

 circuits_gpio

 v1.0.0

 Table of contents

 	Elixir Circuits - GPIO

 	Porting Elixir/ALE to Circuits.GPIO

 	Changelog

 	Modules

 	:circuits_gpio

 	Circuits.GPIO

Elixir Circuits - GPIO

[image: Hex version]
[image: API docs]
[image: CircleCI]
Circuits.GPIO lets you control or read from GPIOs on Nerves or other Linux-based
devices.
If you're coming from Elixir/ALE, check out our porting guide.
Circuits.GPIO works great with LEDs, buttons, many kinds of sensors, and
simple control of motors. In general, if a device requires high speed
transactions or has hard real-time constraints in its interactions, this is not
the right library. For those devices, see if there's a Linux kernel driver.
Getting started
If you're natively compiling circuits_gpio on a Raspberry Pi or using Nerves,
everything should work like any other Elixir library. Normally, you would
include circuits_gpio as a dependency in your mix.exs like this:
def deps do
 [{:circuits_gpio, "~> 1.0"}]
end
One common error on Raspbian is that the Erlang headers are missing (ie.h),
you may need to install erlang with apt-get install erlang-dev or build Erlang
from source per instructions here.
Examples
Circuits.GPIO only supports simple uses of the GPIO interface in Linux, but
you can still do quite a bit. The following examples were tested on a Raspberry
Pi that was connected to an Erlang Embedded Demo
Board. There's nothing special about
either the demo board or the Raspberry Pi, so these should work similarly on
other embedded Linux platforms.
GPIO
A General Purpose
Input/Output (GPIO)
is just a wire that you can use as an input or an output. It can only be one of
two values, 0 or 1. A 1 corresponds to a logic high voltage like 3.3 V and a 0
corresponds to 0 V. The actual voltage depends on the hardware.
Here's an example of turning an LED on or off:
[image: GPIO LED schematic]
To turn on the LED that's connected to the net (or wire) labeled GPIO18, run
the following:
iex> {:ok, gpio} = Circuits.GPIO.open(18, :output)
{:ok, #Reference<...>}

iex> Circuits.GPIO.write(gpio, 1)
:ok

iex> Circuits.GPIO.close(gpio)
:ok
Note that the call to Circuits.GPIO.close/1 is not necessary, as the garbage
collector will free up any unreferenced GPIOs. It can be used to explicitly
de-allocate connections you know you will not need anymore.
Input works similarly. Here's an example of a button with a pull down resistor
connected.
[image: GPIO Button schematic]
If you're not familiar with pull up or pull down resistors, they're resistors
whose purpose is to drive a wire high or low when the button isn't pressed. In
this case, it drives the wire low. Many processors have ways of configuring
internal resistors to accomplish the same effect without needing to add an
external resistor. If you're using a Raspberry Pi, you can use the built-in
pull-up/pull-down resistors.
The code looks like this in Circuits.GPIO:
iex> {:ok, gpio} = Circuits.GPIO.open(17, :input)
{:ok, #Reference<...>}

iex> Circuits.GPIO.read(gpio)
0

Push the button down

iex> Circuits.GPIO.read(gpio)
1
If you'd like to get a message when the button is pressed or released, call the
set_interrupts function. You can trigger on the :rising edge, :falling edge
or :both.
iex> Circuits.GPIO.set_interrupts(gpio, :both)
:ok

