

    

        circuits_i2c

        v1.2.2



    



  

    Table of contents

    
      



            	Elixir Circuits - I2C


            	Porting Elixir/ALE to Circuits.I2C


            	Changelog





  	Modules
    

    	Circuits.I2C


    

  



      

    


  

    
Elixir Circuits - I2C
    

[image: Hex version]
[image: API docs]
[image: CircleCI]
Circuits.I2C lets you communicate with hardware devices using the I2C
protocol.
If you're coming from Elixir/ALE, check out our porting guide.
Getting started
If you're using Nerves or compiling on a Raspberry Pi or other device with I2C
support, then add circuits_i2c like any other Elixir library:
def deps do
  [{:circuits_i2c, "~> 1.0"}]
end
Circuits.I2C doesn't load device drivers, so you may need to load them
beforehand. If you are using Nerves on a supported platform, this is enabled for
you already. If using Raspbian, the Adafruit Raspberry Pi I2C
instructions
may be helpful.
Internally, it uses the Linux "i2cdev"
interface
so that it does not require board-dependent code.
I2C
An Inter-Integrated Circuit (I2C) bus
supports addressing hardware components and bidirectional use of the data line.
The following shows a bus IO expander connected via I2C to the processor.
[image: I2C schematic]
The protocol for talking to the IO expander is described in the MCP23008
Datasheet.
Here's a simple example of using it.
# On the Raspberry Pi, the IO expander is connected to I2C bus 1 (i2c-1).
# Its 7-bit address is 0x20. (see datasheet)
iex> alias Circuits.I2C
Circuits.I2C
iex> {:ok, ref} = I2C.open("i2c-1")
{:ok, #Reference<...>}

# By default, all 8 GPIOs are set to inputs. Set the 4 high bits to outputs
# so that we can toggle the LEDs. (Write 0x0f to register 0x00)
iex> I2C.write(ref, 0x20, <<0x00, 0x0f>>)
:ok

# Turn on the LED attached to bit 4 on the expander. (Write 0x10 to register
# 0x09)
iex> I2C.write(ref, 0x20, <<0x09, 0x10>>)
:ok

# Read all 11 of the expander's registers to see that the bit 0 switch is
# the only one on and that the bit 4 LED is on.
iex> I2C.write(ref, 0x20, <<0>>)  # Set the next register to be read to 0
:ok

iex> I2C.read(ref, 0x20, 11)
{:ok, <<15, 0, 0, 0, 0, 0, 0, 0, 0, 17, 16>>}

# The operation of writing one or more bytes to select a register and
# then reading is very common, so a shortcut is to just run the following:
iex> I2C.write_read(ref, 0x20, <<0>>, 11)
{:ok, <<15, 0, 0, 0, 0, 0, 0, 0, 0, 17, 16>>}

# The 17 in register 9 says that bits 0 and bit 4 are high
# We could have just read register 9.

iex> I2C.write_read(ref, 0x20, <<9>>, 1)
{:ok, <<17>>}
FAQ
How do I debug?
The most common issue is communicating with an I2C for the first time.  For I2C,
first check that an I2C bus is available:
iex> Circuits.I2C.bus_names
["i2c-1"]
If the list is empty, then I2C is either not available, not enabled, or not
configured in the kernel. If you're using Raspbian, run raspi-config and check
that I2C is enabled in the advanced options. If you're on a BeagleBone, try
running config-pin and see the Universal I/O
project to enable
the I2C pins. On other ARM boards, double check that I2C is enabled in the
kernel and that the device tree configures it.
Once an I2C bus is available, try detecting devices on it:
iex> Circuits.I2C.detect_devices()
Circuits.I2C.detect_devices
Devices on I2C bus "i2c-1":
 * 64  (0x40)
 * 112 (0x70)

