

 Chi-SquaredFit

 v2.0.1

 Table of contents

 	Basic usage of the Chi2fit package

 	Forecasting - based on empirical data

 	Forecasting - fit to a known distribution

 	Forecasting - bootstrapping

 	Backlog Forecasting - non-equilibrium

 	Throughput - Multiple Teams - Multi-plot

 	Forecasting - using Cycle Times

 	Modules

 	Chi2fit.CSV

 	Chi2fit.Cli

 	Chi2fit.Collector

 	Chi2fit.Distribution

 	Chi2fit.Distribution.Bernoulli

 	Chi2fit.Distribution.BiModal

 	Chi2fit.Distribution.Coin

 	Chi2fit.Distribution.Constant

 	Chi2fit.Distribution.Dice

 	Chi2fit.Distribution.Erlang

 	Chi2fit.Distribution.Exponential

 	Chi2fit.Distribution.Frechet

 	Chi2fit.Distribution.MultiModal

 	Chi2fit.Distribution.Nakagami

 	Chi2fit.Distribution.Normal

 	Chi2fit.Distribution.Poisson

 	Chi2fit.Distribution.SEP

 	Chi2fit.Distribution.TracyWidom

 	Chi2fit.Distribution.TriModal

 	Chi2fit.Distribution.Uniform

 	Chi2fit.Distribution.Utilities

 	Chi2fit.Distribution.Wald

 	Chi2fit.Distribution.Weibull

 	Chi2fit.Distribution.Wishart

 	Chi2fit.FFT

 	Chi2fit.Fit

 	Chi2fit.Gnuplotlib

 	Chi2fit.Math

 	Chi2fit.Matrix

 	Chi2fit.MonteCarlo

 	Chi2fit.Roots

 	Chi2fit.Statistics

 	Chi2fit.Times

 	Chi2fit.Utilities

 	NotebookUnit.Case

 	Chi2fit.Distribution.FunctionNotSupportedError

 	Chi2fit.Distribution.Utilities.UnsupportedDistributionError

 	Chi2fit.Statistics.UnknownSampleErrorAlgorithmError

Basic usage of the Chi2fit package

This notebook is based on Piotr Przetacznik's IElixir.
More information on Chi2fit can be found at:
	Docker image
	Github
	Hex.pm

What to find in this notebook?
	Example notebooks
	Elixir tutorial
	Chi2fit Package
	Available functions
	Help	Help on modules
	Help on functions

	Additional packages
	Usage
	Special atoms
	Inline images
	Command history

Example notebooks
A list of the notebooks that are available:
	README.ipynb - this notebook ;-)
	Forecasting-empirical-data.ipynb - directly using the empirical data to forecast
	Forecasting-bootstrapping.ipynb - estimation of the error of the forecast because the data set is limited
	Forecasting-fit-to-known-distribution.ipynb - description of the empirical data by a known probability distribution and use this to forecast
	Forecasting-non-equilibrium.ipynb - analysis of changes in delivery rate to choose the most relevant and recent subsequence in the data set
	Forecasting-multiplot.ipynb - demonstrates the use of multi plots
	Forecasting-cycle-time.ipynb - illustrates analysis based on cycle time

The folder 'data' contains samples to use:
	team.csv - data set containing less than 900 completion dates

A suggested reading order is shown below.
alias Graphvix.Graph, as: G
g = G.new node: [shape: "plaintext"]
{_, v1} = G.add_vertex g, "README.ipynb"
{_, v2} = G.add_vertex g, "Forecasting-empirical-data.ipynb"
{_, v3} = G.add_vertex g, "Forecasting-bootstrapping.ipynb"
{_, v4} = G.add_vertex g, "Forecasting-fit-to-known-distribution.ipynb"
{_, v5} = G.add_vertex g, "Forecasting-non-equilibrium.ipynb"
{_, v6} = G.add_vertex g, "Forecasting-multiplot.ipynb"
{_, v7} = G.add_vertex g, "Forecasting-cycle-time.ipynb"
G.add_edge g, v1, v2
G.add_edge g, v2, v3
G.add_edge g, v2, v4
G.add_edge g, v4, v5
G.add_edge g, v2, v6
G.add_edge g, v4, v7
:"do not show this result in output"
G.compile g, "/app/notebooks/images/readme", :png
{:"this is an inline image", src: "/app/notebooks/images/readme.png"}
[image: png]
Several examples are included. Use the menu File -> open to explore which ones are available. Use
thse to learn more about how to use Chi2fit or copy these as a basis for your own notes.
Elixir tutorial
The notebooks are based on Jupyter and on the Elixir kernel. Commands and statements are entered using the language Elixir. There are many good tutorials on Elixir.
A good starting point is Elixir's home.
New to Elixir? An introduction to Elixir can be found here.
Chi2fit Package
The Chi2fit package consists of the (Elixir) modules:
	Distribution
	FFT
	Fit
	Matrix
	Root
	Utilities

And a module for drawing charts using Gnuplot:
	Gnuplotlib

Finally, a contains the module Chi2fit.Cli for command line use outside of notebooks:
	[Cli](* Cli

List of all available modules (see https://stackoverflow.com/questions/41733712/elixir-list-all-modules-in-namespace):
:application.load :chi2fit
with {:ok, list} <- :application.get_key(:chi2fit, :modules) do
 list |> Enum.filter(& &1 |> Module.split |> Enum.take(1) == ~w|Chi2fit|)
end
[Chi2fit.Cli, Chi2fit.Distribution, Chi2fit.Distribution.UnsupportedDistributionError, Chi2fit.FFT, Chi2fit.Fit, Chi2fit.Matrix, Chi2fit.Roots, Chi2fit.Utilities, Chi2fit.Utilities.UnknownSampleErrorAlgorithmError]
Available functions
The functions provided by the modules are visible using the export function:
exports Chi2fit.Distribution
guess/1 guess/2 guess/3 model/1 model/2
Help
For all modules and function 'help' is available using the builtin command h.
Help on modules
h Chi2fit.Fit

 Forecasting - based on empirical data - Chi-SquaredFit v2.0.1

Forecasting - based on empirical data

This notebook describes how to use Chi2Fit for simple forecasting. This is illustrated for a team that takes up work items, exercises their expertise to complete the work. It shows one way for answering the questions:
	duration - how many iterations does it take to complete a certain number of items?
	completed items - how many items can be completed in a certain number of iterations?

This note shows (a) what data to use, (b) how to read in the data, (c) estimate the average and variation to answer the above questions.
The advantages of this approach are:
	the data (delivery rate or throughput or production rate) needed is easy to obtain,
	straightforward way to obtain average and variation,
	relatively small number of data points are needed (15 - 50 at most),
	the data is empirical and based on what the team delivered in the (recent) past.

The disadvantages include:
	it assumes that the delivery rate of the team is constant over time,
	gathering of data is slow: every iteration provides an extra data point,
	it does not take into account errors and uncertainties in the data.

Some of the disadvantages are addressed in other notebooks.
Related links
Troy Magennis has written excellent tooling that supports all of features demonstrated in this note and many more.
How to use this notebook
	Copy your team's data in In[2]
	Change any simulation parameters in In[4]
	Run the simulation to forecast duration
	Run the simulation to forecast the number of completed item

Table of contents
	Set-up
	Data and simulation set-up
	Simple forecast using the empirical data	Forecast: Duration
	Forecast: Completed items

	References

Set-up
alias Chi2fit.Utilities, as: U
alias Gnuplotlib, as: P
Gnuplotlib
Data and simulation set-up
As an example consider the throughput of completed backlog items. At the end of a fixed time period we count the number of backlog items that a team completes. Partially completed items are excluded from the count.
The numbers corresponding to the most recent times are at the head of the list.
Team data
data = [3,3,4,4,7,5,1,11,5,6,3,6,6,5,4,10,4,5,8,2,4,12,5]
[3, 3, 4, 4, 7, 5, 1, 11, 5, 6, 3, 6, 6, 5, 4, 10, 4, 5, 8, 2, 4, 12, 5]
A visualization of the data using a histogram or frequency chart is shown below. The horizontal axis indicates the number of completed items in an iteration. The vertical axis shows how often a certain throughput occured.
P.histogram(data,
 plottitle: "Throughput histogram",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Frequency",
 yrange: '[0:7]')
:"this is an inline image"
[image: png]
Simulation settings
Other parameters that affect the forecasting are listed below. Please adjust to your needs.
The size of the backlog, e.g. 100 backlog items
size = 100

Number of iterations to use in the Monte Carlo
iterations = 1000

Number of iterations to forecast the number of completed items
periods = 6
6
Simple forecast using the empirical data
Using the (throughput) data we simulate an iteration by randomly drawing a number from the data. We do this repeatedly until the sum of the numbers equals or exceeds the size of the backlog. The number of draws needed to deplete the backlog is the estimate of many iterations it takes to complete all backlog items.
We just described 1 simulation or run. If we do this many times we will find a different number of iterations needed to finish all items. This gives an average and variation.
A variation on this is to draw a fixed number of times and sum the numbers that have been drawn. The sum is an estimate of the number of items we expect to complete in this many iterations.
This procedure is also known as Monte Carlo and was first described in [1]. A gentle introduction to Monte Carlo simulations is given in [2].
Error
Due to the uncertainty in the number of completed items per iteration, the simulation runs will give different results. One can calculate the average and variance of the results. The square root of the variance approximates the error in the estimate. Because it originates from the statistical variation in the throughput data, this erroris known as a statistical error.
Forecast: Duration
Using the histogram data for the throughput we perform a Monte Carlo simulation to get an estimation for the number of iterations needed to deplete the backlog. Since for a large enough number of samples results of a Monte Carlo simulation approximate the normal distribution. This provides a range for the uncertainty of the number of iterations. We express this as a probability using percentages.
{avg,sd,all} = U.mc iterations, U.forecast_duration(data, size),collect_all?: true
U.display {avg,sd,:+}
50% => 20.0 units
84% => 22.0 units
97.5% => 24.0 units
99.85% => 27.0 units

:ok
The interpretation is that in 50% of the (simulation) runs all items have been completed with 20 iterations. And in 84% of the runs this took 22 iterations. We expect that in 16% of the times it will take more than 22 iterations to complete all items.
P.histogram(all,
 plottitle: "Monte Carlo result for duration",
 xlabel: "Duration (number of iterations)",
 ylabel: "Frequency",
 xrange: '[0:30]')
:"this is an inline image"
[image: png]
Forecast: Completed items
{avg,sd,all} = U.mc iterations, U.forecast_items(data,periods), collect_all?: true
U.display {avg,sd,:-}
50% => 33.0 units
84% => 26.0 units
97.5% => 20.0 units
99.85% => 13.0 units

:ok
Here, the interpretation is that in 50% of the runs 32 work items or more have been completed in 6 iterations. While in 84% of the runs 26 or more work items have been completed.
Finally, we expect with near certainty to always complete 13 work items or more.
P.histogram(all,
 plottitle: "Monte Carlo result for completed items after #{periods} iterations",
 xlabel: "Completed items (count)",
 ylabel: "Frequency",
 xrange: '[0:75]')
:"this is an inline image"
[image: png]
References
[1] Metropolis, N.; Ulam, S. (1949). "The Monte Carlo Method". Journal of the American Statistical Association. 44 (247): 335–341.
[2] Kroese, D. P.; Taimre, T.; Botev, Z.I. (2011). Handbook of Monte Carlo Methods. New York: John Wiley & Sons. p. 772. ISBN 978-0-470-17793-8.

 Forecasting - fit to a known distribution - Chi-SquaredFit v2.0.1

Forecasting - fit to a known distribution

Fitting data to known distributions use is done using Chi2Fit.
This notebook describes how to use Chi2Fit for simple forecasting. This is illustrated for a team that takes up work items, exercises their expertise to complete the work. It shows one way for answering the questions:
duration - how many iterations does it take to complete a certain number of items?
completed items - how many items can be completed in a certain number of iterations?
This note shows (a) what data to use, (b) how to read in the data, (c) assume a Poisson model for the data, and (d) estimate the average and variation to answer the above questions.
The advantages of this approach over directly fitting data (as shown in the notebook 'Forecasting-empirical-data') are:
	the Poisson distribution most often is a reasonable approximation for the team's throughtpu data,
	using the this assumption provides more strict bounds on the delivery rate parameter,
	the forecastting contains less variability

The disadvantages include:
	it assumes that the delivery rate of the team is constant over time,
	it assumes the Poisson model is reasonable enough model to describe the data.

Table of contents
	Set-up
	Data and simulation set-up
	Preparation
	Forecasting using a Poisson distribution
	Rate error propagation: Total Monte Carlo
	References

Set-up
alias Chi2fit.Distribution, as: D
alias Chi2fit.Fit, as: F
alias Chi2fit.Matrix, as: M
alias Chi2fit.Utilities, as: U
alias Gnuplotlib, as: P
alias Exboost.Math
Exboost.Math
Data and simulation set-up
As an example consider the throughput of completed backlog items. At the end of a fixed time period we count the number of backlog items that a teram completes. Partially completed items are excluded from the count.
data = [3,3,4,4,7,5,1,11,5,6,3,6,6,5,4,10,4,5,8,2,4,12,5]
[3, 3, 4, 4, 7, 5, 1, 11, 5, 6, 3, 6, 6, 5, 4, 10, 4, 5, 8, 2, 4, 12, 5]
P.histogram(data,
 plottitle: "Throughput histogram",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Frequency",
 yrange: '[0:7]')
:"this is an inline image"
[image: png]
Other parameters that affect the forecasting are listed below. Please adjust to your needs.
The size of the backlog, e.g. 100 backlog items
size = 100

Number of iterations to use in the Monte Carlo
iterations = 1000

The size of bins for grouping the data
binsize = 1

Number of probes to use in the chi2 fit
probes = 10_000

The range of the parameter to look for a (global) minimum
initial = {1,10}
{1, 10}
Preparation
Next, we convert the throughput data to a histogram. To this end we group the data in bins of size 1 starting at 0.
hdata = U.to_bins data, {binsize,0}
[{1, 0.043478260869565216, 0.0058447102657877, 0.13689038224309594}, {2, 0.08695652173913043, 0.02977628442357071, 0.1905937209791003}, {3, 0.21739130434782608, 0.1263699563343216, 0.33774551477037923}, {4, 0.43478260869565216, 0.3160946312914347, 0.5600249434832333}, {5, 0.6521739130434783, 0.5263221461493021, 0.7626298741894857}, {6, 0.782608695652174, 0.6622544852296207, 0.8736300436656784}, {7, 0.8260869565217391, 0.709703289667655, 0.9080712005244068}, {8, 0.8695652173913043, 0.7585954661422599, 0.9405937209791002}, {10, 0.9130434782608695, 0.8094062790208998, 0.9702237155764294}, {11, 0.9565217391304348, 0.8631096177569041, 0.9941552897342123}, {12, 1.0, 0.9225113769324543, 1.0}]
The data returned contains a list of tuples each describing a bin:
	the end-point of the bin,
	the proportional number of events for this bin (the total count is normalized to one),
	the lower value of the error bound,
	the upper value of the error bound.