iex> flush
{:circuits_gpio, 17, 1233456, 1}
{:circuits_gpio, 17, 1234567, 0}
:ok
Note that after calling set_interrupts, the calling process will receive an
initial message with the state of the pin. This prevents the race condition
between getting the initial state of the pin and turning on interrupts. Without
it, you could get the state of the pin, it could change states, and then you
could start waiting on it for interrupts. If that happened, you would be out of
sync.
Internal pull-up/pull-down
To connect or disconnect an internal pull-up or pull-down resistor to a GPIO
pin, call the set_pull_mode function.
iex> Circuits.GPIO.set_pull_mode(gpio, pull_mode)
:ok
Valid pull_mode values are :none :pullup, or :pulldown
Note that set_pull_mode is platform dependent, and currently only works for
Raspberry Pi hardware. Calls to set_pull_mode on other platforms will have no
effect. The internal pull-up resistor value is between 50K and 65K, and the
pull-down is between 50K and 60K. It is not possible to read back the current
Pull-up/down settings, and GPIO pull-up pull-down resistor connections are
maintained, even when the CPU is powered down.
To get the GPIO pin number for a gpio reference, call the pin function.
iex> Circuits.GPIO.pin(gpio)
17
Testing
Circuits.GPIO supports a "stub" hardware abstraction layer on platforms
without GPIO support and when MIX_ENV=test. The stub allows for some
limited unit testing without real hardware.
To use it, first check that you're using the "stub" HAL:
iex> Circuits.GPIO.info
%{name: :stub, pins_open: 0}
The stub HAL has 64 GPIOs. Each pair of GPIOs is connected. For example,
GPIO 0 is connected to GPIO 1. If you open GPIO 0 as an output and
GPIO 1 as an input, you can write to GPIO 0 and see the result on GPIO 1.
Here's an example:
iex> {:ok, gpio0} = Circuits.GPIO.open(0, :output)
{:ok, #Reference<0.801050056.3201171470.249048>}
iex> {:ok, gpio1} = Circuits.GPIO.open(1, :input)
{:ok, #Reference<0.801050056.3201171470.249052>}
iex> Circuits.GPIO.read(gpio1)
0
iex> Circuits.GPIO.write(gpio0, 1)
:ok
iex> Circuits.GPIO.read(gpio1)
1
The stub HAL is fairly limited, but it does support interrupts.
If Circuits.GPIO is used as a dependency the stub may not be present. To
manually enable it, set CIRCUITS_MIX_ENV to test and rebuild
circuits_gpio.
FAQ
How does Circuits.GPIO compare to Elixir/ALE?
Circuits.GPIO is almost Elixir/ALE 2.0. The API for Elixir/ALE became
difficult to change so we started again with Circuits.GPIO. The main
improvements are:
	Improved performance and lower resource usage
	Timestamps on interrupts
	A hardware abstraction layer to support multiple ways of interfacing with the
low level GPIO interfaces

See the Porting Guide for more information if you're an Elixir/ALE
user.
Where can I get help?
Most issues people have are on how to communicate with hardware for the first
time. Since Circuits.GPIO is a thin wrapper on the Linux sys class interface,
you may find help by searching for similar issues when using Python or C.
For help specifically with Circuits.GPIO, you may also find help on the nerves
channel on the elixir-lang Slack. Many
Nerves users also use Circuits.GPIO.
I tried turning on and off a GPIO as fast as I could. Why was it slow?
Please don't do that - there are so many better ways of accomplishing whatever
you're trying to do:
	If you're trying to drive a servo or dim an LED, look into PWM. Many
platforms have PWM hardware and you won't tax your CPU at all. If your
platform is missing a PWM, several chips are available that take I2C commands
to drive a PWM output.
	If you need to implement a wire level protocol to talk to a device, look for
a Linux kernel driver. It may just be a matter of loading the right kernel
module.
	If you want a blinking LED to indicate status, gpio really should
be fast enough to do that, but check out Linux's LED class interface. Linux
can flash LEDs, trigger off events and more. See nerves_leds.

If you're still intent on optimizing GPIO access, you may be interested in
gpio_twiddler.
Can I develop code that uses GPIO on my laptop?
See whether the "stub" HAL (described above) works for you or could be improved
to support your use case.
The following advice from Elixir/ALE may also be useful: You'll need to fake out
the hardware. Code to do this depends on what your hardware actually does, but
here's one example:
	Compiling and testing Elixir Nerves on your host machine

How do I call Circuits.GPIO from Erlang?
Circuits.GPIO provides an Erlang-friendly binding to simplify calls from
Erlang code. Instead of prefixing calls with: 'Elixir.Circuits.GPIO': you may
use the binding: circuits_gpio:. For example: circuits_gpio:open(5, output).