2 devices detected on 1 I2C buses
The return value here is a list of device addresses that were detected. It is
still possible that the device will work even if it does not detect, but you
probably want to check wires at this point. If you have a logic analyzer, use it
to verify that I2C transactions are being initiated on the bus.
I2C seems slow. What could be wrong?
I2C buses are usually run at 100 kbit/s or 400 kbit/s. Many devices support
higher speeds. The tradeoff is that higher speeds are sometimes don't work as
well especially if you're using jumper cables to connect parts together. The
Raspberry Pi runs the I2C bus at a low speed - probably for this reason.
Other things to check:
	Can you reduce the reads and writes? I2C devices let you read or write many
bytes at the same time. Each transaction has overhead so minimizing
transaction helps.
	Can you reduce the total number of bytes in each transaction? For example, do
you need to read a particular register? Is there a mode that the device can be
put it so that it only returns useful data?
	Can a write and read be combined? The Circuits.I2C.write_read function is
more efficient than a separate write followed by a read.
	Does the device support a queue mode? Some devices have internal queues that
allow the host to copy out more than one sample each time.

Where can I get help?
The hardest part is communicating with a device for the first time. The issue is
usually unrelated to Circuits.I2C. If you expand your searches to include
Python and C forums, you'll frequently find the answer.
If that fails, try posting a question to the Elixir
Forum. Tag the question with Nerves and it will
have a good chance of getting to the right people. Feel free to do this even if
you're not using Nerves.
Can I develop code that uses Circuits.I2C on my laptop?
You'll need to fake out the hardware. Code to do this depends on what your
hardware actually does, but here's one example:
	Compiling and testing Elixir Nerves on your host machine

Please share other examples if you have them.
Will it run on Arduino?
No. This only runs on Linux-based boards. If you're interested in controlling an
Arduino from a computer that can run Elixir, check out
nerves_uart for communicating via the
Arduino's serial connection or
firmata for communication using the
Arduino's Firmata protocol.
License
Code from the library is licensed under the Apache License, Version 2.0.



  

    
Porting Elixir/ALE to Circuits.I2C
    

The Circuits.I2C package is the next version of Elixir/ALE's I2C support.
If you're currently using Elixir/ALE, you're encouraged to switch. Here are some
benefits:
	Supported by both the maintainer of Elixir/ALE and a couple others. They'd
prefer to support Circuits.I2C issues.
	Much faster than Elixir/ALE.
	Simplified API

Circuits.I2C uses Erlang's NIF interface. NIFs have the downside of being able
to crash the Erlang VM. Experience with Elixir/ALE has given many of us
confidence that this won't be a problem.
Code modifications
Circuits.I2C is not a GenServer, so if you've added ElixirALE.I2C to a
supervision tree, you'll have to take it out and manually call
Circuits.I2C.open to obtain a reference. A common pattern is to create a
GenServer that is descriptive of what the I2C device does and have it be
responsible for all I2C calls.
The remain modifications should mostly be mechanical:
	Rename references to ElixirALE.I2C to Circuits.I2C and elixir_ale
to circuits_i2c
	Change calls to ElixirALE.I2C.start_link/2 to Circuits.I2C.open/1. You'll
need to remove the I2C address from the call to open. While you're at it,
review the arguments to open to not include any GenServer options.
	Add the I2C device's bus address to all of the read, write, and
write_read calls. We recommend making a short helper function that has
the I2C address.
	The read and write_read functions now return {:ok, result} tuples on
success so add code to handle that. Alternately, call read! or write_read!
and they will raise an exception if there's an error.
	Look for calls to I2C.read_device, I2C.write_device and
I2C.write_read_device and remove the _device part.
	Consider adding a call to Circuits.I2C.close/1 if there's an obvious place
to release the I2C. This is not strictly necessary since the garbage
collector will free unreferenced I2C references.
	If you manually implemented I2C bus retry logic, consider specifying the
:retries option to have Circuits.I2C retry for you.
	Change calls to ElixirALE.I2C.device_names/0 to Circuits.I2C.bus_names/0.

If you find that you have to make any other changes, please let us know via an
issue or PR so that other users can benefit.