As can be seen the sizes of the lower and upper bounds are different in value, i.e. they are asymmetrical. The contribution or weight to the likelihood function used in fitting known distributions will de different depending on whether the observed value if larger or smaller than the predicted value. This is specified by using the option :linear (see below). See [3] for details.
P.ecdf(hdata,
 plottitle: "Empirical CDF",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Probability",
 xrange: '[0:15]')
:"this is an inline image"
[image: png]
Forecasting using a Poisson distribution
Instead of directly using the raw data captured one can also use a known probability distribution. The parameter of the distribution is matched to the data. After matching the parameter value one uses the known distribution to forecast.
Here, we will use the Poisson distribution [1]. This basically assumes that the data points are independent of each other.
The code below uses basic settings of the commands provided by Chi2Fit. More advanced options can be found at [2]. First a fixed number of random parameter values are tried to get a rough estimate. The option probes equals the number of tries. Furthermore, since we are fitting a probability distribution which has values on the interval [0,1] the errors are asymmetrical. This is specified by the option linear.
model = D.model "poisson"
options = [probes: probes, smoothing: false, model: :linear, saved?: true]
result = {_,parameters,_,saved} = F.chi2probe hdata, [initial], {Distribution.cdf(model), &F.nopenalties/2}, options
U.display result
Initial guess:
 chi2: 3.7680909998944285
 pars: [5.467701988785316]
 ranges: {[5.26279288835782, 5.687565561629632]}

:ok
The errors reported is the found range of parameter values where the corresponding chi2 values are within 1 of the found minimum value.
After roughly locating the minimum we do a more precise (and computationally more expensive) search for the minimum.
options = [{:probes,saved}|options]
result = {_,cov,parameters,_} = F.chi2fit hdata, {parameters, Distribution.cdf(model), &F.nopenalties/2}, 10, options
U.display(hdata,model,result,options)
Final:
 chi2: 3.7680887442307553
 Degrees of freedom: 10
 gradient: [-4.284788519377549e-9]
 parameters: [5.4680263772768605]
 errors: [0.21599806132547897]
 ranges:
 chi2: 3.7680887442307553 - 4.752487946555217
 parameter: 5.26279288835782 - 5.687565561629632

:ok
For a (local) minimum the value of the gradient should be very close to zero.
P.ecdf(hdata,
 plottitle: "Fit of Poisson to CDF",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Probability",
 xrange: '[0:15]',
 title: "Poisson",
 func: & Distribution.cdf(model).(&1,parameters))
:"this is an inline image"
[image: png]
rate = hd(parameters)
pdf = fn x -> :math.pow(rate,x)*:math.exp(-rate)/Math.tgamma(x+1) end
P.pdf(data,
 plottitle: "Fit of PDF to Poisson",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Frequency",
 yrange: '[0:0.35]',
 pdf: pdf,
 title: "Poisson")
:"this is an inline image"
[image: png]
Again, using a Monte Carlo simulation we estimate the number of iterations and the range to expect.
{avg,sd,all} = U.mc(iterations, U.forecast_duration(fn -> Distribution.random(model).(parameters) end, size), collect_all?: true)
U.display {avg,sd,:+}
50% => 19.0 units
84% => 21.0 units
97.5% => 23.0 units
99.85% => 25.0 units

:ok
P.histogram(all,
 plottitle: "Monte Carlo simulation for duration",
 xlabel: "Duration (number of iterations)",
 ylabel: "Frequency",
 xrange: '[0:30]')
:"this is an inline image"
[image: png]
Rate error propagation: Total Monte Carlo
In the results of a Monte Carlo simulation the errors reported and the range of the number of iterations is the statistical error associated with the Monte Carlo simulation. It dopes not take into account the uncertainty of the parameter used in the fitted probability distribution function.
In Total Monte Carlo [4] multiple Monte Carlo simulations are done that correspond to the extreme values of the error bounds of the used parameters. The error results is of a different nature than the statistical error from the Monte Carlo simulation. These error reported separately.
Pick up the error in the paramater value
param_errors = cov |> M.diagonal |> Enum.map(fn x->x|>abs|>:math.sqrt end)
[sd_rate] = param_errors

{avg_min,_} = U.mc(iterations, fn -> U.forecast(fn -> Distribution.random(model).([rate-sd_rate]) end, size) end)
{avg_max,_} = U.mc(iterations, fn -> U.forecast(fn -> Distribution.random(model).([rate+sd_rate]) end, size) end)

sd_min = avg - avg_max
sd_plus = avg_min - avg

IO.puts "Number of iterations to complete the backlog:"
IO.puts "#{Float.round(avg,1)} (+/- #{Float.round(sd,1)}) (-#{Float.round(sd_plus,1)} +#{Float.round(sd_min,1)})"
Number of iterations to complete the backlog:
18.8 (+/- 1.9) (-0.7 +0.8)

:ok
The first error is symmetric while the second error reported is asymmetric.
Combining the errors
We now have estimated two erros which have a different origin:
	statistical error caused by the nature of the Poisson distribution as determined in Forecasting using a Poisson distribution, and
	systematic error caused by the error in the deliveray rate in this section

Making the assumption that both are Gaussian - which is true for the systematic error but which is false for the systematic error - allows us to combine the two by quadratically addition.
sd_avg = (sd_plus + sd_min)/2
total = :math.sqrt sd*sd + sd_avg*sd_avg
U.display {avg,total,:+}
50% => 19.0 units
84% => 21.0 units
97.5% => 23.0 units
99.85% => 25.0 units

:ok
References
[1] Poisson distribution, https://en.wikipedia.org/wiki/Poisson_distribution/

[2] Chi2Fit, Pieter Rijken, 2018, https://hex.pm/packages/chi2fit

[3] Asymmetric errors, Roger Barlow, Manchester University, UK and Stanford University, USA, PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003, https://www.slac.stanford.edu/econf/C030908/papers/WEMT002.pdf

[4] Efficient use of Monte Carlo: uncertainty propagation, D. Rochman et. al., Nuclear Science and Engineering, 2013, ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/fastTMC.pdf

 Forecasting - bootstrapping - Chi-SquaredFit v2.0.1

Forecasting - bootstrapping

This notebook describes how to use Chi2Fit for simple forecasting. This is illustrated for a team that takes up work items, exercises their expertise to complete the work. It shows one way for answering the questions:
	duration - how many iterations does it take to complete a certain number of items?
	completed items - how many items can be completed in a certain number of iterations?

This note addresses one type of error introduced by the data set.
The data set that is available always has a limited number of elements and represents an incomplete population from the (assumed) true distribution.
Boostrapping [3] is a technique to estimate error due to having an incomplete distribution.
Table of contents
	Set-up
	Data and simulation set-up
	Simple forecast using the empirical data
	Bootstrapping
	References

Set-up
alias Chi2fit.Utilities, as: U
alias Gnuplotlib, as: P
Gnuplotlib
Data and simulation set-up
As an example consider the throughput of completed backlog items. At the end of a fixed time period we count the number of backlog items that a team completes. Partially completed items are excluded from the count.
The numbers corresponding to the most recent times are at the head of the list.
data = [3,3,4,4,7,5,1,11,5,6,3,6,6,5,4,10,4,5,8,2,4,12,5]
[3, 3, 4, 4, 7, 5, 1, 11, 5, 6, 3, 6, 6, 5, 4, 10, 4, 5, 8, 2, 4, 12, 5]
Other parameters that affect the forecasting are listed below. Please adjust to your needs.
The size of the backlog, e.g. 100 backlog items
size = 100

Number of iterations to use in the Monte Carlo
iterations = 1000
6
Simple forecast using the empirical data
Using the (throughput) data we simulate an iteration by randomly drawing a number from the data. We do this repeatedly until the sum of the numbers equals or exceeds the size of the backlog. The number of draws needed to deplete the backlog is the estimate of many iterations it takes to complete all backlog items.
We just described 1 simulation or run. If we do this many times we will find a different number of iterations needed to finish all items. This gives an average and variation.
This procedure is also known as Monte Carlo and was first described in [1]. A gentle introduction to Monte Carlo simulations is given in [2].
Error
Due to the uncertainty in the number of completed items per iteration, the simulation runs will give different results. One can calculate the average and variance of the results. The square root of the variance approximates the error in the estimate. Because it originates from the statistical variation in the throughput data, this erroris known as a statistical error.
Duration
Using the histogram data for the throughput we perform a Monte Carlo simulation to get an estimation for the number of iterations needed to deplete the backlog. Since for a large enough number of samples results of a Monte Carlo simulation approximate the normal distribution. This provides a range for the uncertainty of the number of iterations. We express this as a probability using percentages.
{avg,sd,all} = U.mc iterations, U.forecast_duration(data, size), collect_all?: true
U.display {avg,sd,:+}
50% => 20.0 units
84% => 22.0 units
97.5% => 24.0 units
99.85% => 26.0 units

:ok
The interpretation is that in 50% of the (simulation) runs all items have been completed with 20 iterations. And in 84% of the runs this took 22 iterations. We expect that in 16% of the times it will take more than 22 iterations to complete all items.
P.histogram(all,
 plottitle: "Monte Carlo result for duration",
 xlabel: "Duration (number of iterations)",
 ylabel: "Frequency",
 xrange: '[0:30]')
:"this is an inline image"
[image: png]
Bootstrapping
fun = fn dat,_k -> U.mc(iterations, U.forecast_duration(dat, size)) end
boot = U.bootstrap(100, data, fun)
[{18.057, 2.1484298918047053}, {20.349, 1.6177759424592748}, {18.225, 1.9016768915880558}, {20.088, 2.0391802274443536}, {21.711, 2.5352473252130623}, {17.193, 1.8269512856121781}, {17.216, 2.144141786356497}, {17.706, 1.7508752097165556}, {17.55, 2.1277922830953178}, {17.007, 2.3492447722619305}, {23.572, 3.319761437212019}, {20.332, 2.4814866511831135}, {18.971, 1.9349829456612866}, {21.252, 2.079061326656818}, {19.864, 2.629354293357961}, {19.419, 2.6323827609221278}, {18.126, 2.23206720328936}, {16.728, 2.216757993106147}, {16.001, 1.5436965375357927}, {19.286, 2.219054753718351}, {15.933, 2.2078294771109355}, {19.733, 1.926061006302765}, {18.191, 1.6045307725313396}, {20.916, 1.9096973582219747}, {19.163, 2.412142408731281}, {18.16, 2.1039011383617776}, {18.878, 1.724852457458321}, {18.99, 1.7714118662806857}, {16.448, 1.88130167703109}, {16.683, 1.8543222481542827}, {18.131, 2.855142553358771}, {20.501, 2.298695064596435}, {18.067, 1.9966249021786615}, {22.284, 2.377255560515107}, {17.287, 1.8837810382313565}, {19.11, 2.1844678985968184}, {16.282, 1.982038344735043}, {14.194, 1.6572157373136456}, {17.461, 1.8570080775268478}, {20.87, 2.706861651433259}, {20.603, 2.6494133312867563}, {20.788, 2.232275968602459}, {19.426, 2.0441438305559654}, {19.877, 2.3366366854947787}, {20.15, 1.9584432593261454}, {18.884, 2.079553798294249}, {18.337, 2.0874460472069822}, {18.281, 1.8061115690897942}, {21.576, ...}, {...}, ...]
list = boot |> Enum.map(&elem(&1,0))
P.histogram(list,
 plottitle: "Bootstrap result",
 xlabel: "Average duration (number of iterations)",
 ylabel: "Frequency",
 xrange: '[0:30]')
:"this is an inline image"
[image: png]
The average of the bootstrap results
avg_boot = U.moment(list,1)

The error (standard deviation) as a result from the bootstrap
sd_boot = :math.sqrt U.momentc(list,2,avg_boot)

U.display {avg_boot,sd_boot,:+}
50% => 20.0 units
84% => 22.0 units
97.5% => 24.0 units
99.85% => 25.0 units

:ok
This error is of a different nature than the statistical error determined above and is known as a systematic error. It is custom to report these separately where the first number between parenthese refers to the statistical error and the second number between brackets refers to the systematic error.
duration = 20.0 (+/- 2.0) (+/- 2.0) iterations
As an approximation one can (try to) combine the two by quadratically adding them as shown below.
Note: Strictly this is not correct because it assumes that both errors are Gaussian (normally) distributed which is in general not true for systematic errors.
sd_total = :math.sqrt sd*sd + sd_boot*sd_boot
U.display {avg, sd_total, :+}
50% => 20.0 units
84% => 23.0 units
97.5% => 26.0 units
99.85% => 28.0 units

:ok
References
[1] Metropolis, N.; Ulam, S. (1949). "The Monte Carlo Method". Journal of the American Statistical Association. 44 (247): 335–341.
[2] Kroese, D. P.; Taimre, T.; Botev, Z.I. (2011). Handbook of Monte Carlo Methods. New York: John Wiley & Sons. p. 772. ISBN 978-0-470-17793-8.
[3] Bootstrapping, http://t-redactyl.io/blog/2015/09/a-gentle-introduction-to-bootstrapping.html

 Backlog Forecasting - non-equilibrium - Chi-SquaredFit v2.0.1

Backlog Forecasting - non-equilibrium

Fitting data to known distributions use is done using Chi2Fit.
This note is about forecasting in a non-equilibirum situation. It illustrates how this manifests itself and how to identify a (sub)period of equilibrium.
The data used in this note exhibits two 'difficulties':
	it is a sequence of throughput data with a changing delivery rate,
	the number of data points is much less than the number of categories (x-range).

Table of contents
	Set-up
	Data and simulation set-up
	Preparation
	Simple forecast using the empirical data
	First attempt to fit the data using a Poisson distribution
	Second attempt
	Forecasting using a Poisson distribution
	Total Monte Carlo
	References

Set-up
require Chi2fit.Distribution
alias Chi2fit.Distribution, as: D
alias Chi2fit.Fit, as: F
alias Chi2fit.Matrix, as: M
alias Chi2fit.Utilities, as: U
alias Gnuplotlib, as: P
alias Gnuplot, as: G
alias Exboost.Math
Exboost.Math
Data and simulation set-up
As an example consider the throughput of completed backlog items. At the end of a fixed time period we count the number of backlog items that a team completes. Partially completed items are excluded from the count.
The following is such a sequence with the count corresponding to the most recent date as the first item.
data = [53, 50, 53, 48, 69, 39, 12, 17, 21, 15, 15, 31, 62, 78, 23, 17, 25, 28, 38, 16]
[53, 50, 53, 48, 69, 39, 12, 17, 21, 15, 15, 31, 62, 78, 23, 17, 25, 28, 38, 16]
P.histogram(data,
 plottitle: "Throughput histogram",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Frequency",
 yrange: '[0:3]')
:"this is an inline image"
[image: png]
Other parameters that affect the forecasting are listed below. Please adjust to your needs.
The size of the backlog, e.g. 100 backlog items
size = 1000

The time period (in days) that the throughput data is collected
period = 15

The size of the bins (number of periods)
binsize = 5

Number of iterations to use in the Monte Carlo
iterations = 1000

Number of probes to use in the chi2 fit
probes = 10_000

The range of the parameter to look for a (global) minimum
initial = [{1,100}]
[{1, 100}]
Preparation
Next, we convert the throughput data to a histogram. To this end we group the data in bins of size 5 starting at 0.
Note. Here, we have grouped the data in bins of size 5. This is a bit of experimentation. A too small bin size will give many categories but with a few events per bin. This results is a large error per bin. On the other hand, a larger bin size provides more events per bin and a relatively smeller error but with less categories and therefore less data points to fit a distribution.
hdata = U.to_bins data, {binsize,0}
[{15, 0.15, 0.06851192859049528, 0.27482375992342073}, {20, 0.3, 0.18768957690362428, 0.43588026413027636}, {25, 0.45, 0.3206378385081606, 0.5851694522985315}, {30, 0.5, 0.36721150008242087, 0.6327884999175791}, {35, 0.55, 0.41483054770146854, 0.6793621614918394}, {40, 0.65, 0.513235780746243, 0.7692135974636096}, {50, 0.75, 0.6162610054750528, 0.8539648329961009}, {55, 0.85, 0.7251762400765793, 0.9314880714095048}, {65, 0.9, 0.7827976428762097, 0.9656975423431892}, {70, 0.95, 0.8438262671806204, 0.993275152469804}, {80, 1.0, 0.9114867522921007, 1.0}]
The data returned contains a list of tuples each describing a bin:
	the end-point of the bin,
	the proportional number of events for this bin (the total count is normalized to one),
	the lower value of the error bound,
	the upper value of the error bound.