Porting Elixir/ALE to Circuits.GPIO

The Circuits.GPIO package is the next version of Elixir/ALE's GPIO support.
If you're currently using Elixir/ALE, you're encouraged to switch. Here are some
benefits:
	Supported by both the maintainer of Elixir/ALE and a couple others. They'd
prefer to support Circuits.GPIO issues.
	Much faster than Elixir/ALE - like it's not even close. The guideline is
still to use GPIOs for buttons, LEDs, and other low frequency devices and use
specialized device drivers for the rest. However, we know that's not always easy
and the extra performance is really nice to have.
	Included pull up/pull down support for Raspberry Pi. We'd like to include
this for other platforms as well. This was the single-most requested feature
for Elixir/ALE.
	Timestamped interrupt reports - This is makes it possible to measure time
deltas between GPIO changes with higher accuracy by removing variability from
messages sitting in queues and passing between processes
	Interrupt glitch detection - When the GPIO toggles faster than
Circuits.GPIO can handle, it can either synthesize an interrupt event or
suppress the event.
	Lower resource usage - Elixir/ALE created a GenServer and OS process for each
GPIO. Circuits.GPIO creates a NIF resource (Elixir Reference) for each
GPIO.

Circuits.GPIO uses Erlang's NIF interface. NIFs have the downside of being
able to crash the Erlang VM. Experience with Elixir/ALE has given many of us
confidence that this won't be a problem.
Code modifications
Circuits.GPIO is not a GenServer, so if you've added ElixirALE.GPIO to a
supervision tree, you'll have to take it out and manually call
Circuits.GPIO.open to obtain a reference. A common pattern is to create a
GenServer that wraps the GPIO and is descriptive of what the GPIO controls or
signals. Put the Circuits.GPIO.open call in your init/1 callback.
The remain modifications should mostly be mechanical:
	Rename references to ElixirALE.GPIO to Circuits.GPIO and elixir_ale
to circuits_gpio
	Change calls to ElixirALE.GPIO.start_link/2 to Circuits.GPIO.open/2.
While you're at it, review the arguments to open to not include any
GenServer options.
	Change calls to ElixirALE.GPIO.set_int/2 to
Circuits.GPIO.set_interrupts/3.
	Change the pattern match for the GPIO interrupt events to match 4 tuples.
They have the form {:circuits_gpio, <pin_number>, <timestamp>, <value>}
	Review calls to write/2 to ensure that they pass 0 or 1. ElixirALE
allowed users to pass true and false. That won't work. Running Dialyzer
should catch this change as well.
	Consider adding a call to Circuits.GPIO.close/1 if there's an obvious place
to release the GPIO. This is not strictly necessary since the garbage
collector will free unreferenced GPIOs.

If you find that you have to make any other changes, please let us know via an
issue or PR so that other users can benefit.

Changelog

v1.0.0 - 10-20-2021
This release only changes the version number. No code has changed.
v0.4.8
This release only has doc and build output cleanup. No code has changed.
v0.4.7
	Bug fixes	Fix hang when unloading the NIF. This bug caused :init.stop to never
return and anything else that would try to unload this module.
	Fix C compiler warnings with OTP 24

The minimum Elixir version has been changed from 1.4 to 1.6. Elixir 1.4 might
still work, but it's no longer being verified on CI.
v0.4.6
	Bug fixes	Fix quoting issue that was causing failures on Yocto. Thanks to Zander
Erasmus for this.

v0.4.5
	Bug fixes	Opening a GPIO to read its state won't clear the interrupt status of another
listener. Registering for interrupts a second time will still clear out the
first registree, though. That's a limitation of the interface. However, for
debugging, it can be nice to look at a GPIO without affecting the program
and this change allows for that.

v0.4.4
	Bug fixes	Add -fPIC to compilation flags to fix build with nerves_system_x86_64 and
other environments using the Musl C toolchains

v0.4.3
	Bug fixes
	Fix GPIO glitch suppression when interrupts were enabled. Glitch suppression
filters out transitions on a GPIO line that are too fast for Linux and the
NIF to see both the rising and falling edges. Turning it off synthesizes
events. You can identify synthesized events since they have the same
timestamp to the nanosecond. See Circuits.GPIO.set_interrupts/3.

