Thanks to Arne Ehrlich for figuring this out.
	Fixed bogus file handle errors when an open fails and then an attempt to
open again happens without a restart of the GenServer.

v1.1.0
	Improvements
	Added 4-byte framer both since it is periodically useful and as a very
simple example of the framing feature.

	Bug fixes
	Fix active mode state not being updated and a message being sent in
passive mode on an open failure.
	Maintain the elapsed time on passive mode reads to avoid reading forever
when bytes keep arriving, but no messages get sent from the framer

v1.0.1
	Improvements	Refactored Makefile logic to avoid 1-2 second hit when building. This was
due to erl being called to get the directory containing the erl interface
include/lib paths. Now mix.exs passes them down.
	Trivial Elixir 1.6 formatting tweaks

v1.0.0
	Bug fixes	Flush framing when closing a port
	Fix broken spec's
	Documentation and code cleanup

v0.1.2
Prebuilt port binaries are no longer distributed in hex.pm for Windows users.
You'll need to install MinGW. Feedback was that it didn't work as well as I
thought it would.
	Bug fixes	Fix custom baudrates not working on OSX. Thanks to salzig for identifying
the problem and helping to debug it.
	Pass flush request through to framer as well as the serial port
	Minor code cleanup

v0.1.1
	New features	Enable experimental feature on Windows to use prebuilt
port binary. Feedback appreciated.

v0.1.0
	New features
	Add support for adding and removing framing on data
transferred over the serial port.
	Add line framing implementation to support receiving
notifications only for complete lines (lines ending
in '\n' or '\r\n') or lines that are longer than a set
length.

	Bugs fixed
	Enable RTS when not using it. Keeping it cleared
was stopping transmission on devices that supported
flow control when the user wasn't using it.
	Fix quirks on Windows when using com0com. This should
improve support with at least one other serial driver
based on user error reports.

	Known limitations
	Framing receive timeouts only work in active mode.
(I.e., you're waiting for a complete line to be received,
but if it takes too long, then you want to receive a
notification of a partial line.) Passive mode support is coming.

v0.0.7
	Bugs fixed	Force elixir_make v0.3.0 so that it works OTP 19

v0.0.6
	New features	Use elixir_make

v0.0.5
	Bugs fixed	Fixed enumeration of ttyACM devices on Linux

v0.0.4
	New features
	Added hardware signal support (rts, cts, dtr, dsr, etc.)
	Added support for sending breaks
	Added support for specifying which queue to flush
(:receive, :transmit, or :both)

	Bugs fixed
	Fixed crash in active mode when sending and receiving
at the same time

v0.0.3
	Bugs fixed	Crosscompiling on OSX works now

v0.0.2
	Bugs fixed	Fix hex.pm release by not publishing .o files

v0.0.1
	Initial release

Circuits.UART

Find and use UARTs, serial ports, and more.

 Anchor for this section

 Summary

 Types

 uart_option()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 close(pid)

 Close the serial port. The GenServer continues to run so that a port can
be opened again.

 configuration(pid)

 Get the configuration of the serial port.

 configure(pid, opts)

 Change the serial port configuration after open/3 has been called. See
open/3 for the valid options.

 controlling_process(pid, controlling_process)

 Change the controlling process that
receives events from an active uart.

 drain(pid)

 Waits until all data has been transmitted. See
tcdrain(3) for low level details on
Linux or OSX. This is not implemented on Windows.

 enumerate()

 Return a map of available ports with information about each one. The map
looks like this

 find_pids()

 Find UARTs.

 flush(pid, direction \\ :both)

 Flushes the :receive buffer, the :transmit buffer, or :both.

 init(list)

 Callback implementation for GenServer.init/1.

 open(pid, name, opts \\ [])

 Open a serial port.

 read(pid, timeout \\ 5000)

 Read data from the UART. This call returns data as soon as it's available or
after timing out.

 send_break(pid, duration \\ 250)

 Send a continuous stream of zero bits for a duration in milliseconds.
By default, the zero bits are transmitted at least 0.25 seconds.

 set_break(pid, value)

 Start or stop sending a break signal.

 set_dtr(pid, value)

 Set or clear the Data Terminal Ready signal.

 set_rts(pid, value)

 Set or clear the Request To Send signal.

 signals(pid)

 Returns a map of signal names and their current state (true or false).
Signals include

 start_link(opts \\ [])

 Start up a UART GenServer.

 stop(pid)

 Stop the UART GenServer.

 write(pid, data, timeout \\ 5000)

 Write data to the opened UART. It's possible for the write to return before all
of the data is actually transmitted. To wait for the data, call drain/1.