As can be seen the sizes of the lower and upper bounds are different in value, i.e. they are asymmetrical. The contribution or weight to the likelihood function used in fitting known distributions will de different depending on whether the observed value if larger or smaller than the predicted value. This is specified by using the option :linear (see below). See [3] for details.
P.ecdf(hdata,
 plottitle: "Empirical CDF",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Probability",
 xrange: '[0:100]')
:"this is an inline image"
[image: png]
Simple forecast using the empirical data
Using the histogram data for the throughput we perform a Monte Carlo simulation to get an estimation for the number of iterations needed to deplete the backlog. Since for a large enough number of samples results of a Monte Carlo simulation approximate the normal distribution. This provides a range for the uncertainty of the number of iterations. We express this as a probability using percentages.
{avg,sd,all} = U.mc iterations, U.forecast_duration(data, size), collect_all?: true
U.display {avg,sd,:+}
50% => 29.0 units
84% => 32.0 units
97.5% => 35.0 units
99.85% => 38.0 units

:ok
P.histogram(all,
 plottitle: "Monte Carlo result for duration",
 xlabel: "Duration (number of iterations)",
 ylabel: "Frequency",
 xrange: '[0:50]')
:"this is an inline image"
[image: png]
First attempt to fit the data using a Poisson distribution
Instead of directly using the raw data captured one can also use a known probability distribution. The parameter of the distribution is matched to the data. After matching the parameter value one uses the known distribution to forecast.
Here, we will use the Poisson distribution [1]. This basically assumes that the data points are independent of each other. For most teams we expect this to be a more than reasonable choice.
model = D.model {"poisson",period}
options = [probes: probes, smoothing: false, model: :linear, saved?: true]
[probes: 10000, smoothing: false, model: :linear, saved?: true]
The code below uses basic settings of the commands provided by Chi2Fit. More advanced options can be found at [2]. First a fixed number of random parameter values are tried to get a rough estimate. The option probes equals the number of tries. Furthermore, since we are fitting a probability distribution which has values on the interval [0,1] the errors are asymmetrical. This is specified by the option linear.
result = {_,_parameters,_,_saved} = F.chi2probe hdata, initial, {Distribution.cdf(model), &F.nopenalties/2}, options
U.display result
Initial guess:
 chi2: 758345.0965191501
 pars: [2.254093453886412]
 ranges: {[2.254093453886412, 2.254093453886412]}

:ok
The result shows a very high value of the Chi-squared statistic at the minimum. This is a first indication that a Poisson distribution does not describe our team's data very well. This is surprising and not what we would expect.
Let's try to figure out what is going on.
Analysis
To analyse the team's throughput data we start with the most recent throughput data point and each time add a data point until we reach the end. Doing this we form a sequence of data points where at every step the new sequence is one item longer than the previous sequence.
For each such formed subsequence we run a fit against the Poisson distribution. The result is shown below.
history = 0..length(data)-1
|> Stream.map(fn i ->
 data
 |> Enum.slice(0..i)
 |> U.to_bins({binsize,0})
 |> F.chi2probe(initial, {Distribution.cdf(model), &F.nopenalties/2}, options)
 end)
|> Stream.map(fn {chi,[par],_,_} -> {chi,par} end)
|> Enum.with_index()
[{{5.22492679879685e-32, 1.0284522902629398}, 0}, {{0.016698928165325228, 3.193357602619063}, 1}, {{0.17925424050014777, 3.3327093698375103}, 2}, {{0.1371925890726049, 3.227335994317402}, 3}, {{0.03614822142852375, 3.4161876651232097}, 4}, {{0.036653830756370534, 3.3156535517364043}, 5}, {{25438.226774399176, 2.2734227329070826}, 6}, {{19636.44683866897, 2.277665624453298}, 7}, {{15908.033899385036, 2.2571700976752975}, 8}, {{91727.98400095743, 2.163352229599032}, 9}, {{171181.3363278373, 2.1016911870371855}, 10}, {{141683.10647066715, 2.10535853566199}, 11}, {{558984.1420884329, 2.204031590029471}, 12}, {{1583887.8648936248, 2.2464842100447373}, 13}, {{1369698.5584306146, 2.247520090548594}, 14}, {{1200105.6684319167, 2.245378526675139}, 15}, {{1057059.5517384184, 2.246011609551288}, 16}, {{938087.6697502094, 2.2508155198918325}, 17}, {{838764.1071894465, 2.246063071438816}, 18}, {{756919.8976929325, 2.252333613621648}, 19}]
history
|> Enum.map(fn {{chi,rate},index} -> [index, Float.round(chi,2), Float.round(rate,1)] end)
|> U.as_table({"Index data point", "Chi-squared", "Delivery Rate"})
:"do not show this result in output"
Index data point	Chi-squared	Delivery Rate
0 |0.0 |1.0
1 |0.02 |3.2
2 |0.18 |3.3
3 |0.14 |3.2
4 |0.04 |3.4
5 |0.04 |3.3
6 |25438.23 |2.3
7 |19636.45 |2.3
8 |15908.03 |2.3
9 |91727.98 |2.2
10 |171181.34 |2.1
11 |141683.11 |2.1
12 |558984.14 |2.2
13 |1583887.86 |2.2
14 |1369698.56 |2.2
15 |1200105.67 |2.2
16 |1057059.55 |2.2
17 |938087.67 |2.3
18 |838764.11 |2.2
19 |756919.9 |2.3
Next, we plot the results for each subsequence. We get two sets of data points corresponding to the value of chi-squared at the minimum and the value for the fitted delivery rate.
G.plot([
 ~w(set terminal png)a,
 ~w(set output)a,
 ~w(set title "Team Jupiter")a,
 ~w|set xlabel "Iterations (15 days)"|a,
 ~w(set key bottom right)a,
 [:set, :yrange, '[0.001:10000000]'],
 ~w(set arrow from 0,0.1 to 5,0.1)a,
 ~w(set label "rate = 3.3" at 6,0.1)a,
 ~w(set arrow from 6,80000 to 11,80000)a,
 ~w(set label "rate = 1.2" at 3.5,200000)a,
 ~w(set arrow from 12,700000 to 13,700000)a,
 ~w(set label "rate = 4.4" at 9.5,1400000)a,
 ~w(set arrow from 14,1500000 to 19,1500000)a,
 ~w(set label "rate = 3.6" at 17,3000000)a,
 ~w(set logscale y)a,
 [:plot, G.list([
 ~w|'-' u 1:2 w points ls 1 title "Delivery rate"|a,
 ["", :u, '1:2', :w, :points, :ls, 3, :title, "chi minimum"]
])
]
],
 [
 history |> Enum.map(fn {{_,rate},x} -> [x,rate] end),
 history |> Enum.map(fn {{chi,_},x} -> [x,chi] end)
])
P.capture() |> Base.encode64 |> IO.write
:"this is an inline image"
[image: png]
The graph above shows the logarithm of the chi-squared at the minimum as the blue stars. This clearly shows jumps at the sixth, ninth, and twelth data points. The same is true for the delivery rate although this is most evident at the sixth data point!
This shows that the most probable explanation is that the delivery rate is not constant for the team over time.
One of the assumptions for ther Poisson distribution to describe the data is a constant delivery rate [1], i.e. the delivery rate does not change over time.
If we take the 5 most recent data points we can fit this with a Poisson distribution. The downside is that we loose many of our data points resulting in a large error on the fitted delivery rate.
Automated
Luckily, Chi2fit provides a function that automates the finding of the jumps in how well a distribution is able to describe our data.
trends = F.find_all(data, [{:bin,binsize}, {:fitmodel, model}, {:init, initial} |options])
[{0.036298739064136686, [3.3105360191533375], '5250E\''}, {0.6734317357994228, [1.1964637990990683], [12, 17, 21, 15, 15, 31]}, {5.800820523615346e-4, [4.3540473193510625], '>N'}, {0.04491801200236626, [1.578301449162081], [23, 17, 25, 28, 38, 16]}]
F.find_all returns a list of tuples. Each tuple includes the elements:
	value of chi-squared at the found minimum,
	list of parameter values at the minimum,
	subsequence of data

Second attempt
We take a subset of the original data set, namely the most recent 6 data points.
Extract the most recent data sequence from the head of `trends`
{_,_,data} = hd trends
hdata = U.to_bins data, {binsize,0}
[{40, 0.16666666666666666, 0.02262494120997527, 0.45322913427940825}, {50, 0.5, 0.24185253403145093, 0.7581474659685491}, {55, 0.8333333333333334, 0.5467708657205917, 0.9773750587900247}, {70, 1.0, 0.7369106554956896, 1.0}]
Forecasting using a Poisson distribution
First, run an initial fit to get an estimate of the parameters.
result = {_,parameters,_,saved} = F.chi2probe hdata, initial, {Distribution.cdf(model), &F.nopenalties/2}, options
U.display result
Initial guess:
 chi2: 0.03658634067587007
 pars: [3.303671412343659]
 ranges: {[3.0710423614985243, 3.5658573339602837]}

:ok
The errors reported is the found range of parameter values where the corresponding chi2 values are within 1 of the found minimum value.
After roughly locating the minimum we do a more precise (and computationally more expensive) search for the minimum.
options = [{:probes,saved}|options]
result = {_,cov,parameters,_} = F.chi2fit hdata, {parameters, Distribution.cdf(model), &F.nopenalties/2}, 100, options
U.display(hdata,model,result,options)
Final:
 chi2: 0.03628574276222343
 Degrees of freedom: 3
 gradient: [-6.2495214917223885e-12]
 parameters: [3.309353062586756]
 errors: [0.32807215518642774]
 ranges:
 chi2: 0.03628574276222343 - 1.0090360306540513
 parameter: 3.0710423614985243 - 3.5658573339602837

:ok
For a (local) minimum the value of the gradient should be very close to zero which is the case. The value of chi-squared at the minimum is much, much smaller than 1. Usually values below 1 indicate a very good fit. Large errors on the data make it easy to fit a curve resulting in low values for chi-squared. Here, it means that the errors in the data are large.
P.ecdf(hdata,
 plottitle: "Fit of Poisson to CDF",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Probability",
 xrange: '[0:100]',
 title: "Poisson",
 func: & Distribution.cdf(model).(&1,parameters))
:"this is an inline image"
[image: png]
rate = hd(parameters)
pdf = fn x -> :math.exp(x*:math.log(rate*period)-rate*period-Math.lgamma(x+1.0)) end
P.pdf(data,
 plottitle: "Fit of PDF to Poisson",
 xlabel: "Throughput (items per 2 weeks)",
 ylabel: "Frequency",
 yrange: '[0:0.15]',
 pdf: pdf,
 title: "Poisson",
 bin: binsize)
:"this is an inline image"
[image: png]
Again, using a Monte Carlo simulation we estimate the number of iterations and the range to expect.
[rate] = parameters
{avg,sd,all} = U.mc iterations, fn -> U.forecast(fn -> Distribution.random(model).(parameters) end, size) end, collect_all?: true
U.display {avg,sd,:+}
50% => 21.0 units
84% => 22.0 units
97.5% => 22.0 units
99.85% => 23.0 units

:ok
P.histogram(all,
 plottitle: "Monte Carlo simulation for duration",
 xlabel: "Duration (number of iterations)",
 ylabel: "Frequency",
 xrange: '[0:30]')
:"this is an inline image"
[image: png]
Total Monte Carlo
In the results of a Monte Carlo simulation the errors reported and the range of the number of iterations is the statistical error associated with the Monte Carlo simulation. It dopes not take into account the uncertainty of the parameter used in the fitted probability distribution function.
In Total Monte Carlo [4] multiple Monte Carlo simulations are done that correspond to the extreme values of the error bounds of the used parameters. The error results is of a different nature than the statistical error from the Monte Carlo simulation. These error reported separately.
Pick up the error in the paramater value
param_errors = cov |> M.diagonal |> Enum.map(fn x->x|>abs|>:math.sqrt end)
[sd_rate] = param_errors

{avg_min,_} = U.mc(iterations, fn -> U.forecast(fn -> Distribution.random(model).([rate-sd_rate]) end, size) end)
{avg_max,_} = U.mc(iterations, fn -> U.forecast(fn -> Distribution.random(model).([rate+sd_rate]) end, size) end)

sd_min = avg - avg_max
sd_plus = avg_min - avg

IO.puts "Number of iterations to complete the backlog:"
IO.puts "#{Float.round(avg,1)} (+/- #{Float.round(sd,1)}) (-#{Float.round(sd_plus,1)} +#{Float.round(sd_min,1)})"
Number of iterations to complete the backlog:
20.7 (+/- 0.7) (-2.2 +1.8)

:ok
The first error is symmetric while the second error reported is asymmetric.
References
[1] Poisson distribution, https://en.wikipedia.org/wiki/Poisson_distribution/

[2] Chi2Fit, Pieter Rijken, 2018, https://hex.pm/packages/chi2fit

[3] Asymmetric errors, Roger Barlow, Manchester University, UK and Stanford University, USA, PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003, https://www.slac.stanford.edu/econf/C030908/papers/WEMT002.pdf

[4] Efficient use of Monte Carlo: uncertainty propagation, D. Rochman et. al., Nuclear Science and Engineering, 2013, ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/fastTMC.pdf