	Improvement
	It's possible to enable the "stub" on Linux by setting
CIRCUITS_MIX_ENV=test. This can be useful for unit testing code that uses
Circuits.GPIO. Thanks to Enrico Rivarola for adding this!

v0.4.2
	Bug fixes	Fix pullup/pulldown support for the Raspberry Pi 4

v0.4.1
	Bug fixes	Fix a race condition on Raspbian where Circuits.GPIO would try to open the
GPIO sysfs file before udev had a chance to fix its permissions.
	Fix RPi platform detection on Raspbian so that pull-ups/pull-downs work
without passing any flags.

v0.4.0
The GPIO interrupt notification messages have been changed for consistency with
other circuits projects. The initial element of the tuple is now
:circuits_gpio, so messages will look like:
{:circuits_gpio, 19, 83268239, 1}
Please update your project if you call set_interrupts/2.
No more backwards incompatible changes are expected until after 1.0.
v0.3.1
	Bug fixes	Build C source under the _build directory so that changing targets
properly rebuilds the C code as well as the Elixir.

v0.3.0
	New features	Support pull_mode initializion in open/3.

v0.2.0
	New features	Add support for opening GPIOs to an initial value or to not change the
value. This removes a glitch if you want the GPIO to start out high (the
default was low) or if you want the GPIO to keep its current value.

v0.1.0
Initial release to hex.

:circuits_gpio

Erlang interface to Circuits.GPIO
Example Erlang code: circuits_gpio:open(5, output)

 Anchor for this section

 Summary

 Functions

 open(pin_number, pin_direction)

 See Circuits.GPIO.open/2.

 pin(gpio)

 See Circuits.GPIO.pin/1.

 read(gpio)

 See Circuits.GPIO.read/1.

 set_direction(gpio, pin_direction)

 See Circuits.GPIO.set_direction/2.

 set_interrupts(gpio, trigger)

 See Circuits.GPIO.set_interrupts/2.

 set_interrupts(gpio, trigger, opts)

 See Circuits.GPIO.set_interrupts/3.

 set_pull_mode(gpio, pull_mode)

 See Circuits.GPIO.set_pull_mode/2.

 write(gpio, value)

 See Circuits.GPIO.write/2.

 Anchor for this section

Functions

 Link to this function

 open(pin_number, pin_direction)

 View Source

See Circuits.GPIO.open/2.

 Link to this function

 pin(gpio)

 View Source

See Circuits.GPIO.pin/1.

 Link to this function

 read(gpio)

 View Source

See Circuits.GPIO.read/1.

 Link to this function

 set_direction(gpio, pin_direction)

 View Source

See Circuits.GPIO.set_direction/2.

 Link to this function

 set_interrupts(gpio, trigger)

 View Source

See Circuits.GPIO.set_interrupts/2.

 Link to this function

 set_interrupts(gpio, trigger, opts)

 View Source

See Circuits.GPIO.set_interrupts/3.

 Link to this function

 set_pull_mode(gpio, pull_mode)

 View Source

See Circuits.GPIO.set_pull_mode/2.

 Link to this function

 write(gpio, value)

 View Source

See Circuits.GPIO.write/2.

Circuits.GPIO

Control GPIOs from Elixir
If you're coming from Elixir/ALE, check out our porting guide.
Circuits.GPIO works great with LEDs, buttons, many kinds of sensors, and
simple control of motors. In general, if a device requires high speed
transactions or has hard real-time constraints in its interactions, this is not
the right library. For those devices, see if there's a Linux kernel driver.

 Anchor for this section

 Summary

 Types

 open_option()

 Options for open/3

 pin_direction()

 The GPIO direction (input or output)

 pin_number()

 A GPIO pin number. See your device's documentation for how these connect to wires

 pull_mode()

 Pull mode for platforms that support controllable pullups and pulldowns

 trigger()

 Trigger edge for pin change notifications

 value()

 GPIO logic value (low = 0 or high = 1)

 Functions

 close(gpio)

 Release the resources associated with the GPIO.

 info()

 Return info about the low level GPIO interface

 open(pin_number, pin_direction, options \\ [])

 Open a GPIO for use.

 pin(gpio)

 Get the GPIO pin number

 read(gpio)

 Read the current value on a pin.

 set_direction(gpio, pin_direction)

 Change the direction of the pin.

 set_interrupts(gpio, trigger, opts \\ [])

 Enable or disable pin value change notifications. The notifications
are sent based on the trigger parameter

 set_pull_mode(gpio, pull_mode)

 Enable or disable internal pull-up or pull-down resistor to GPIO pin

 write(gpio, value)

 Set the value of a pin. The pin should be configured to an output
for this to work.