 Anchor for this section

Types

 Link to this type

 uart_option()

 View Source

 @type uart_option() ::
 {:active, boolean()}
 | {:speed, non_neg_integer()}
 | {:data_bits, 5..8}
 | {:stop_bits, 1..2}
 | {:parity, :none | :even | :odd | :space | :mark | :ignore}
 | {:flow_control, :none | :hardware | :software}
 | {:framing, module() | {module(), [term()]}}
 | {:rx_framing_timeout, integer()}
 | {:id, :name | :pid}

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 close(pid)

 View Source

 @spec close(GenServer.server()) :: :ok | {:error, term()}

Close the serial port. The GenServer continues to run so that a port can
be opened again.

 Link to this function

 configuration(pid)

 View Source

 @spec configuration(GenServer.server()) :: {binary() | :closed, [uart_option()]}

Get the configuration of the serial port.

 Link to this function

 configure(pid, opts)

 View Source

 @spec configure(GenServer.server(), [uart_option()]) :: :ok | {:error, term()}

Change the serial port configuration after open/3 has been called. See
open/3 for the valid options.

 Link to this function

 controlling_process(pid, controlling_process)

 View Source

 @spec controlling_process(GenServer.server(), pid()) :: :ok | {:error, term()}

Change the controlling process that
receives events from an active uart.

 Link to this function

 drain(pid)

 View Source

 @spec drain(GenServer.server()) :: :ok | {:error, term()}

Waits until all data has been transmitted. See
tcdrain(3) for low level details on
Linux or OSX. This is not implemented on Windows.

 Link to this function

 enumerate()

 View Source

 @spec enumerate() :: map()

Return a map of available ports with information about each one. The map
looks like this:
 %{ "ttyS0" -> %{vendor_id: 1234, product_id: 1,
 manufacturer: "Acme Corporation", serial_number: "000001"},
 "ttyUSB0" -> ${vendor_id: 1234, product_id: 2} }
Depending on the port and the operating system, not all fields may be
returned. Informational fields are:
	:vendor_id - The 16-bit USB vendor ID of the device providing the port. Vendor ID to name lists are managed through usb.org
	:product_id - The 16-bit vendor supplied product ID
	:manufacturer - The manufacturer of the port
	:description - A description or product name
	:serial_number - The device's serial number if it has one

 Link to this function

 find_pids()

 View Source

 @spec find_pids() :: [{binary() | :closed, pid()}]

Find UARTs.
This is intended as a diagnostic function for finding UARTs that you may have
opened and forgotten about. Since a UART can only be opened once, this helps
you find the problematic one so that you can close it.
It returns a list of {pid, uart_name} tuples.
NOTE: Do not rely on this function in production code. It may change if
updates to the interface make it more convenient to use.

 Link to this function

 flush(pid, direction \\ :both)

 View Source

Flushes the :receive buffer, the :transmit buffer, or :both.
See tcflush(3) for low level details on
Linux or OSX. This calls PurgeComm on Windows.

 Link to this function

 init(list)

 View Source

Callback implementation for GenServer.init/1.

 Link to this function

 open(pid, name, opts \\ [])

 View Source

 @spec open(GenServer.server(), binary(), [uart_option()]) :: :ok | {:error, term()}

Open a serial port.
The following options are available:
	:active - (true or false) specifies whether data is received as
 messages or by calling read/2. See discussion below.

	:speed - (number) set the initial baudrate (e.g., 115200)

	:data_bits - (5, 6, 7, 8) set the number of data bits (usually 8)

	:stop_bits - (1, 2) set the number of stop bits (usually 1)

	:parity - (:none, :even, :odd, :space, or :mark) set the
parity. Usually this is :none. Other values:
	:space means that the parity bit is always 0
	:mark means that the parity bit is always 1
	:ignore means that the parity bit is ignored (Linux/OSX only)

	:flow_control - (:none, :hardware, or :software) set the flow control
strategy.