 Throughput - Multiple Teams - Multi-plot - Chi-SquaredFit v2.0.1

Throughput - Multiple Teams - Multi-plot

Fitting data to known distributions use is done using Chi2Fit.
This note contains an example analysis for 6 teams.
This note demonstrates how to use the multi-plot feature of GNUplot.
Set-up
import Chi2fit.Gnuplotlib
Chi2fit.Gnuplotlib
Multi-plots
The following shows the sequences for the throughput (number of work items completed per period) for six teams. The most recent period is the first item in the list. Note that fort all teams the global bin size (see above) applies except for teams 5 for which we will use a bin size of 5.
all_data = %{
 "Team 1" => [69,41,53,41,41,48,69,15,15,12,12,15,31,78,62,16,25,28,25,38,16],
 "Team 2" => [50,68,36,50,50,68,36,19,15,23,9,15,3,23,23,9,14,2,9,9,14,19,11,0,1,1,1],
 "Team 3" => [55,46,46,70,55,70,91,67,49,7,20,34,68,68,20,31,0,0,0,0,0,4,0,0,0,3],
 "Team 4" => [55,47,65,50,50,50,57,44,27,25,14,23,30],
 "Team 5" => [
 throughput: [11,4,11,3,6,0],
 bin: 1
],
 "Team 6" => [70,70,86,116,70,103,103,116,73,28,28,35,26,35,70,32,32,26,60,37,19,37,19,16,10,13,31,37,31,24,16,37,3,2,2,4,2,2],
}
:"do not show this result in output"
We will start by showing a histogram of the raw throughput data:
multi([
 histogram(all_data["Team 1"], bin: 5, plottitle: "Team 1 (bi-weekly)", ylabel: "Frequency", xrange: '[0:80]', yrange: '[:5]', mode: :as_commands),
 histogram(all_data["Team 2"], bin: 5, plottitle: "Team 2 (bi-weekly)", xrange: '[0:80]', yrange: '[:10]', mode: :as_commands),
 histogram(all_data["Team 3"], bin: 5, plottitle: "Team 3 (bi-weekly)", xrange: '[0:120]', yrange: '[:10]', mode: :as_commands),
 histogram(all_data["Team 4"], bin: 5, plottitle: "Team 4 (bi-weekly)", xlabel: "Throughput", ylabel: "Frequency", xrange: '[0:80]', yrange: '[:5]', mode: :as_commands),
 histogram(all_data["Team 5"][:throughput], bin: 1, xlabel: "Throughput", plottitle: "Team 5 (monthly)", xrange: '[0:30]', yrange: '[:5]', mode: :as_commands),
 histogram(all_data["Team 6"], bin: 5, xlabel: "Throughput", plottitle: "Team 6 (bi-weekly)", xrange: '[0:160]', yrange: '[:10]', mode: :as_commands),
], columns: 3, title: "Throughput data for 6 teams", size: "1200,600")
:"this is an inline image"
[image: png]

 Forecasting - using Cycle Times - Chi-SquaredFit v2.0.1

Forecasting - using Cycle Times

Let's first define what Cycle Time means or how it's defined for the purpose of this notebook:
Cycle Time:
"...the time between two items emerging from a process"

This notebook illustrates an analysis and forecasting for data based on Cycle Time as defined above.
In particular the following aspects are considered:
	working days versus calendar days
	working hours versus 24h
	batches of deliveries or single items
	consistency with the 'Delivery Rate'
	noise in the data due to sloppy/faulty entry dates of the data

Table of contents
	Set-up
	Data and simulation set-up
	Data analysis
	Empirical CDF
	Simple forecast using the empirical data
	Forecasting using an Erlang distribution
	Finding an appropriate subsequence
	References

Set-up
require Chi2fit.Distribution
alias Chi2fit.Distribution, as: D
alias Chi2fit.Fit, as: F
alias Chi2fit.Utilities, as: U
alias Gnuplotlib, as: P
:"do not show this result in output"
Data and simulation set-up
The data set (team.csv) consists of several hundreds of completed items in the span of 1 year. In this case the data is exported from Jira. Here, we take as a completion date the resolution times.
#
Completed items have a resolution date which is in the column "Resolved"
Jira exports time data as shown above.
#
deliveries = "/app/notebooks/data/team.csv"
|> File.stream!
|> U.csv_to_list("Resolved", header?: true, format: "{0D}/{Mshort}/{YY} {h24}:{0m}")

IO.inspect(deliveries, print: false, limit: 3)
IO.puts "Number of completed items: #{length(deliveries)}"
:"do not show this result in output"
[~N[2019-05-13 13:03:00], ~N[2019-05-13 11:42:00], ~N[2019-05-13 09:24:00], ...]
Number of completed items: 879
First, we set some parameters that will be used later on in this notebook. Especially important for analyzing the data, is that we need to make a choice for how to handle:
	working days vs calendar days,
	working hours vs 24h,
	look at batches of deliveries or at single deliveries,
	decide on the size of a cluster of data for fitting to a known distribution.

##
Data analysis
##

Working hours: 8AM to 8PM
workhours = {8,20}

Correct for working days and/or working hours (:weekday, :worktime, :"weekday+worktime")
correct = :"weekday+worktime"

Cutoff for minimum amount of time between consecutive deliveries (15/12/60 corresponds to 15 minutes)
cutoff = 15/(12*60)

Size of the bins to group the data (2/24 means a granularity of 2 hours)
binsize = 2/12

The noise to add to the delivery times to estimagte the error due to sloppy/faulty administration
#noise = D.normal(0.0, 2.0/12)
#noise = fn -> 0.0 end # No noise

##
Forecasting
##

The size of the backlog, e.g. 100 backlog items
size = 1000

##
Monte Carlo simulations stuff
##

Number of iterations to use in the Monte Carlo
iterations = 100

Number of probes to use in the chi2 fit
probes = 50_000
:"do not show this result in output"
{startofday,endofday} = workhours
hours_in_day = endofday - startofday
:"do not show this result in output"
Cycle Times in number of calendar days
ctlist = deliveries
|> Stream.chunk_every(2, 1, :discard)
|> Stream.map(fn [d1,d2] -> NaiveDateTime.diff(d1,d2) end) # Calculate the time difference between two consecutive deliveries in seconds
|> Enum.map(& &1/24/3600) # Convert the number of seconds to number of days
IO.inspect(ctlist, print: false, limit: 3)
:"do not show this result in output"
[0.05625, 0.09583333333333334, 0.002777777777777778, ...]
P.histogram(ctlist,
 bin: binsize,
 plottitle: "Cycle Time histogram",
 xlabel: "Cycle Time (calendar days)",
 ylabel: "Frequency",
 xrange: '[0:]')
:"this is an inline image"
[image: png]
The histogram shows some 'strange' humps. It could be due to so-called multi-modal data. Muti-modal means that the data has a 'preference' for certain values (= the humps) and usually corresponds to different types of work. However, it is more likely to becaused by patterns in the data which we may be able to correct for.
Data analysis
On first site there appear to be bumps around Cycle Times of a whole number of days. Second, between 0 and 1 the Cycle Time exhibits a dip. There are two main factors that may be relevant and may explain this observed behaviour:
	Work hours. Most people have regularised working hours somewhere between 8AM and 18PM depending on how early they start work,
	Weekdays. People don't work during the weekends,
	Sloppy administration. What often happens is that work has completed at some time of the day and instead of immediately registering the work as done, this often happens a couple of hours later, or the next day, or even at the end of an iteration (just before reporting).

First we will examine the first 2 factors. One way of handling the 3rd factor is to add a random noise to the completion dates and estimate the effect of this.
For now, we'll assume no noise.
No noise
noise = fn -> 0.0 end

Assume that in practice deliveries never are at exactly the same time. If so, then we'll further assume that
this is due to 'sloppy' administration. When this happens we set the _Cycle Time_ to a certain minimum space
between them (the cutoff)
fun = fn dat -> dat
 # Map the delivery times to numbers: the number of days since the epoch Jan 1st, 1970:
 |> Stream.map(& NaiveDateTime.diff(&1, ~N[1970-01-01 00:00:00], :second)/(24*3600))

 # Adjust the time for working hours: 8AM - 22PM
 # This maps the period of working hours to the interval 0..1
 |> U.adjust_times(correct: correct, workhours: workhours)

 # Apply noise to our data
 |> Stream.map(& &1+noise.())

 # Sort again to get properly ordered completeion dates
 |> Enum.sort(& &1>&2)

 # Calculate time differences with cut-off
 |> U.time_diff(cutoff: cutoff)
end
:"do not show this result in output"
Next, recalculate the Cycle Times with the corrections specified above. This basically switches from calendar days to working days.
Cycle Times in number of days
ctlist = deliveries
|> fun.()

ctlist |> P.histogram(
 bin: binsize,
 plottitle: "Cycle Time histogram",
 xlabel: "Cycle Time (calendar days)",
 ylabel: "Frequency",
 xrange: '[0:]')
:"this is an inline image"
[image: png]
The effect of the corrections is clearly visible in the chart:
	much more smoothened graph without significant bumps,
	no small bar to the left of the largest bar; this is caused by the cutoff.

We did not take into account public holidays so this could still introduce small bumps but we expect that this effect is 'within' the noise of the data.
Empirical CDF
hdata = ctlist |> U.to_bins({binsize,0})
IO.puts "#{length(ctlist)} Cycle Times reduced to #{length(hdata)} bins"
:"do not show this result in output"
878 Cycle Times reduced to 19 bins
The data returned contains a list of tuples each describing a bin:
	the end-point of the bin,
	the proportional number of events for this bin (the total count is normalized to one),
	the lower value of the error bound,
	the upper value of the error bound.

As can be seen the sizes of the lower and upper bounds are different in value, i.e. they are asymmetrical. The contribution or weight to the likelihood function used in fitting known distributions will de different depending on whether the observed value if larger or smaller than the predicted value. This is specified by using the option :linear (see below). See [3] for details.
P.ecdf(hdata,
 plottitle: "Empirical CDF",
 xlabel: "Cycle Time (working days)",
 ylabel: "Probability",
 xrange: '[0:8]')
:"this is an inline image"
[image: png]
Simple forecast using the empirical data
Using the histogram data for the throughput we perform a Monte Carlo simulation to get an estimation for the number of iterations needed to deplete the backlog. Since for a large enough number of samples results of a Monte Carlo simulation approximate the normal distribution. This provides a range for the uncertainty of the number of iterations. We express this as a probability using percentages.
{avg,sd,all} = U.mc(iterations, U.forecast_items(ctlist, size), collect_all?: true)
U.display {avg,sd,:+}
:"do not show this result in output"
50% => 280.0 units
84% => 295.0 units
97.5% => 309.0 units
99.85% => 324.0 units
P.histogram(all,
 plottitle: "Monte Carlo result for duration after the first item is delivered",
 xlabel: "Duration (number of calendar days)",
 ylabel: "Frequency",
 yrange: '[0:7]')
:"this is an inline image"
[image: png]
Forecasting using an Erlang distribution
Instead of directly using the raw data captured one can also use a known probability distribution. The parameter of the distribution is matched to the data. After matching the parameter value one uses the known distribution to forecast.
Here, we will use the Erlang distribution [1]. This basically assumes that the data points are independent of each other. If the distribution of the Delivery Rate is Poisson (see Forecasting using delivery rate) we expect that Cycle Times follow an Erlang distribution.
Fitting an Erlang distribution to the data
The data in hdata is based on Cycle Times bewteen single deliveries. Therefore, we expect the Erlang-1 distribution, which basically is the exponential distribution.
model = D.model {"erlang", 1.0}
options = [model: :linear]

result = F.chi2fit hdata, {[2.5], Distribution.cdf(model), &F.nopenalties/2}, 50, model: :linear
U.display(hdata,model,result,options)
Final:
 chi2: 1401.4882365558465
 Degrees of freedom: 18
 gradient: [9.660588105311687e-7]
 parameters: [2.6456227455943644]
 errors: [0.012418260425177135]
 ranges:
 chi2: 1401.4882365558465 - 1401.560926799379
 parameter: 2.642269187094888 - 2.6456227460279225

:ok
The result returned by chi2fit indicates that given the Erlang-1 distribution we're at the most optimal fit (very small gradient) but that it describes the data very badly (Chi-squared statistic of over 180 per degree of freedom). For good fits we expect a Chi-squared statistic around 1 per degree of freedom.
Second try: time between batches of 10 deliveries
In the first try we have considered single completed items. With the amount of data we have available this may be too fine grained. Some times it helps by smoothing the data and considering larger chunks of deliveries. In this case, let's see what the data looks like in chunks of 10 deliveries.
Therefore, we will alter the data to determine the Cycle Times between 10 completed items. We still expect an Erlang distribution and to be more specific, an Erlang-10 distribution since we will be considering batches of 10 deliveries.
batch = 10
binsize = 2/hours_in_day

bdel = deliveries
|> Stream.chunk_every(batch, batch, :discard)
|> Stream.map(& hd &1)

hdata = bdel
|> U.binerror(fun, bin: binsize, iterations: 1, correct: correct, workhours: workhours, cutoff: cutoff)

IO.puts "#{length(ctlist)} Cycle Times reduced to #{length(hdata)} bins"
:"do not show this result in output"
878 Cycle Times reduced to 28 bins
P.ecdf(hdata,
 plottitle: "Empirical CDF (batches of 10 items)",
 xlabel: "Cycle Time (working days)",
 ylabel: "Probability",
 xrange: '[0:15]')
:"this is an inline image"
[image: png]
The fit below shows that an Erlang-10 distribution does not describe the batched data.
model = D.model {"erlang", batch*1.0}

result = F.chi2fit hdata, {[2.5], Distribution.cdf(model), &F.nopenalties/2}, 50, model: :linear
U.display(hdata,model,result,options)
:"do not show this result in output"
Final:
 chi2: 3748757.980852812
 Degrees of freedom: 27
 gradient: [-0.17209093639054504]
 parameters: [3.5303335362979893]
 errors: [1.6454050684689054e-4]
 ranges:
 chi2: 3748757.980852812 - 3748757.9808533373
 parameter: 3.530333523724308 - 3.530333543331993
Third try: considering only recent data
Perhaps not all data is relevant. As a variation we will consider only data after January 1st, 2019.
Again, batches of 10 deliveries.
recent = deliveries
|> Stream.filter(fn t -> Timex.after?(t, ~D[2019-01-01]) end)
|> Stream.chunk_every(batch, batch, :discard)
|> Stream.map(& hd &1)

hdata = recent
|> U.binerror(fun, bin: binsize, iterations: 1, correct: correct, workhours: workhours, cutoff: cutoff)

IO.puts "#{length(ctlist)} Cycle Times reduced to #{length(hdata)} bins"
:"do not show this result in output"
878 Cycle Times reduced to 14 bins
P.ecdf(hdata,
 plottitle: "Empirical CDF (batches of 10, data after 2019/01/01)",
 xlabel: "Cycle Time (working days)",
 ylabel: "Probability",
 xrange: '[0:6]')
:"this is an inline image"
[image: png]
The plot is very different from the one inthe previous section! The error bars are also larger because we have removed data.
result = {_,_cov,[lambda],_} = F.chi2fit hdata, {[2.5], Distribution.cdf(model), &F.nopenalties/2}, 50, model: :linear
U.display(hdata,model,result,options)
:"do not show this result in output"
Final:
 chi2: 3.2177459269210007
 Degrees of freedom: 13
 gradient: [2.3145064276875778e-10]
 parameters: [5.474676255213248]
 errors: [0.1105774361037803]
 ranges:
 chi2: 3.2177459269210007 - 4.146884248390765
 parameter: 5.368366062762177 - 5.559455152955396
Indeed the fit seems to be a very good despite the low number of data points; a Chi-squared value of 0.8 per degree of freedom is good. The parameter (= delivery rate) is $$\lambda = 5.4 \pm 0.1 \,\,\textrm{items per work day}$$.
P.ecdf(hdata,
 plottitle: "Fit of Erlang to CDF",
 xlabel: "Cycle Times (working days)",
 ylabel: "Probability",
 title: "Erlang_{10}",
 func: & Distribution.cdf(D.model {"erlang",batch*1.0}).(&1,[lambda]))
:"this is an inline image"
[image: png]
Finding an appropriate subsequence
Instead of manually removing old data from our data set, Chi2fit provides a function for partitioning the data set into longest subsequences that will fit the chosen model.
batch = 10
binsize = 2/hours_in_day

options = [probes: probes, bin: binsize, init: List.duplicate({0.1,50.0},Distribution.size(model)), fitmodel: model, model: :linear]