 Anchor for this section

Types

 Link to this type

 open_option()

 View Source

 @type open_option() ::
 {:initial_value, value() | :not_set} | {:pull_mode, pull_mode()}

Options for open/3

 Link to this type

 pin_direction()

 View Source

 @type pin_direction() :: :input | :output

The GPIO direction (input or output)

 Link to this type

 pin_number()

 View Source

 @type pin_number() :: non_neg_integer()

A GPIO pin number. See your device's documentation for how these connect to wires

 Link to this type

 pull_mode()

 View Source

 @type pull_mode() :: :not_set | :none | :pullup | :pulldown

Pull mode for platforms that support controllable pullups and pulldowns

 Link to this type

 trigger()

 View Source

 @type trigger() :: :rising | :falling | :both | :none

Trigger edge for pin change notifications

 Link to this type

 value()

 View Source

 @type value() :: 0 | 1

GPIO logic value (low = 0 or high = 1)

 Anchor for this section

Functions

 Link to this function

 close(gpio)

 View Source

 @spec close(reference()) :: :ok

Release the resources associated with the GPIO.
This is optional. The garbage collector will free GPIO resources that aren't in
use, but this will free them sooner.

 Link to this function

 info()

 View Source

 @spec info() :: map()

Return info about the low level GPIO interface
This may be helpful when debugging issues.

 Link to this function

 open(pin_number, pin_direction, options \\ [])

 View Source

 @spec open(pin_number(), pin_direction(), [open_option()]) ::
 {:ok, reference()} | {:error, atom()}

Open a GPIO for use.
pin should be a valid GPIO pin number on the system and pin_direction
should be :input or :output. If opening as an output, then be sure to set
the :initial_value option if you need the set to be glitch free.
Options:
	:initial_value - Set to :not_set, 0 or 1 if this is an output.
:not_set is the default.
	:pull_mode - Set to :not_set, :pullup, :pulldown, or :none for an
 input pin. :not_set is the default.

 Link to this function

 pin(gpio)

 View Source

 @spec pin(reference()) :: pin_number()

Get the GPIO pin number

 Link to this function

 read(gpio)

 View Source

 @spec read(reference()) :: value()

Read the current value on a pin.

 Link to this function

 set_direction(gpio, pin_direction)

 View Source

 @spec set_direction(reference(), pin_direction()) :: :ok | {:error, atom()}

Change the direction of the pin.

 Link to this function

 set_interrupts(gpio, trigger, opts \\ [])

 View Source

 @spec set_interrupts(reference(), trigger(), list()) :: :ok | {:error, atom()}

Enable or disable pin value change notifications. The notifications
are sent based on the trigger parameter:
	:none - No notifications are sent
	:rising - Send a notification when the pin changes from 0 to 1
	:falling - Send a notification when the pin changes from 1 to 0
	:both - Send a notification on all changes

Available Options:
	suppress_glitches - It is possible that the pin transitions to a value
and back by the time that Circuits GPIO gets to process it. This controls
whether a notification is sent. Set this to false to receive notifications.
	receiver - Process which should receive the notifications.
Defaults to the calling process (self())

Notifications look like:
{:circuits_gpio, pin_number, timestamp, value}
Where pin_number is the pin that changed values, timestamp is roughly when
the transition occurred in nanoseconds since host system boot time,
and value is the new value.
NOTE: You will need to store the Circuits.GPIO reference somewhere (like
your GenServer's state) so that it doesn't get garbage collected. Event
messages stop when it gets collected. If you only get one message and you are
expecting more, this is likely the case.

 Link to this function

 set_pull_mode(gpio, pull_mode)

 View Source

 @spec set_pull_mode(reference(), pull_mode()) :: :ok | {:error, atom()}

Enable or disable internal pull-up or pull-down resistor to GPIO pin

 Link to this function

 write(gpio, value)

 View Source

 @spec write(reference(), value()) :: :ok

Set the value of a pin. The pin should be configured to an output
for this to work.

!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