	:framing - (module or {module, args}) set the framing for data.
The module must implement the Circuits.UART.Framing behaviour. See
Circuits.UART.Framing.None, Circuits.UART.Framing.Line, and
Circuits.UART.Framing.FourByte. The default is Circuits.UART.Framing.None.

	:rx_framing_timeout - (milliseconds) this specifies how long incomplete
frames will wait for the remainder to be received. Timed out partial
frames are reported as {:partial, data}. A timeout of <= 0 means to
wait forever.

	:id - (:name or :pid) specify what to return with the uart active
messages. with :name the messages are returned as {:circuits_uart, serial_port_name, data} otherwise they are returned as {:circuits_uart, pid, data}. The name and pid are the name of the connected UART or the pid
of the Circuits.UART server pid as returned by start_link/1. The default
value is :name.

Active mode defaults to true and means that data received on the UART is
reported in messages. The messages have the following form:
 {:circuits_uart, serial_port_id, data}
or
 {:circuits_uart, serial_port_id, {:error, reason}}
When in active mode, flow control can not be used to push back on the sender
and messages will accumulated in the mailbox should data arrive fast enough.
If this is an issue, set :active to false and call read/2 manually when
ready for more data.
On success, open/3 returns :ok. On error, {:error, reason} is returned.
The following are some reasons:
	:enoent - the specified port couldn't be found
	:eagain - the port is already open
	:eacces - permission was denied when opening the port

 Link to this function

 read(pid, timeout \\ 5000)

 View Source

 @spec read(GenServer.server(), non_neg_integer()) ::
 {:ok, binary()} | {:error, term()}

Read data from the UART. This call returns data as soon as it's available or
after timing out.
Returns {:ok, binary}, where binary is a binary data object that contains the
read data, {:error, reason} if an error occurs, or {:ok, <<>>} after timing out.
Typical error reasons:
	:ebadf - the UART is closed
	:einval - the UART is in active mode

 Link to this function

 send_break(pid, duration \\ 250)

 View Source

 @spec send_break(GenServer.server(), integer()) :: :ok | {:error, term()}

Send a continuous stream of zero bits for a duration in milliseconds.
By default, the zero bits are transmitted at least 0.25 seconds.
This is a convenience function for calling set_break/2 to enable
the break signal, wait, and then turn it off.

 Link to this function

 set_break(pid, value)

 View Source

 @spec set_break(GenServer.server(), boolean()) :: :ok | {:error, term()}

Start or stop sending a break signal.

 Link to this function

 set_dtr(pid, value)

 View Source

 @spec set_dtr(GenServer.server(), boolean()) :: :ok | {:error, term()}

Set or clear the Data Terminal Ready signal.

 Link to this function

 set_rts(pid, value)

 View Source

 @spec set_rts(GenServer.server(), boolean()) :: :ok | {:error, term()}

Set or clear the Request To Send signal.

 Link to this function

 signals(pid)

 View Source

 @spec signals(GenServer.server()) :: map() | {:error, term()}

Returns a map of signal names and their current state (true or false).
Signals include:
	:dsr - Data Set Ready
	:dtr - Data Terminal Ready
	:rts - Request To Send
	:st - Secondary Transmitted Data
	:sr - Secondary Received Data
	:cts - Clear To Send
	:cd - Data Carrier Detect
	:rng - Ring Indicator

 Link to this function

 start_link(opts \\ [])

 View Source

 @spec start_link([term()]) :: {:ok, pid()} | {:error, term()}

Start up a UART GenServer.

 Link to this function

 stop(pid)

 View Source

 @spec stop(GenServer.server()) :: :ok

Stop the UART GenServer.