  

    
Changelog
    

v1.2.2 - 2023-03-24
	Fixes	Add types.h compatibility header to hex package so that host MacOS builds
work again.



v1.2.1 - 2023-03-20
	Fixes	Detect I2C controllers that don't support 0-byte writes and revert to the
old detection heuristic. This fixes an issue on Beaglebones (AM335x) that
caused devices to be missed and kernel warnings to be logged.



v1.2.0 - 2023-03-17
	Changes	Improve device detection by using 0-byte writes on some I2C addresses and
1-byte reads on others. This matches the i2c-tools heuristic and detects at
least on more device that wasn't detected before.
	Simplified NIF by deleting a lot of flexibility that didn't end up being
useful. Also moved functionality around so that it could be implemented more
simply.



v1.1.0 - 2022-11-16
	Changes	Immediately close I2C bus references after discovery. Waiting for the GC to
collect them could cause intermittent failures in rare scenarios where
multiple I2C device discoveries are done close together. This likely only
affects CI in practice.
	Remove Erlang convenience functions since no one used them
	Require Elixir 1.10 or later. Previous versions probably work, but won't be
supported. This opens up the possibility of using Elixir 1.10+ features in
future releases.



v1.0.1 - 2021-12-28
	Fixes	Properly mark I/O bound functions in NIF.



v1.0.0 - 2021-10-20
This release only changes the version number. No code has changed.
v0.3.9
This release only has doc and build output cleanup. No code has changed.
v0.3.8
	New features
	Add Circuits.I2C.discover/2 and Circuits.I2C.discover_one/2. These
functions are intended for library authors wanting to provide good
suggestions or defaults to their users. See the hex docs for more
information. Thanks to Bruce Tate for the idea and PR.


	Improvements
	The stub I2C implementation is now used whenever MIX_ENV=test. While this
is not generally useful for testing code that uses Circuits.I2C, it does
prevent accidental use of real I2C buses in unit tests on those systems
with real I2C buses.



v0.3.7
	Improvements	Add I2C address in hex showing detected devices



v0.3.6
	Bug fixes	Add -fPIC to compilation flags to fix build with nerves_system_x86_64 and
other environments using the Musl C toolchains



v0.3.5
	Bug fixes	Reduce the number of I2C addresses scanned for detection to avoid confusing
some devices.



v0.3.4
This release should work on Erlang/OTP 20 - 22 and Elixir 1.4 and
newer. The CI process has been updated to verify more versions now.
	Bug fixes	Improve error message when bus doesn't exist



v0.3.3
	Bug fixes	Fix binary handling in NIF. This fixes segfaults and other errors when run
on Raspbian.



v0.3.2
	Bug fixes	Fix file handle leak when I2C bus references were garbage collected.



v0.3.1
	Bug fixes	Build C source under the _build directory so that changing targets
properly rebuilds the C code as well as the Elixir code.



v0.3.0
Print detected devices instead of an error.
v0.2.0
Minor text updates.
Remove i2c_ from i2c_address and i2c_bus.
v0.1.0
Initial release to hex.



  

    
Circuits.I2C 
    



      
Circuits.I2C lets you communicate with hardware devices using the I2C
protocol.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        address()

      


        I2C device address



    


    
      
        bus()

      


        I2C bus



    


    
      
        opt()

      


    


    
      
        present?()

      


        Function to report back whether a device is present



    





  
    Functions
  


    
      
        bus_names()

      


        Return a list of available I2C bus names.  If nothing is returned, it's
possible that the kernel driver for that I2C bus is not enabled or the
kernel's device tree is not configured. On Raspbian, run raspi-config and
look in the advanced options.



    


    
      
        close(i2c_bus)

      


        close the I2C bus



    


    
      
        detect_devices()

      


        Convenience method to scan all I2C buses for devices



    


    
      
        detect_devices(i2c_bus)

      


        Scan the I2C bus for devices by performing a read at each device address and
returning a list of device addresses that respond.



    


    
      
        device_present?(bus, address)

      


        Return whether a device is present



    


    
      
        discover(possible_addresses, present? \\ &device_present?/2)

      


        Scan all I2C buses for one or more devices



    


    
      
        discover_one(possible_addresses, present? \\ &device_present?/2)

      


        Scans all I2C buses for one specific device



    


    
      
        discover_one!(possible_addresses, present? \\ &device_present?/2)

      


        Same as discover_one/2 but raises on error



    


    
      
        info()

      


        Return info about the low level I2C interface



    


    
      
        open(bus_name)

      


        Open an I2C bus



    


    
      
        read(i2c_bus, address, bytes_to_read, opts \\ [])

      


        Initiate a read transaction to the I2C device at the specified address



    


    
      
        read!(i2c_bus, address, bytes_to_read, opts \\ [])

      


        Initiate a read transaction and raise on error



    


    
      
        write(i2c_bus, address, data, opts \\ [])

      


        Write data to the I2C device at address.