Find points in the delivery dates that indicate a change in the model.
`find_all` is a lazy function, meaning it does not always traverse the entire data set.
In the example below, it stops after finding 5 jumping points.
trends = bdel
|> fun.()
|> F.find_all(options)
|> Enum.take(5)
:"do not show this result in output"
trends
|> Enum.map(fn {chi,[rate],list} -> {chi, rate, Enum.sum(list), length(list)} end)
|> U.as_table({"Goodness of fit", "Delivery rate (items per working day)", "Duration (work days)", "Count of items"})
:"do not show this result in output"
Goodness of fit	Delivery rate (items per working day)	Duration (work days)	Count of items
8.594041230934275 |5.303886896160837 |93.27500000000146 |48
14.76545944659221 |2.0047174100246057 |76.77500000000146 |14
2.8345609975017316 |49.99809889595503 |2.5916666666671517 |4
2.7331957165626005e-9|14.502794215234198 |2.3958333333284827 |2
5.617727177877458 |49.999373598531555 |4.802777777782467 |5
Get the most recent sequence:
{_chi,[lambda],list} = hd trends
delivery_rate = lambda * batch # items per 2 weeks
startdate = Timex.shift(~D[2019-05-13], days: -round(Enum.sum(list)/5*7)) # work days to calendar days

IO.puts ~s[The found sequence runs from #{Timex.format! startdate, "{Mshort} {D}, {YYYY}"} till #{Timex.format! ~D[2019-05-13], "{Mshort} {D}, {YYYY}"}]
IO.puts "Delivery rate = #{Float.round(delivery_rate,2)} items per 2 weeks"
:"do not show this result in output"
The found sequence runs from Jan 2, 2019 till May 13, 2019
Delivery rate = 53.04 items per 2 weeks
Forecasting
The Erlang_1 distribution is equivalent to the Exponential distribution.
We could have also used Erlang_10 and divided size by 10. This gives equivalent results.
{avg,sd} = U.mc(iterations, U.forecast_items(fn -> Distribution.random(D.model "exponential").([lambda]) end, size))

IO.puts "Forecast using the parameter as fit with the Erlang_10 distribution:"
U.display {avg,sd,:+}
:"do not show this result in output"
Forecast using the parameter as fit with the Erlang_10 distribution:
50% => 189.0 units
84% => 195.0 units
97.5% => 201.0 units
99.85% => 207.0 units
Or using the empirical data of the subsequence instead of the whole data set:
Remember to divide size by 10 since `list` corresponds to cycle times of batches of 10
{avg,sd} = U.mc(iterations, U.forecast_items(list, size/10))

IO.puts "Forecast directly using the subsequence of the data set:"
U.display {avg,sd,:+}
:"do not show this result in output"
Forecast directly using the subsequence of the data set:
50% => 196.0 units
84% => 205.0 units
97.5% => 214.0 units
99.85% => 223.0 units
References
[1] Erlang distribution, https://en.wikipedia.org/wiki/Erlang_distribution
[2]: Chi2Fit, Pieter Rijken, 2018, https://hex.pm/packages/chi2fit
[3]: Asymmetric errors, Roger Barlow, Manchester University, UK and Stanford University, USA, PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003, https://www.slac.stanford.edu/econf/C030908/papers/WEMT002.pdf
[4]: Efficient use of Monte Carlo: uncertainty propagation, D. Rochman et. al., Nuclear Science and Engineering, 2013, ftp://ftp.nrg.eu/pub/www/talys/bib_rochman/fastTMC.pdf

 Chi2fit.CSV - Chi-SquaredFit v2.0.1

Chi2fit.CSV

 Anchor for this section

 Summary

 Functions

 csv_to_list(csvdata, key, options \\ [])

 Reads CSV data, extracts one column, and returns it as a list of NaiveDateTime.

 Anchor for this section

Functions

 Link to this function

 csv_to_list(csvdata, key, options \\ [])

 View Source

 @spec csv_to_list(
 csvcata :: Enumerable.t(),
 key :: String.t(),
 options :: Keyword.t()
) :: [
 NaiveDateTime.t()
]

Reads CSV data, extracts one column, and returns it as a list of NaiveDateTime.

 examples

 Examples

iex> csv = ["Done","2019/05/01","2019/06/01"] |> Stream.map(& &1)
...> csv_to_list csv, "Done", header?: true
[~N[2019-06-01 00:00:00], ~N[2019-05-01 00:00:00]]

iex> csv = ["Done","2019/May/01","2019/Jun/01"] |> Stream.map(& &1)
...> csv_to_list csv, "Done", header?: true, format: "{YYYY}/{Mshort}/{0D}"
[~N[2019-06-01 00:00:00], ~N[2019-05-01 00:00:00]]

iex> csv = ["Done","2019/May/01","2019/06/01"] |> Stream.map(& &1)
...> csv_to_list csv, "Done", header?: true, format: "{YYYY}/{Mshort}/{0D}"
[~N[2019-05-01 00:00:00]]

iex> csv = ["Done","2019/May/01","2019/06/01"] |> Stream.map(& &1)
...> csv_to_list csv, "Done", header?: true, format: ["{YYYY}/{Mshort}/{0D}","{YYYY}/{0M}/{0D}"]
[~N[2019-06-01 00:00:00], ~N[2019-05-01 00:00:00]]

iex> csv = ["Done","2019/May/01","2019/Jun/01"] |> Stream.map(& &1)
...> csv_to_list csv, "Done", header?: true, format: ["%Y/%b/%d"], parser: :strftime
[~N[2019-06-01 00:00:00], ~N[2019-05-01 00:00:00]]

 Chi2fit.Cli - Chi-SquaredFit v2.0.1

Chi2fit.Cli

Provides a command line interface for fitting data against a known cumulative distribution function.
Tool for fitting particular probability distributions to empirical cumulative distribution functions.
Distributions supported are Weibull, Wald (Inverse Gauss), Normal, Exponential, Erlang, and Skewed Exponential.
It uses the Chi-squared Pearson statistic as the likelihood function for fitting. This statistic applies to
empirical data that is categorial in nature.
It provides various options for controlling the fitting procedure and assignment of errors. It supports asymmetrical
errors in fitting the data.
Basic usage: scanning the surface
As described above fitting the parameters is done by minimizing the chi-squared statistic. Usually this is a function of the
distribution paremeters.
Scanning the surface is a simple way to have an initial guess of the parameters. The following command does a simple scan of
the chi-squared surface against data:
$ chi2fit data.csv --ranges '[{0.8,1.2},{0.6,1.2}]' --cdf weibull

Initial guess:
 chi2:		1399.3190035059733
 pars:		[0.800467783803376, 29.98940654419653]
 errors:		{[0.800467783803376, 0.800467783803376], [29.98940654419653, 29.98940654419653]}

and the file data.csv is formatted as
Lead Time
26
0
105
69
3
36
...
In this form the command will scan or probe the Chi-squared surface for the parameters within the provided range. It returns the found
minimum Chi-squared and the parameter values at this minimum. The reported error ranges correspond to a change of Chi-squared of +1.
Options available:
	probes - The number of probes to use for guessing parameter values at initialization
	progress - Shows progress during 'probing' (shows progress every 1000 probes)	c - Mark progress every 100th probe
	x - Mark progress every 10th probe

More options are described below and are available using the option --help.
Input data options
Several options control how the input data is interpreted. These are:
	model - determines how errors are assigned to the data points. Possible values include simple|asimple|linear
	data - instead of using the file for data, use this option to pass a list of data points
	correction - Estimate of number of events missed in the right tail of the sample

An example of specifying data on the command line is:
$ chi2fit --ranges '[{0.8,1.2},{0.6,1.2}]' --cdf weibull --data '[2,3,4,5,5,4,4,7]'

Distribution options
Distributions supported are: Wald, Weibull, Normal, Erlang, Exponential, and SEP (Skewed Exponential: 3 and 4 parameters).
For the distributions of SEP (4 parameters), and SEP0 (3 parameters) the following options exist:
	method - Supported values are 'gauss|gauss2|gaus3|romberg|romberg2|romberg3'

Romberg integration supports the options:
	tolerance - The target precision for Romberg integration
	itermax - The maximum number of iterations to use in Romberg integration

Gauss integration supports the option:
	npoints - The number of points to use in Gauss integration (4, 8, 16, and 32)

Fitting options
AFter probing the surface for an initial guess of the parameters, a fine grained search for the optimum can be done by enabling
the fit procedure. The algorithm implemented assumes that the initial guess is close enough to the minimum and uses a combination of
parameter estimation and Monte Carlo methods.
An additional strategy is to use a so-called grid-search by changing only one parameter at a time. It selects the parameters in a
round robin fashion. Using Romberg iteration and Newton root finding algorithm the parameter value minimizing chi-squared is determined
while kepping the other parameters constant. Then the other parameters are varied. Especially fitting distributions with 3 or more
parameters may benefit from this strategy.
Options controlling these are:
	fit - Enables the fine-grained fitting of parameters
	iterations - Number of iterations to use in the optimizing the Likelihood function
	grid - Uses a grid search to fit one parameter at a time in a round robin fashion

Sometimes the chi-squared surface is not smooth but numerically problematic to get stable. In this case smoothing the surface
may help. The next option enables this feature:
	smoothing - Smoothing of the likelihood function with a Gaussian kernel

The fitting procedures uses derivatives (first and second order) to estimate changes in the parameters that will result in
a better fit. Derivaties are calculated using Romberg differentiation. The accuracy and maximum number of iterations are
controlled by the options:
	tolerance - The target precision for Romberg integration
	itermax - The maximum number of iterations to use in Romberg integration

Bootstrapping
Bootstrapping can be enabled to estimate the errors in the parameters. The supported options are:
	bootstrap - Enables bootstrapping. Specifies the number of iterations to perform
	sample - The sample size to use from the empirical distribution

Output options
These options are useful for printing data for generating charts of the data:
	print - Outputs the empirical input data with errors included
	output - Outputs the fitted distribution function values at the data points
	surface - Outputs the Chi-squared surface to a file
	smoothing - Smoothing of the likelihood function with a Gaussian kernel

General options
Options available for scanning, fitting, and bootstrapping:
	debug - Outputs additional data for debugging purposes"

References
 [1] R.A. Arndt and M.H. MacGregor, Methods in Computational Physics, Vol. 6 (1966) 256-296
 [2] Marius M. Nagels, Baryon-Baryon Scattering in a One-Boson-Exchange Potential Mode, PhD. Thesis, Nijmegen University, 1975
 [3] Richard A. Arndt and Malcolm H. MacGregor, Determination of the Nucleon-Nucleon Elastic-Scattering Matrix. IV. Comparison of Energy-Dependent and Energy-Independent Phase-Shift Analyses, Physical Review Volume 142, Number 3, January 1966

 Anchor for this section

 Summary

 Functions

 main()

 main(args)

 Anchor for this section

Functions

 Link to this function

 main()

 View Source

 Link to this function

 main(args)

 View Source

 Chi2fit.Collector - Chi-SquaredFit v2.0.1

Chi2fit.Collector

Implements an agent for collecting data.

 Anchor for this section

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 collect()

 start_link()

 stop()

 value()

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 collect()

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 stop()

 View Source

 Link to this function

 value()

 View Source

 Chi2fit.Distribution - Chi-SquaredFit v2.0.1

Chi2fit.Distribution protocol

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cdf(distrib)

 kurtosis(distrib)

 name(distrib)

 pdf(distrib)

 random(distrib)

 size(distrib)

 skewness(distrib)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 cdf(distrib)

 View Source

 @spec cdf(t()) :: number()

 Link to this function

 kurtosis(distrib)

 View Source

 @spec kurtosis(t()) :: number()

 Link to this function

 name(distrib)

 View Source

 @spec name(t()) :: String.t()

 Link to this function

 pdf(distrib)

 View Source

 @spec pdf(t()) :: number()

 Link to this function

 random(distrib)

 View Source

 @spec random(t()) :: number()

 Link to this function

 size(distrib)

 View Source

 @spec size(t()) :: number()

 Link to this function

 skewness(distrib)

 View Source

 @spec skewness(t()) :: number()

 Chi2fit.Distribution.Bernoulli - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Bernoulli

Provides the Bernoulli distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Bernoulli{name: String.t(), pars: [float()]}

 Chi2fit.Distribution.BiModal - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.BiModal

Bimodal distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.BiModal{
 distribs: [Distribution.t()] | nil,
 name: String.t(),
 weights: [number()] | nil
}

 Chi2fit.Distribution.Coin - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Coin

Distribution for flipping coins.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Coin{name: String.t()}

 Chi2fit.Distribution.Constant - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Constant

Distribution for constant numbers.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Constant{name: String.t(), pars: term()}

 Chi2fit.Distribution.Dice - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Dice

Provides the Dice distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Dice{mode: :regular | :gk4, name: String.t()}

 Chi2fit.Distribution.Erlang - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Erlang

The Erlang distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Erlang{
 batches: nil | pos_integer(),
 name: String.t(),
 pars: [number()]
}

 Chi2fit.Distribution.Exponential - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Exponential

The exponential distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Exponential{
 name: String.t(),
 pars: [number()] | nil
}

 Chi2fit.Distribution.Frechet - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Frechet

The Fréchet distribution, also known inverse Weibull distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Frechet{name: String.t(), pars: [number()] | nil}

 Chi2fit.Distribution.MultiModal - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.MultiModal

Bimodal distribution.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 weights(list)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.MultiModal{
 distribs: [Distribution.t()] | nil,
 name: String.t(),
 weights: [number()] | nil
}

 Anchor for this section

Functions

 Link to this function

 weights(list)

 View Source

 @spec weights([number()]) :: [number()]

 Chi2fit.Distribution.Nakagami - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Nakagami

The Nakagami distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Nakagami{name: String.t(), pars: [number()] | nil}

 Chi2fit.Distribution.Normal - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Normal

The normal or Gauss distribution

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Normal{name: String.t(), pars: [number()] | nil}

 Chi2fit.Distribution.Poisson - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Poisson

The Poisson distribution.
For the implementation, see https://en.wikipedia.org/wiki/Poisson_distribution, 'Generating Poisson-distributed random variables'

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Poisson{
 name: String.t(),
 pars: [number()] | nil,
 period: number()
}

 Chi2fit.Distribution.SEP - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.SEP

The Skew Exponential Power cumulative distribution (Azzalini).
Options
`:method` - the integration method to use, :gauss and :romberg types are supported, see below
`:tolerance` - re-iterate until the tolerance is reached (only for :romberg)
`:points` - the number of points to use in :gauss method
Integration methods
`:gauss` - n-point Gauss rule,
`:gauss2` - n-point Guass rule with tanh transformation,
`:gauss3` - n-point Gauss rule with linear transformstion,
`:romberg` - Romberg integration,
`:romberg2` - Romberg integration with tanh transformation,
`:romberg3` - Romberg integration with linear transformstion.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.SEP{
 name: String.t(),
 offset: number() | nil,
 options: Keyword.t(),
 pars: [number()] | nil
}

 Chi2fit.Distribution.TracyWidom - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.TracyWidom

Tracy-Widom distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.TracyWidom{
 name: String.t(),
 pars: [number()] | nil,
 type: 1 | 2 | 4
}

 Chi2fit.Distribution.TriModal - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.TriModal

Bimodal distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.TriModal{
 distribs: [Chi2fit.Distribution.t()] | nil,
 name: String.t(),
 weights: [number()] | nil
}

 Chi2fit.Distribution.Uniform - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Uniform

Provides the Uniform distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Uniform{
 name: String.t(),
 pars: [number()] | {number(), number()}
}

 Chi2fit.Distribution.Utilities - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Utilities

Provides various distributions.