 Link to this function

 write(pid, data, timeout \\ 5000)

 View Source

 @spec write(GenServer.server(), iodata(), non_neg_integer()) :: :ok | {:error, term()}

Write data to the opened UART. It's possible for the write to return before all
of the data is actually transmitted. To wait for the data, call drain/1.
This call blocks until all of the data to be written is in the operating
system's internal buffers. If you're sending a lot of data on a slow link,
supply a longer timeout to avoid timing out prematurely.
Returns :ok on success or {:error, reason} if an error occurs.
Typical error reasons:
	:ebadf - the UART is closed

Circuits.UART.Framing behaviour

A behaviour for implementing framers for data received over a UART.

 Anchor for this section

 Summary

 Callbacks

 add_framing(data, state)

 Add framing to the passed in data.

 flush(direction, state)

 This is called when the user invokes Circuits.UART.flush/2. Any partially
received frames should be dropped.

 frame_timeout(state)

 If remove_framing/2 returned :in_frame and a user-specified timeout for
reassembling frames has elapsed, then this function is called. Depending on
the semantics of the framing, a partial frame may be returned or the
incomplete frame may be dropped.

 init(args)

 Initialize the state of the framer based on options passed to
Circuits.UART.open/3.

 remove_framing(new_data, state)

 Remove the framing off received data. If a partial frame is left over at the
end, then :in_frame should be returned. All of the frames received should
be returned in the second tuple.

 Anchor for this section

Callbacks

 Link to this callback

 add_framing(data, state)

 View Source

 @callback add_framing(data :: term(), state :: term()) ::
 {:ok, framed_data, new_state} | {:error, reason, new_state}
when new_state: term(), framed_data: binary(), reason: term()

Add framing to the passed in data.
The returned frame_data will be sent out the UART.

 Link to this callback

 flush(direction, state)

 View Source

 @callback flush(direction :: :receive | :transmit | :both, state :: term()) :: new_state
when new_state: term()

This is called when the user invokes Circuits.UART.flush/2. Any partially
received frames should be dropped.

 Link to this callback

 frame_timeout(state)

 View Source

 @callback frame_timeout(state :: term()) :: {:ok, [term()], new_state}
when new_state: term()

If remove_framing/2 returned :in_frame and a user-specified timeout for
reassembling frames has elapsed, then this function is called. Depending on
the semantics of the framing, a partial frame may be returned or the
incomplete frame may be dropped.

 Link to this callback

 init(args)

 View Source

 @callback init(args :: term()) :: {:ok, state} | {:error, reason}
when state: term(), reason: term()

Initialize the state of the framer based on options passed to
Circuits.UART.open/3.
This function should return the initial state for the framer or
an error.

 Link to this callback

 remove_framing(new_data, state)

 View Source

 @callback remove_framing(new_data :: binary(), state :: term()) ::
 {:in_frame, [term()], new_state} | {:ok, [term()], new_state}
when new_state: term()

Remove the framing off received data. If a partial frame is left over at the
end, then :in_frame should be returned. All of the frames received should
be returned in the second tuple.
The terms returned as the second part of the tuple can be anything. They can be
the binary messages without the framing, structs based on your commands, or anything
else. If you have errors in the protocol, for example a bad checksum, one convention
is to return an error tuple {:error, :echksum, message}.
For debugging you may want to include the message and framing with the error for
simpler debugging.

Circuits.UART.Framing.FourByte

Each message is 4 bytes. This framer doesn't do anything for the transmit
direction, but for receives, it will collect bytes in batches of 4 before
sending them up. The user can set up a framer timeout if they don't mind
partial frames. This can be useful to resyncronize when bytes are dropped.

 Anchor for this section

 Summary

 Functions

 add_framing(data, rx_buffer)

 Callback implementation for Circuits.UART.Framing.add_framing/2.

 flush(atom, rx_buffer)

 Callback implementation for Circuits.UART.Framing.flush/2.

 frame_timeout(rx_buffer)

 Callback implementation for Circuits.UART.Framing.frame_timeout/1.

 init(args)

 Callback implementation for Circuits.UART.Framing.init/1.

 remove_framing(data, rx_buffer)

 Callback implementation for Circuits.UART.Framing.remove_framing/2.

 Anchor for this section

Functions

 Link to this function

 add_framing(data, rx_buffer)

 View Source

Callback implementation for Circuits.UART.Framing.add_framing/2.