    


    
      
        write!(i2c_bus, address, data, opts \\ [])

      


        Write data to the I2C device at address and raise on error



    


    
      
        write_read(i2c_bus, address, write_data, bytes_to_read, opts \\ [])

      


        Write data to an I2C device and then immediately issue a read.



    


    
      
        write_read!(i2c_bus, address, write_data, bytes_to_read, opts \\ [])

      


        Write data to an I2C device and then immediately issue a read. Raise on errors.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: 0..127


      


I2C device address
This is a "7-bit" address for the device. Some devices specify an "8-bit"
address in their documentation. You can tell if you have an "8-bit" address
if it's greater than 127 (0x7f) or if the documentation talks about different
read and write addresses. If you have an 8-bit address, divide it by 2.

  



  
    
      
      Link to this type
    
    bus()


      
       
       View Source
     


  


  

      

          @type bus() :: reference()


      


I2C bus
Call open/1 to obtain an I2C bus reference and then pass it to the read
and write functions for interacting with devices.

  



  
    
      
      Link to this type
    
    opt()


      
       
       View Source
     


  


  

      

          @type opt() :: {:retries, non_neg_integer()}


      



  



  
    
      
      Link to this type
    
    present?()


      
       
       View Source
     


  


  

      

          @type present?() :: (bus(), address() -> boolean())


      


Function to report back whether a device is present
See discover/2 for how a custom function can improve device detection when
the type of device being looked for is known.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    bus_names()


      
       
       View Source
     


  


  

      

          @spec bus_names() :: [binary()]


      


Return a list of available I2C bus names.  If nothing is returned, it's
possible that the kernel driver for that I2C bus is not enabled or the
kernel's device tree is not configured. On Raspbian, run raspi-config and
look in the advanced options.
iex> Circuits.I2C.bus_names()
["i2c-1"]

  



  
    
      
      Link to this function
    
    close(i2c_bus)


      
       
       View Source
     


  


  

      

          @spec close(bus()) :: :ok


      


close the I2C bus

  



  
    
      
      Link to this function
    
    detect_devices()


      
       
       View Source
     


  


  

      

          @spec detect_devices() :: :"do not show this result in output"


      


Convenience method to scan all I2C buses for devices
This is only intended to be called from the IEx prompt. Programs should
use detect_devices/1.

  



  
    
      
      Link to this function
    
    detect_devices(i2c_bus)


      
       
       View Source
     


  


  

      

          @spec detect_devices(bus() | binary()) :: [address()] | {:error, term()}


      


Scan the I2C bus for devices by performing a read at each device address and
returning a list of device addresses that respond.
WARNING: This is intended to be a debugging aid. Reading bytes from devices
can advance internal state machines and might cause them to get out of sync
with other code.
iex> Circuits.I2C.detect_devices("i2c-1")
[4]
The return value is a list of device addresses that were detected on the
specified I2C bus. If you get back 'Hh' or other letters, then IEx
converted the list to an Erlang string. Run i v() to get information about
the return value and look at the raw string representation for addresses.
If you already have a reference to an open device, then you may pass its
reference to detect_devices/1 instead.

  



  
    
      
      Link to this function
    
    device_present?(bus, address)


      
       
       View Source
     


  


  

      

          @spec device_present?(bus(), address()) :: boolean()


      


Return whether a device is present
This function performs a simplistic check for an I2C device on the specified
bus and address. It's not perfect, but works enough to be useful. Be warned
that it does perform an I2C read on the specified address and this may cause
some devices to actually do something.

  



    

  
    
      
      Link to this function
    
    discover(possible_addresses, present? \\ &device_present?/2)


      
       
       View Source
     


  


  

      

          @spec discover([address()], present?()) :: [{binary(), address()}]


      


Scan all I2C buses for one or more devices
This function takes a list of possible addresses and an optional detection
function. It only scans addresses in the possible addresses list to avoid
disturbing unrelated I2C devices.
If a detection function is not passed in, a default one that performs a
simple read and checks whether it succeeds is used. If the desired device has
an ID register or other means of identification, the optional function should
try to query that. If passing a custom function, be sure to return false
rather than raise if there are errors.
A list of bus name and address tuples is returned. The list may be empty.
See also discover_one/2.