 Anchor for this section

 Summary

 Types

 model()

 Functions

 guess(sample, n \\ 100, list \\ ["exponential", "poisson", "normal", "erlang", "wald", "sep", "weibull", "frechet", "nakagami", "tw", "tww"])

 Guesses what distribution is likely to fit the sample data

 model(name, options \\ [])

 Returns the model for a name.

 sigil_M(str, modifiers)

 Examples
iex> ~M(3 4 5)
%Distribution.Uniform{pars: [3, 4, 5]}

iex> ~M(3 4 5)u
%Distribution.Uniform{pars: [3, 4, 5]}

iex> ~M()d
%Distribution.Dice{mode: :regular}

iex> ~M()dgk
%Distribution.Dice{mode: :gk4}

iex> ~M(1.2)p
%Distribution.Poisson{pars: [1.2], period: 1.0}

iex> ~M(1.2 5.4)w
%Distribution.Weibull{pars: [1.2, 5.4]}

iex> ~M(1.2 5.4)wald
%Distribution.Wald{pars: [1.2, 5.4]}

 Anchor for this section

Types

 Link to this type

 model()

 View Source

 @type model() :: any()

 Anchor for this section

Functions

 Link to this function

 guess(sample, n \\ 100, list \\ ["exponential", "poisson", "normal", "erlang", "wald", "sep", "weibull", "frechet", "nakagami", "tw", "tww"])

 View Source

 @spec guess(sample :: [number()], n :: integer(), list :: [String.t()] | String.t()) ::
 [any()]

Guesses what distribution is likely to fit the sample data

 Link to this function

 model(name, options \\ [])

 View Source

 @spec model(name :: String.t(), options :: Keyword.t()) :: any()

Returns the model for a name.
The kurtosis is the so-called 'excess kurtosis'.
Supported disributions:
"wald" - The Wald or Inverse Gauss distribution,
"weibull" - The Weibull distribution,
"exponential" - The exponential distribution,
"poisson" - The Poisson distribution,
"normal" - The normal or Gaussian distribution,
"frechet" - The Fréchet distribution,
"nakagami" - The Nakagami distribution,
"sep" - The Skewed Exponential Power distribution (Azzalini),
"erlang" - The Erlang distribution,
"sep0" - The Skewed Exponential Power distribution (Azzalini) with location parameter set to zero (0),
"tw" / "tw1" - The Tracy-Widom distributions TW1,
"tw2" - The Tracy-Widom distributions TW2,
"tw4" - The Tracy-Widom distributions TW4,
"wishart" - The Wishart distribution.

 options

 Options

Available only for the SEP distribution, see 'sepCDF/5'.

 Link to this function

 sigil_M(str, modifiers)

 View Source

 examples

 Examples

iex> ~M(3 4 5)
%Distribution.Uniform{pars: [3, 4, 5]}

iex> ~M(3 4 5)u
%Distribution.Uniform{pars: [3, 4, 5]}

iex> ~M()d
%Distribution.Dice{mode: :regular}

iex> ~M()dgk
%Distribution.Dice{mode: :gk4}

iex> ~M(1.2)p
%Distribution.Poisson{pars: [1.2], period: 1.0}

iex> ~M(1.2 5.4)w
%Distribution.Weibull{pars: [1.2, 5.4]}

iex> ~M(1.2 5.4)wald
%Distribution.Wald{pars: [1.2, 5.4]}

 Chi2fit.Distribution.Wald - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Wald

Wald or Inverse Gauss distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Wald{name: String.t(), pars: [number()] | nil}

 Chi2fit.Distribution.Weibull - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Weibull

Weibull distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Weibull{name: String.t(), pars: [number()] | nil}

 Chi2fit.Distribution.Wishart - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Wishart

Wishart distribution.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Chi2fit.Distribution.Wishart{
 dim: [integer()],
 name: String.t(),
 pars: [number()] | nil
}

 Chi2fit.FFT - Chi-SquaredFit v2.0.1

Chi2fit.FFT

Provides Fast Fourier Transform.

 Anchor for this section

 Summary

 Types

 complex()

 A complex number with a real part and an imaginary part.

 real()

 A real number.

 Functions

 fft(list, opts \\ [])

 Calculates the discrete Fast Fourier Transform of a list of numbers.

 ifft(list, opts \\ [nproc: 1])

 Calculates the inverse FFT.

 normv(list)

 Calculates the norm of a complex number or list of complex numbers.

 Anchor for this section

Types

 Link to this opaque

 complex()

 View Source

 (opaque)

 @opaque complex()

A complex number with a real part and an imaginary part.

 Link to this opaque

 real()

 View Source

 (opaque)

 @opaque real()

A real number.

 Anchor for this section

Functions

 Link to this function

 fft(list, opts \\ [])

 View Source

 @spec fft([real()], opts :: Keyword.t()) :: [complex()]

Calculates the discrete Fast Fourier Transform of a list of numbers.
Provides a parallel version (see options below). See [1] for details of the algorithm implemented.

 options

 Options

`:phase` - Correction factor to use in the weights of the FFT algorithm. Defaults to 1.
`:nproc` - Parellel version. Number of processes to use. See [2]. Defaults to 1.

 references

 References

[1] Zie: https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
[2] Parallel version of FFT; see http://www.webabode.com/articles/Parallel%20FFT%20implementations.pdf

 examples

 Examples

iex> fft [4]
[{4.0, 0.0}]

iex> fft [1,2,3,4,5,6]
[{21.0, 0.0}, {-3.0000000000000053, 5.19615242270663},
 {-3.0000000000000036, 1.7320508075688736}, {-3.0, 0.0},
 {-2.9999999999999982, -1.7320508075688799},
 {-2.999999999999991, -5.196152422706634}]

 Link to this function

 ifft(list, opts \\ [nproc: 1])

 View Source

 @spec ifft([real()], Keyword.t()) :: [complex()]

Calculates the inverse FFT.
For available options see fft/2.

 examples

 Examples

iex> ifft [4.0]
[{4.0, 0.0}]

iex> ifft [1.0,2.0,3.0]
[{2.0, 0.0}, {-0.5000000000000003, -0.2886751345948125},
 {-0.4999999999999995, 0.28867513459481353}]

iex> [1.0,5.0] |> fft |> ifft
[{1.0, -3.061616997868383e-16}, {5.0, 6.123233995736767e-17}]

 Link to this function

 normv(list)

 View Source

 @spec normv([complex()] | complex()) :: real()

Calculates the norm of a complex number or list of complex numbers.

 examples

 Examples

iex> normv []
[]

iex> normv {2,3}
13

iex> normv [{2,3},{1,2}]
[13,5]

 Chi2fit.Fit - Chi-SquaredFit v2.0.1

Chi2fit.Fit

Implements fitting a distribution function to sample data. It minimizes the liklihood function.
Asymmetric Errors
To handle asymmetric errors the module provides three ways of determining the contribution to the likelihood function:
`simple` - value difference of the observable and model divided by the averaged error lower and upper bounds;
`asimple` - value difference of the observable and model divided by the difference between upper/lower bound and the observed
 value depending on whether the model is larger or smaller than the observed value;
`linear` - value difference of the observable and model divided by a linear tranformation (See below).
'linear': Linear transformation
Linear transformation that:
- is continuous in u=0,
- passes through the point sigma+ at u=1,
- asymptotically reaches 1-y at u->infinity
- pass through the point -sigma- at u=-1,
- asymptotically reaches -y at u->-infinity
References
[1] See https://arxiv.org/pdf/physics/0401042v1.pdf

 Anchor for this section

 Summary

 Types

 chi2()

 Chi-squared statistic

 chi2fit()

 Tuple holding chi-squared value, covariance matrix, parameter values, and parameter errors at the minimum chi2fit(see chi2fit/4)

 chi2probe()

 Result of chi-squared probe (see &chi2probe/4)

 chi2probe_saved()

 Tuple with chi-squared, parameter values, parameter errors, and list of intermediate fit results (see chi2probe/4)

 chi2probe_simple()

 Tuple with chi-squared, parameter values, and parameter errors at the found minimum (see chi2probe/4)

 cov()

 Covariance matrix

 distribution()

 Cumulative distribution mapping 'x' and parameters to a float in the range [0,1].

 model()

 Tuple describing the parameter values and the distribution function.

 observable()

 observable_asym()

 Observation with asymmetric bounds 'y1 < y < y2'.

 observable_symm()

 Observation with symmetric errors 'dy'.

 observables()

 params()

 List of parameter ranges

 Functions

 chi2(observables, fun, penalties \\ fn _ -> 0.0 end, options \\ [])

 Calculates the Chi-squared function for a list of observables.

 chi2fit(observables, model, max \\ 100, options \\ [])

 Fits observables to a known model.

 chi2probe(observables, parranges, fun_penalties, options)

 Probes the chi-squared surface within a certain range of the parameters.

 find_all(data, options)

 Partitions the data list in segments with similar chi-squared values when fitting the model

 find_change(list, options)

 Finds the point in the data where the chi-squared has a jump when fitting the model

 nopenalties(_, _)

 Anchor for this section

Types

 Link to this type

 chi2()

 View Source

 @type chi2() :: float()

Chi-squared statistic

 Link to this type

 chi2fit()

 View Source

 @type chi2fit() :: {chi2(), cov(), parameters :: [float()], errors :: [float()]}

Tuple holding chi-squared value, covariance matrix, parameter values, and parameter errors at the minimum chi2fit(see chi2fit/4)

 Link to this type

 chi2probe()

 View Source

 @type chi2probe() :: chi2probe_simple() | chi2probe_saved()

Result of chi-squared probe (see &chi2probe/4)

 Link to this type

 chi2probe_saved()

 View Source

 @type chi2probe_saved() ::
 {chi2(), [parameters :: float()], {[float()], [float()]},
 [{float(), [float()]}]}

Tuple with chi-squared, parameter values, parameter errors, and list of intermediate fit results (see chi2probe/4)

 Link to this type

 chi2probe_simple()

 View Source

 @type chi2probe_simple() :: {chi2(), [parameters :: float()], {[float()], [float()]}}

Tuple with chi-squared, parameter values, and parameter errors at the found minimum (see chi2probe/4)

 Link to this type

 cov()

 View Source

 @type cov() :: Chi2fit.Matrix.matrix()

Covariance matrix

 Link to this type

 distribution()

 View Source

 @type distribution() :: (x :: float(), [parameter :: float()] -> float())

Cumulative distribution mapping 'x' and parameters to a float in the range [0,1].

 Link to this type

 model()

 View Source

 @type model() :: {[float()], distribution()}

Tuple describing the parameter values and the distribution function.

 Link to this type

 observable()

 View Source

 @type observable() :: observable_symm() | observable_asym()

 Link to this type

 observable_asym()

 View Source

 @type observable_asym() :: {x :: float(), y :: float(), y1 :: float(), y2 :: float()}

Observation with asymmetric bounds 'y1 < y < y2'.

 Link to this type

 observable_symm()

 View Source

 @type observable_symm() :: {x :: float(), y :: float(), dy :: float()}

Observation with symmetric errors 'dy'.

 Link to this type

 observables()

 View Source

 @type observables() :: [observable()]

 Link to this type

 params()

 View Source

 @type params() :: [{float(), float()}]

List of parameter ranges

 Anchor for this section

Functions

 Link to this function

 chi2(observables, fun, penalties \\ fn _ -> 0.0 end, options \\ [])

 View Source

 @spec chi2(observables(), (float() -> float()), (float() -> float()), Keyword.t()) ::
 float()

Calculates the Chi-squared function for a list of observables.
The observables are given as a list. Each observation has an error associated with it. The errors can be either
symmetric or asymmetric.
A 'penalties'-function is used to assign penalties and these contribute to the chi-squared function. It may be used
to 'forbid' certain parameter, x combinations.

 options

 Options

`model` - Required. Determines the contribution to chi-squared taking the asymmetric errors into account.
 Vaid values are `:linear`, `:simple`, and `:asimple`. See Errors below

 errors

 Errors

`simple` - Use for asymmetric errors when the sigma+ and sigma- are close to each other
`asimple` - Use for asymmetric errors when y-values are not bound.
`linear` - Use this model when the y-values ar bound between 0 and 1. Linear transformation that:
 - is continuous in u=0,
 - passes through the point sigma+ at u=1,
 - asymptotically reaches 1-y at u->infinity
 - pass through the point -sigma- at u=-1,
 - asymptotically reaches -y at u->-infinity

 examples

 Examples

iex> fun = &(&1)
...> chi2 [{0,3,1}], fun
9.0

iex> fun = &(&1)
...> chi2 [{0,3,1},{1,7,1},{2,3,1}], fun
46.0

iex> fun = &(&1)
...> chi2 [{0,3,3},{1,7,1},{2,3,1}], fun
38.0

iex> fun = &(&1-2)
...> chi2 [{0,3,1}], fun
25.0
end

 Link to this function

 chi2fit(observables, model, max \\ 100, options \\ [])

 View Source

 @spec chi2fit(
 observables(),
 model(),
 iterations :: pos_integer(),
 options :: Keyword.t()
) :: chi2fit()

Fits observables to a known model.
Returns the found minimum chi-squared value, covariance matrix, gradient at the minimum, and the corresponding parameter values including
error estimates.
For a good fit check the following:
`chi2 per degree of freedom` - this should be about 1 or less,
`gradient` - at the minimum the gradient should be zero at all directions.
For asymmetric errors use the option model equal to linear.
Rough chi-squared surfaces or if numerically unstable, use the option smoothing set to true.

 arguments

 Arguments

`observables` - list of measurements including errors,
`model` - `{parameters, fun}`: set of initial parameter values and a function to fit against the measurements

 options

 Options

`onstep` - call back function; it is called with a map with keys `delta`, `chi2`, and `params`,
`smoothing` - boolean value indicating whether the chi-squared is smoothened using a Gauss distribution. This
is used in case the surface is rough because of numerical instabilities to smoothen the surface,
`model` - The same values as in `chi2/3` and `chi2/4`
`grid?` - Performs a grid search: per step, tries to fit only one parameter and keeps the others fixed; selects the parameter in
a round-robin fashion
`probes` -- a list of tuples containing the result of the `chi2probe/4` function. Each tuple contains the chi2 value and parameter list.
Defaults to the empty list.