 Link to this function

 flush(atom, rx_buffer)

 View Source

Callback implementation for Circuits.UART.Framing.flush/2.

 Link to this function

 frame_timeout(rx_buffer)

 View Source

Callback implementation for Circuits.UART.Framing.frame_timeout/1.

 Link to this function

 init(args)

 View Source

Callback implementation for Circuits.UART.Framing.init/1.

 Link to this function

 remove_framing(data, rx_buffer)

 View Source

Callback implementation for Circuits.UART.Framing.remove_framing/2.

Circuits.UART.Framing.Line

Each message is one line. This framer appends and removes newline sequences
as part of the framing. Buffering is performed internally, so users can get
the complete messages under normal circumstances. Attention should be paid
to the following:
	Lines must have a fixed max length so that a misbehaving sender can't
cause unbounded buffer expansion. When the max length is passed, a
{:partial, data} is reported. The application can decide what to do with
this.
	The separation character varies depending on the target device. See
"Separator" section to see how to specify this.
	It may be desirable to set a :rx_framing_timeout to prevent
characters received in error from collecting during idle times. When the
receive timer expires, {:partial, data} is reported.
	Line separators must be ASCII characters (0-127) or be valid UTF-8
sequences. If the device only sends ASCII, high characters (128-255)
should work as well. [Note: please report if using extended
characters.]

Separator
Some devices require "\r\n" sequences. If you are using one of these
devices, a LTE modem for example, you can specify the separator like so:
Circuits.UART.open(uart, tty_name, framing: {Circuits.UART.Framing.Line, separator: "\r\n"})
By default the separator is "\n". Currently only one or two character
separators are supported.

 Anchor for this section

 Summary

 Functions

 add_framing(data, state)

 Callback implementation for Circuits.UART.Framing.add_framing/2.

 buffer_empty?(state)

 flush(direction, state)

 Callback implementation for Circuits.UART.Framing.flush/2.

 frame_timeout(state)

 Callback implementation for Circuits.UART.Framing.frame_timeout/1.

 init(args)

 Callback implementation for Circuits.UART.Framing.init/1.

 remove_framing(data, state)

 Callback implementation for Circuits.UART.Framing.remove_framing/2.

 Anchor for this section

Functions

 Link to this function

 add_framing(data, state)

 View Source

Callback implementation for Circuits.UART.Framing.add_framing/2.

 Link to this function

 buffer_empty?(state)

 View Source

 Link to this function

 flush(direction, state)

 View Source

Callback implementation for Circuits.UART.Framing.flush/2.

 Link to this function

 frame_timeout(state)

 View Source

Callback implementation for Circuits.UART.Framing.frame_timeout/1.

 Link to this function

 init(args)

 View Source

Callback implementation for Circuits.UART.Framing.init/1.

 Link to this function

 remove_framing(data, state)

 View Source

Callback implementation for Circuits.UART.Framing.remove_framing/2.

Circuits.UART.Framing.None

Don't apply or removing any framing.

 Anchor for this section

 Summary

 Functions

 add_framing(data, state)

 Callback implementation for Circuits.UART.Framing.add_framing/2.

 flush(direction, state)

 Callback implementation for Circuits.UART.Framing.flush/2.

 frame_timeout(state)

 Callback implementation for Circuits.UART.Framing.frame_timeout/1.

 init(args)

 Callback implementation for Circuits.UART.Framing.init/1.

 remove_framing(data, state)

 Callback implementation for Circuits.UART.Framing.remove_framing/2.

 Anchor for this section

Functions

 Link to this function

 add_framing(data, state)

 View Source

Callback implementation for Circuits.UART.Framing.add_framing/2.

 Link to this function

 flush(direction, state)

 View Source

Callback implementation for Circuits.UART.Framing.flush/2.

 Link to this function

 frame_timeout(state)

 View Source

Callback implementation for Circuits.UART.Framing.frame_timeout/1.

 Link to this function

 init(args)

 View Source

Callback implementation for Circuits.UART.Framing.init/1.

 Link to this function

 remove_framing(data, state)

 View Source

Callback implementation for Circuits.UART.Framing.remove_framing/2.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