  



    

  
    
      
      Link to this function
    
    discover_one(possible_addresses, present? \\ &device_present?/2)


      
       
       View Source
     


  


  

      

          @spec discover_one([address()], present?()) ::
  {:ok, {binary(), address()}}
  | {:error, :not_found | :multiple_possible_matches}


      


Scans all I2C buses for one specific device
This function and discover_one!/2 are convenience functions for the use
case of helping a user find a specific device. They both call discover/2 with
a list of possible I2C addresses and an optional function for checking whether
the device is present.
This function returns an :ok or :error tuple depending on whether one and
only one device was found. See discover_one!/2 for the raising version.

  



    

  
    
      
      Link to this function
    
    discover_one!(possible_addresses, present? \\ &device_present?/2)


      
       
       View Source
     


  


  

      

          @spec discover_one!([address()], present?()) :: {binary(), address()}


      


Same as discover_one/2 but raises on error

  



  
    
      
      Link to this function
    
    info()


      
       
       View Source
     


  


  

      

          @spec info() :: map()


      


Return info about the low level I2C interface
This may be helpful when debugging I2C issues.

  



  
    
      
      Link to this function
    
    open(bus_name)


      
       
       View Source
     


  


  

      

          @spec open(binary() | charlist()) :: {:ok, bus()} | {:error, term()}


      


Open an I2C bus
I2C bus names depend on the platform. Names are of the form "i2c-n" where the
"n" is the bus number.  The correct bus number can be found in the
documentation for the device or on a schematic. Another option is to call
Circuits.I2C.bus_names/0 to list them for you.
I2c buses may be opened more than once. There is no need to share an I2C bus
reference between modules.
On success, this returns a reference to the I2C bus.  Use the reference in
subsequent calls to read and write I2C devices

  



    

  
    
      
      Link to this function
    
    read(i2c_bus, address, bytes_to_read, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec read(bus(), address(), pos_integer(), [opt()]) ::
  {:ok, binary()} | {:error, term()}


      


Initiate a read transaction to the I2C device at the specified address
Options:
	:retries - number of retries before failing (defaults to no retries)


  



    

  
    
      
      Link to this function
    
    read!(i2c_bus, address, bytes_to_read, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec read!(bus(), address(), pos_integer(), [opt()]) :: binary()


      


Initiate a read transaction and raise on error

  



    

  
    
      
      Link to this function
    
    write(i2c_bus, address, data, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec write(bus(), address(), iodata(), [opt()]) :: :ok | {:error, term()}


      


Write data to the I2C device at address.
Options:
	:retries - number of retries before failing (defaults to no retries)


  



    

  
    
      
      Link to this function
    
    write!(i2c_bus, address, data, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec write!(bus(), address(), iodata(), [opt()]) :: :ok


      


Write data to the I2C device at address and raise on error
Options:
	:retries - number of retries before failing (defaults to no retries)


  



    

  
    
      
      Link to this function
    
    write_read(i2c_bus, address, write_data, bytes_to_read, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec write_read(bus(), address(), iodata(), pos_integer(), [opt()]) ::
  {:ok, binary()} | {:error, term()}


      


Write data to an I2C device and then immediately issue a read.
This function is useful for devices that want you to write the "register"
location to them first and then issue a read to get its contents. Many
devices operate this way and this function will issue the commands
back-to-back on the I2C bus. Some I2C devices actually require that the read
immediately follows the write. If the target supports this, the I2C
transaction will be issued that way. On the Raspberry Pi, this can be enabled
globally with File.write!("/sys/module/i2c_bcm2708/parameters/combined", "1")
Options:
	:retries - number of retries before failing (defaults to no retries)


  



    

  
    
      
      Link to this function
    
    write_read!(i2c_bus, address, write_data, bytes_to_read, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec write_read!(bus(), address(), iodata(), pos_integer(), [opt()]) :: binary()


      


Write data to an I2C device and then immediately issue a read. Raise on errors.
Options:
	:retries - number of retries before failing (defaults to no retries)


  


        

      



  (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();