 Link to this function

 chi2probe(observables, parranges, fun_penalties, options)

 View Source

 @spec chi2probe(observables(), [float()], (... -> any()), Keyword.t()) :: chi2probe()

Probes the chi-squared surface within a certain range of the parameters.
It does so by randomly selecting parameter value combinations and calculate the chi-squared for the list
of observations based on the selected parameter values. This routine is used to roughly probe the chi-squared
surface and perform more detailed and expensive calculations to precisely determine the minimum by chi2fit/4.
Returns the minimum chi-squared found, the parameter values, and all probes that resulted in chi-squared difference
less than 1 with the minimum. The parameter values found in this set correspond with the errors in determining
the parameters.

 options

 Options

`num` or `probes` - the number of points to calculate,
`mark` - progress indicator: a keyword list with keys `m`, `c`, `x`, and `*`; the value must be a call back
function taking zero arguments. These are called when 1000, 100, 10, probes have been done. The value of
key `*` is called when a new chi-squared minimum has been found,
`smoothing` - boolean value indicating whether the chi-squared is smoothened using a Gauss distribution. This
is used in case the surface is rough because of numerical instabilities to smoothen the surface,
`model` - See `chi2/3` and `chi2/4`

 Link to this function

 find_all(data, options)

 View Source

 @spec find_all(nil | [number()], options :: Keyword.t()) :: [[float()]]

Partitions the data list in segments with similar chi-squared values when fitting the model

 Link to this function

 find_change(list, options)

 View Source

 @spec find_change(list :: [number()], options :: Keyword.t()) :: [
 {chi :: float(), [float()]}
]

Finds the point in the data where the chi-squared has a jump when fitting the model

 Link to this function

 nopenalties(_, _)

 View Source

 Chi2fit.Gnuplotlib - Chi-SquaredFit v2.0.1

Chi2fit.Gnuplotlib

Provides various various plots using the Gnuplot package.

 Anchor for this section

 Summary

 Types

 datapoint()

 Functions

 capture(out \\ <<>>)

 Captures the output sent by &Port.open/2 and returns it as a binary

 ecdf(data, options)

 Draws a graph of the empirical CDF as steps, the data points with error bars, and the (fitted) function.

 histogram(data, options \\ [])

 Draws a histogram of the data.

 multi(all, options \\ [])

 Plots severals graphs in a multi-plot.

 pdf(data, options)

 Draws a graph of the PDF.

 surface(data, options)

 Anchor for this section

Types

 Link to this type

 datapoint()

 View Source

 @type datapoint() ::
 {x :: number(), y :: number(), ylow :: number(), yhigh :: number()}

 Anchor for this section

Functions

 Link to this function

 capture(out \\ <<>>)

 View Source

 @spec capture(out :: binary()) :: binary()

Captures the output sent by &Port.open/2 and returns it as a binary

 Link to this function

 ecdf(data, options)

 View Source

 @spec ecdf(data :: [datapoint()], options :: Keyword.t()) :: none()

Draws a graph of the empirical CDF as steps, the data points with error bars, and the (fitted) function.

 options

 Options

`:bin` - the size of the bins to use,
`:plottitle` - the title of the plot,
`:xrange`- the range for the x-values to use in the format '[x1:x2]'
`:xrange` - the range for the y-values to use in the format '[y1:y2]'
`:xlabel` - the label to use for the x-axis,
`:ylabel` - the label to use for the y-axis,
`:func` - the data to use for the CDF curve as a list of `[x,y]`,
`:title` - the title to use for the CDF curve.
`:bounds` - 2-tuple of functions describing the minimum and maximum error-curves for the CDF

 Link to this function

 histogram(data, options \\ [])

 View Source

 @spec histogram(data :: [number()], options :: Keyword.t()) :: none()

Draws a histogram of the data.

 options

 Options

`:bin` - the size of the bins to use,
`:plottitle` - the title of the plot,
`:xrange` - the range for the x-values to use in the format '[x1:x2]'
`:xrange` - the range for the y-values to use in the format '[y1:y2]'
`:xlabel` - the label to use for the x-axis,
`:ylabel` - the label to use for the y-axis.

 Link to this function

 multi(all, options \\ [])

 View Source

 @spec multi(all :: [{command :: [], data :: []}], options :: Keyword.t()) :: none()

Plots severals graphs in a multi-plot.

 Link to this function

 pdf(data, options)

 View Source

 @spec pdf(data :: [number()], options :: Keyword.t()) :: none()

Draws a graph of the PDF.

 options

 Options

`:bin` - the size of the bins to use,
`:offset` -- the offset of the bin,
`:plottitle` - the title of the plot,
`:noerror` -- no error bars,
`:xrange` - the range for the x-values to use in the format '[x1:x2]'
`:xrange` - the range for the y-values to use in the format '[y1:y2]'
`:xlabel` - the label to use for the x-axis,
`:ylabel` - the label to use for the y-axis,
`:pdf` - the data to use for the PDF curve as a list of `[x,y]`,
`:title` - the title to use for the PDF curve.

 Link to this function

 surface(data, options)

 View Source

 @spec surface(data :: [[number()]], options :: Keyword.t()) :: none()

 Chi2fit.Math - Chi-SquaredFit v2.0.1

Chi2fit.Math

 Anchor for this section

 Summary

 Types

 method()

 Supported numerical integration methods

 Functions

 der(parameters, fun, options \\ [])

 Calculates the partial derivative of a function and returns the value.

 integrate(method, func, a, b, options \\ [])

 Numerical integration providing Gauss and Romberg types.

 jacobian(x, fun, options \\ [])

 Calculates the jacobian of the function at the point x.

 newton(a, b, func, maxiter \\ 10, options)

 Newton-Fourier method for locating roots and returning the interval where the root is located.

 richardson(func, init, factor, results \\ [], options)

 Richardson extrapolation.

 Anchor for this section

Types

 Link to this type

 method()

 View Source

 @type method() :: :gauss | :gauss2 | :gauss3 | :romberg | :romberg2 | :romberg3

Supported numerical integration methods

 Anchor for this section

Functions

 Link to this function

 der(parameters, fun, options \\ [])

 View Source

 @spec der([float() | {float(), integer()}], ([float()] -> float()), Keyword.t()) ::
 float()

Calculates the partial derivative of a function and returns the value.

 examples

 Examples

The function value at a point:
iex> der([3.0], fn [x]-> x*x end) |> Float.round(3)
9.0

The first derivative of a function at a point:
iex> der([{3.0,1}], fn [x]-> x*x end) |> Float.round(3)
6.0

The second derivative of a function at a point:
iex> der([{3.0,2}], fn [x]-> x*x end) |> Float.round(3)
2.0

Partial derivatives with respect to two variables:
iex> der([{2.0,1},{3.0,1}], fn [x,y] -> 3*x*x*y end) |> Float.round(3)
12.0

 Link to this function

 integrate(method, func, a, b, options \\ [])

 View Source

 @spec integrate(
 method(),
 (float() -> float()),
 a :: float(),
 b :: float(),
 options :: Keyword.t()
) ::
 float()

Numerical integration providing Gauss and Romberg types.

 Link to this function

 jacobian(x, fun, options \\ [])

 View Source

Calculates the jacobian of the function at the point x.

 examples

 Examples

iex> jacobian([2.0,3.0], fn [x,y] -> x*y end) |> Enum.map(&Float.round(&1))
[3.0, 2.0]

 Link to this function

 newton(a, b, func, maxiter \\ 10, options)

 View Source

 @spec newton(
 a :: float(),
 b :: float(),
 func :: (x :: float() -> float()),
 maxiter :: non_neg_integer(),
 options :: Keyword.t()
) :: {float(), {float(), float()}, {float(), float()}}

Newton-Fourier method for locating roots and returning the interval where the root is located.
See [https://en.wikipedia.org/wiki/Newton%27s_method#Newton.E2.80.93Fourier_method]

 Link to this function

 richardson(func, init, factor, results \\ [], options)

 View Source

 @spec richardson(
 func :: (term() -> {float(), term()}),
 init :: term(),
 factor :: float(),
 results :: [float()],
 options :: Keyword.t()
) :: float()

Richardson extrapolation.

 Chi2fit.Matrix - Chi-SquaredFit v2.0.1

Chi2fit.Matrix

This module provides matrix inverse operations and supporting functions.
It provides 2 types of matrix norms and an iterative approach to calculating the matrix inverse.
The implementation is based on the work [1].
References
[1] F. Soleymani, A Rapid Numerical Algorithm to Compute Matrix Inversion, International Journal of Mathematics and
Mathematical Sciences, Volume 2012, Article ID 134653, doi:10.1155/2012/134653

 Anchor for this section

 Summary

 Types

 matrix()

 A list of vectors (list of lists of numbers)

 vector()

 A list of numbers

 Functions

 add(vector1, vector2)

 Adds two vectors.

 det(list)

 Calculates the determinant of the matrix.

 diagonal(matrix)

 Returns the diagonal elements of the matrix as a vector.

 dotproduct(vector1, vector2, sum \\ 0)

 Calculates the inner product of two vectors.

 from_diagonal(vector)

 Returns a matrix with the supplied vector as its diagonal elements.

 inverse(matrix, options \\ [])

 Returns the matrix inverse of the argument.

 norm(matrix)

 Calculates the norm of the matrix as the sum of the absolutes value of all elements.

 norm_1(matrix)

 Calculates the norm of the matrix. All absolute values of the elements of each row are summed. The maximum
value is returned

 norm_inf(matrix)

 Calculates the norm of the matrix as norm_1/1 but over the columns instead of over the rows.

 subtract(matrix1, matrix2)

 Subtracts two matrices and returns the result.

 transpose(matrix)

 Returns the tranpose of the matrix

 unit(n)

 Constructs a unit matrix of size n. All diagonal elements have value 1 and the rest has value 0.

 Anchor for this section

Types

 Link to this type

 matrix()

 View Source

 @type matrix() :: [vector()]

A list of vectors (list of lists of numbers)

 Link to this type

 vector()

 View Source

 @type vector() :: [number()]

A list of numbers

 Anchor for this section

Functions

 Link to this function

 add(vector1, vector2)

 View Source

 @spec add(vector(), vector()) :: vector()

Adds two vectors.

 examples

 Examples

iex> add [1,2], [3,4]
[4,6]

iex> add [], []
[]

iex> add [1], [5]
[6]

 Link to this function

 det(list)

 View Source

 @spec det(matrix()) :: number()

Calculates the determinant of the matrix.

 Link to this function

 diagonal(matrix)

 View Source

 @spec diagonal(matrix()) :: vector()

Returns the diagonal elements of the matrix as a vector.

 example

 Example

iex> diagonal [[1,2,3],[4,5,6],[7,8,9]]
[1, 5, 9]

 Link to this function

 dotproduct(vector1, vector2, sum \\ 0)

 View Source

Calculates the inner product of two vectors.

 examples

 Examples

iex> dotproduct [1,2], [3,4]
11

iex> dotproduct [], []
0

iex> dotproduct [1,2], []
** (ArgumentError) Vectors of unequal length

iex> dotproduct [1,2], [1]
** (ArgumentError) Vectors of unequal length

 Link to this function

 from_diagonal(vector)

 View Source

 @spec from_diagonal(vector()) :: matrix()

Returns a matrix with the supplied vector as its diagonal elements.

 examples

 Examples

iex> from_diagonal [1,5,9]
[[1, 0, 0], [0, 5, 0], [0, 0, 9]]

 Link to this function

 inverse(matrix, options \\ [])

 View Source

 @spec inverse(matrix(), options :: Keyword.t()) ::
 {:ok, inverse :: matrix()}
 | :failed_to_find_v0
 | :no_inverse
 | {:failed_to_reach_tolerance, inverse :: matrix(), error :: float()}

Returns the matrix inverse of the argument.

 options

 Options

`:tolerance` - Iterate until the `norm_1/1` of I-AV is less than this value
`:algorithm` - Four algorithms are supported: `:hotelling_bodewig` (second order), `:lie` (third order),
 `:krishnamurthy_sen` (sixth order), and `:soleymani` (seventh order); defaults to `:lie`
`:max_iterations` - Maximum number of iterations to perform; defaults to 500
`:range` - Range of values from -range to +range as a multiple of the unit matrix to try as an estimate
 of the inverse matric; defaults to 100
`:size` - Number of tries to estimate initial inverse; defautls to 100

 examples

 Examples

iex> inverse [[3]]
{:ok,[[0.3333333333333333]]}

iex> inverse [[1,2],[3,4]]
{:ok,[[-2.0, 1.0], [1.5, -0.5]]}

iex> inverse([[3,2,0],[0,0,1],[2,-2,1]]) |> elem(1) |> Enum.map(fn row -> Enum.map(row, & Float.round(&1,10)) end)
[[0.2, -0.2, 0.2], [0.2, 0.3, -0.3], [0.0, 1.0, 0.0]]

iex> inverse([[3,2,0],[0,0,1],[2,-2,1]], algorithm: :soleymani) |> elem(1) |> Enum.map(fn row -> Enum.map(row, & Float.round(&1,14)) end)
[[0.2, -0.2, 0.2], [0.2, 0.3, -0.3], [0.0, 1.0, 0.0]]

iex> inverse([[3,2,0],[0,0,1],[2,-2,1]], tolerance: 1.0e-15) |> elem(1) |> Enum.map(fn row -> Enum.map(row, & Float.round(&1,14)) end)
[[0.2, -0.2, 0.2], [0.2, 0.3, -0.3], [0.0, 1.0, 0.0]]
For matrices that have no inverse:
iex> try do inverse [[1,2,3],[4,5,6],[7,8,9]] catch x->x end
:no_inverse

 Link to this function

 norm(matrix)

 View Source

 @spec norm(matrix()) :: number()

Calculates the norm of the matrix as the sum of the absolutes value of all elements.

 example

 Example

iex> norm [[1,2,3],[4,5,6],[7,8,9]]
45

 Link to this function

 norm_1(matrix)

 View Source

 @spec norm_1(matrix()) :: number()

Calculates the norm of the matrix. All absolute values of the elements of each row are summed. The maximum
value is returned

 example

 Example

iex> norm_1 [[1,2,3],[4,5,6],[7,8,9]]
24

 Link to this function

 norm_inf(matrix)

 View Source

 @spec norm_inf(matrix()) :: number()

Calculates the norm of the matrix as norm_1/1 but over the columns instead of over the rows.

 example

 Example

iex> norm_inf [[1,2,3],[4,5,6],[7,8,9]]
18

 Link to this function

 subtract(matrix1, matrix2)

 View Source

 @spec subtract(matrix(), matrix()) :: matrix()

Subtracts two matrices and returns the result.

 Link to this function

 transpose(matrix)

 View Source

 @spec transpose(matrix()) :: matrix()

Returns the tranpose of the matrix

 examples

 Examples:

iex> transpose [[1]]
[[1]]

iex> transpose [[1,2], [3,4]]
[[1, 3], [2, 4]]

 Link to this function

 unit(n)

 View Source

 @spec unit(n :: pos_integer()) :: [[0 | 1]]

Constructs a unit matrix of size n. All diagonal elements have value 1 and the rest has value 0.

 examples

 Examples

iex> unit(3)
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

iex> unit(0)
** (ArgumentError) Illegal argument '0'

iex> unit -1
** (ArgumentError) Illegal argument '-1'

iex> unit 1.3
** (ArgumentError) Illegal argument '1.3'

 Chi2fit.MonteCarlo - Chi-SquaredFit v2.0.1

Chi2fit.MonteCarlo

 Anchor for this section

 Summary

 Functions

 forecast(fun, size, tries \\ 0, update \\ fn -> 1 end)

 Forecasts how many time periods are needed to complete size items

 forecast_duration(data, size)

 Returns a function for forecasting the duration to complete a number of items.

 forecast_items(data, periods)

 Returns a function for forecasting the number of completed items in a number periods.

 mc(iterations, fun, options \\ [])

 Basic Monte Carlo simulation to repeatedly run a simulation multiple times.

 total_mc(result, fun, mode \\ :use_bounds, iterations \\ 1000)

 Anchor for this section

Functions

 Link to this function

 forecast(fun, size, tries \\ 0, update \\ fn -> 1 end)

 View Source

 @spec forecast(
 fun :: (() -> non_neg_integer()),
 size :: pos_integer(),
 tries :: pos_integer(),
 update :: (() -> number())
) :: number()

Forecasts how many time periods are needed to complete size items
Related functions: forecast_duration/2 and forecast_items/2.

 Link to this function

 forecast_duration(data, size)

 View Source

 @spec forecast_duration(data :: [number()] | (() -> number()), size :: pos_integer()) ::
 (() -> number())

Returns a function for forecasting the duration to complete a number of items.
This function is a wrapper for forecast/4.

 arguments

 Arguments

`data` - either a data set to base the forecasting on, or a function that returns (random) numbers
`size` - the number of items to complete

 Link to this function

 forecast_items(data, periods)

 View Source

 @spec forecast_items(data :: [number()] | (() -> number()), periods :: pos_integer()) ::
 (() -> number())

Returns a function for forecasting the number of completed items in a number periods.
This function is a wrapper for forecast/4.

 arguments

 Arguments

`data` - either a data set to base the forecasting on, or a function that returns (random) numbers
`periods` - the number of periods to forecast the number of completed items for

 Link to this function

 mc(iterations, fun, options \\ [])

 View Source

 @spec mc(
 iterations :: pos_integer(),
 fun :: (pos_integer() -> float()),
 options :: Keyword.t()
) ::
 {avg :: float(), sd :: float(), tries :: [float()]}
 | {avg :: float(), sd :: float()}

Basic Monte Carlo simulation to repeatedly run a simulation multiple times.

 options

 Options

`:collect_all?` - If true, collects data from each individual simulation run and returns this an the third element of the result tuple

 Link to this function

 total_mc(result, fun, mode \\ :use_bounds, iterations \\ 1000)

 View Source

 Chi2fit.Roots - Chi-SquaredFit v2.0.1

Chi2fit.Roots

Solves roots for linear, quadratic, and cubic equations.

 Anchor for this section

 Summary

 Functions

 solve(list)

 Returns the real roots of polynoms of order 1, 2 and 3 as a list.

 Anchor for this section

Functions

 Link to this function

 solve(list)

 View Source

 @spec solve([float()]) :: [float()]

Returns the real roots of polynoms of order 1, 2 and 3 as a list.

 examples

 Examples

Solve `2.0*x + 5.0 = 0`
iex> solve [2.0,5.0]
[-2.5]

iex> solve [2.0,-14.0,24.0]
[4.0,3.0]

iex> solve [1.0,0.0,5.0,6.0]
[-0.9999999999999999]

 Chi2fit.Statistics - Chi-SquaredFit v2.0.1

Chi2fit.Statistics

 Anchor for this section

 Summary

 Types

 algorithm()

 Algorithm used to assign errors to frequencey data: Wald score and Wilson score.

 cdf()

 Cumulative Distribution Function

 cullenfrey()

 ecdf()

 Binned data with error bounds specified through low and high values

 range()

 Functions

 auto(list, opts \\ [nproc: 1])

 Calculates the autocorrelation coefficient of a list of observations.

 binerror(data, noise_fun, options \\ [])

 Calculates the systematic errors for bins due to uncertainty in assigning data to bins.

 bootstrap(total, data, fun, options \\ [])

 Implements bootstrapping procedure as resampling with replacement.

 convert_cdf(arg)

 Converts a CDF function to a list of data points.

 cullen_frey(sample, n \\ 100)

 Generates a Cullen & Frey plot for the sample data.

 cullen_frey_point(data)

 Extracts data point with standard deviation from Cullen & Frey plot data.

 empirical_cdf(data, bin \\ {1.0, 0.5}, algorithm \\ :wilson, correction \\ 0)

 Generates an empirical Cumulative Distribution Function from sample data.

 error(nauto, atom)

 Calculates and returns the error associated with a list of observables.

 get_cdf(data, binsize \\ {1.0, 0.5}, algorithm \\ :wilson, correction \\ 0)

 Calculates the empirical CDF from a sample.

 make_histogram(list, binsize \\ 1.0, offset \\ 0.0)

 Converts a list of numbers to frequency data.

 moment(sample, n)

 Calculates the nth moment of the sample.

 momentc(sample, n)

 Calculates the nth centralized moment of the sample.

 momentc(sample, n, mu)

 Calculates the nth centralized moment of the sample.

 momentn(sample, n)

 Calculates the nth normalized moment of the sample.

 momentn(sample, n, mu)

 Calculates the nth normalized moment of the sample.

 momentn(sample, n, mu, sigma)

 Calculates the nth normalized moment of the sample.

 puiseaux(list, result \\ [], flag \\ false)

 Converts the input so that the result is a Puiseaux diagram, that is a strict convex shape.

 resample(data, options)

 Resamples the subsequences of numbers contained in the list as determined by analyze/2

 subexponential_stat(data, test \\ :sum, n \\ 2, binsize \\ {1, 0})

 Calculates the test statistic for subexponentiality of a sample.

 to_bins(data, binsize \\ {1.0, 0.5})

 Converts raw data to binned data with (asymmetrical) errors.

 Anchor for this section

Types

 Link to this type

 algorithm()

 View Source

 @type algorithm() :: :wilson | :wald

Algorithm used to assign errors to frequencey data: Wald score and Wilson score.

 Link to this type

 cdf()

 View Source

 @type cdf() :: (number() -> {number(), number(), number()})

Cumulative Distribution Function

 Link to this type

 cullenfrey()

 View Source

 @type cullenfrey() :: [{squared_skewness :: float(), kurtosis :: float()} | nil]

 Link to this type

 ecdf()

 View Source

 @type ecdf() :: [{float(), float(), float(), float()}]

Binned data with error bounds specified through low and high values

 Link to this type

 range()

 View Source

 @type range() :: {float(), float()} | [float(), ...]

 Anchor for this section

Functions

 Link to this function

 auto(list, opts \\ [nproc: 1])

 View Source

 @spec auto([number()], Keyword.t()) :: [number()]

Calculates the autocorrelation coefficient of a list of observations.
The implementation uses the discrete Fast Fourier Transform to calculate the autocorrelation.
For available options see Chi2fit.FFT.fft/2. Returns a list of the autocorrelation coefficients.

 example

 Example

iex> auto [1,2,3]
[14.0, 7.999999999999999, 2.999999999999997]

 Link to this function

 binerror(data, noise_fun, options \\ [])

 View Source

 @spec binerror(
 data :: [number()],
 noise_fun :: (Enumerable.t() -> Enumerable.t()),
 options :: Keyword.t()
) :: [{bin :: number(), avg :: number(), error :: number()}]

Calculates the systematic errors for bins due to uncertainty in assigning data to bins.

 options

 Options

`bin` - the size of bins to use (defaults to 1)
`iterations` - the number of iterations to use to estimate the error due to noise (defatuls to 100)

 Link to this function

 bootstrap(total, data, fun, options \\ [])

 View Source

 @spec bootstrap(
 total :: integer(),
 data :: [number()],
 fun :: ([number()], integer() -> number()),
 options :: Keyword.t()
) :: [any()]

Implements bootstrapping procedure as resampling with replacement.
It supports saving intermediate results to a file using :dets. Use the options :safe and :filename (see below)

 arguments

 Arguments:

`total` - Total number resamplings to perform
`data` - The sample data
`fun` - The function to evaluate
`options` - A keyword list of options, see below.

 options

 Options

`:safe` - Whether to safe intermediate results to a file, so as to support continuation when it is interrupted.
 Valid values are `:safe` and `:cont`.
`:filename` - The filename to use for storing intermediate results

 Link to this function

 convert_cdf(arg)

 View Source

 @spec convert_cdf({cdf(), range()}) :: [{float(), float(), float(), float()}]

Converts a CDF function to a list of data points.

 example

 Example

iex> convert_cdf {fn x->{:math.exp(-x),:math.exp(-x)/16,:math.exp(-x)/4} end, {1,4}}
[{1, 0.36787944117144233, 0.022992465073215146, 0.09196986029286058},
 {2, 0.1353352832366127, 0.008458455202288294, 0.033833820809153176},
 {3, 0.049787068367863944, 0.0031116917729914965, 0.012446767091965986},
 {4, 0.01831563888873418, 0.0011447274305458862, 0.004578909722183545}]

 Link to this function

 cullen_frey(sample, n \\ 100)

 View Source

 @spec cullen_frey(sample :: [number()], n :: integer()) :: cullenfrey()

Generates a Cullen & Frey plot for the sample data.
The kurtosis returned is the 'excess kurtosis'.

 Link to this function

 cullen_frey_point(data)

 View Source

 @spec cullen_frey_point(data :: cullenfrey()) ::
 {{x :: float(), dx :: float()}, {y :: float(), dy :: float()}}

Extracts data point with standard deviation from Cullen & Frey plot data.

 Link to this function

 empirical_cdf(data, bin \\ {1.0, 0.5}, algorithm \\ :wilson, correction \\ 0)

 View Source

 @spec empirical_cdf(
 [{float(), number()}],
 {number(), number()},
 algorithm(),
 integer()
) ::
 {cdf(), bins :: [float()], numbins :: pos_integer(), sum :: float()}

Generates an empirical Cumulative Distribution Function from sample data.
Three parameters determine the resulting empirical distribution:
	algorithm for assigning errors,

	the size of the bins,

	a correction for limiting the bounds on the 'y' values

When e.g. task effort/duration is modeled, some tasks measured have 0 time. In practice
what is actually is meant, is that the task effort is between 0 and 1 hour. This is where
binning of the data happens. Specify a size of the bins to control how this is done. A bin
size of 1 means that 0 effort will be mapped to 1/2 effort (at the middle of the bin).
This also prevents problems when the fited distribution cannot cope with an effort os zero.
Supports two ways of assigning errors: Wald score or Wilson score. See [1]. Valie values for the algorithm
argument are :wald or :wilson.
In the handbook of MCMC [1] a cumulative distribution is constructed. For the largest 'x' value
in the sample, the 'y' value is exactly one (1). In combination with the Wald score this
gives zero errors on the value '1'. If the resulting distribution is used to fit a curve
this may give an infinite contribution to the maximum likelihood function.
Use the correction number to have a 'y' value of slightly less than 1 to prevent this from
happening.
Especially the combination of 0 correction, algorithm :wald, and 'linear' model for
handling asymmetric errors gives problems.
The algorithm parameter determines how the errors onthe 'y' value are determined. Currently
supported values include :wald and :wilson.

 references

 References

[1] "Handbook of Monte Carlo Methods" by Kroese, Taimre, and Botev, section 8.4
[2] See https://en.wikipedia.org/wiki/Cumulative_frequency_analysis
[3] https://arxiv.org/pdf/1112.2593v3.pdf
[4] See https://en.wikipedia.org/wiki/Student%27s_t-distribution:
 90% confidence ==> t = 1.645 for many data points (> 120)
 70% confidence ==> t = 1.000

 Link to this function

 error(nauto, atom)

 View Source

 @spec error([{gamma :: number(), k :: pos_integer()}], :initial_sequence_method) ::
 {var :: number(), lag :: number()}

Calculates and returns the error associated with a list of observables.
Usually these are the result of a Markov Chain Monte Carlo simulation run.
The only supported method is the so-called Initial Sequence Method. See section 1.10.2 (Initial sequence method)
of [1].
Input is a list of autocorrelation coefficients. This may be the output of auto/2.

 references

 References

[1] 'Handbook of Markov Chain Monte Carlo'

 Link to this function

 get_cdf(data, binsize \\ {1.0, 0.5}, algorithm \\ :wilson, correction \\ 0)

 View Source

 @spec get_cdf([number()], number() | {number(), number()}, algorithm(), integer()) ::
 {cdf(), bins :: [float()], numbins :: pos_integer(), sum :: float()}

Calculates the empirical CDF from a sample.
Convenience function that chains make_histogram/2 and empirical_cdf/3.

 Link to this function

 make_histogram(list, binsize \\ 1.0, offset \\ 0.0)

 View Source

 @spec make_histogram([number()], number(), number()) :: [
 {non_neg_integer(), pos_integer()}
]

Converts a list of numbers to frequency data.
The data is divided into bins of size binsize and the number of data points inside a bin are counted. A map
is returned with the bin's index as a key and as value the number of data points in that bin.
The function returns a list of 2-tuples. Each tuple contains the index of the bin and the value of the count of the
number of items in the bin. The index of the bins start at 1 in the following way:
	[0..1) has index 1 (including 0 and excludes 1),
	[1..2) has index 2,
	etc.

When an offset is used, the bin starting from the offset, i.e. [offset..offset+1) gets index 1. Values less than
the offset are gathered in a bin with index 0.

 examples

 Examples

iex> make_histogram [1,2,3]
[{2, 1}, {3, 1}, {4, 1}]

iex> make_histogram [1,2,3], 1.0, 0
[{2, 1}, {3, 1}, {4, 1}]

iex> make_histogram [1,2,3,4,5,6,5,4,3,4,5,6,7,8,9]
[{2, 1}, {3, 1}, {4, 2}, {5, 3}, {6, 3}, {7, 2}, {8, 1}, {9, 1}, {10 , 1}]

iex> make_histogram [1,2,3,4,5,6,5,4,3,4,5,6,7,8,9], 3, 1.5
[{0, 1}, {1, 6}, {2, 6}, {3, 2}]

iex> make_histogram [0,0,0,1,3,4,3,2,6,7],1
[{1,3},{2,1},{3,1},{4,2},{5,1},{7,1},{8,1}]

iex> make_histogram [0,0,0,1,3,4,3,2,6,7],1,0.5
[{0,3},{1,1},{2,1},{3,2},{4,1},{6,1},{7,1}]

 Link to this function

 moment(sample, n)

 View Source

 @spec moment(sample :: [number()], n :: pos_integer()) :: float()

Calculates the nth moment of the sample.

 example

 Example

iex> moment [1,2,3,4,5,6], 1
3.5

 Link to this function

 momentc(sample, n)

 View Source

 @spec momentc(sample :: [number()], n :: pos_integer()) :: float()

Calculates the nth centralized moment of the sample.

 example

 Example

iex> momentc [1,2,3,4,5,6], 1
0.0

iex> momentc [1,2,3,4,5,6], 2
2.9166666666666665

 Link to this function

 momentc(sample, n, mu)

 View Source

 @spec momentc(sample :: [number()], n :: pos_integer(), mu :: float()) :: float()

Calculates the nth centralized moment of the sample.

 example

 Example

iex> momentc [1,2,3,4,5,6], 2, 3.5
2.9166666666666665

 Link to this function

 momentn(sample, n)

 View Source

 @spec momentn(sample :: [number()], n :: pos_integer()) :: float()

Calculates the nth normalized moment of the sample.

 example

 Example

iex> momentn [1,2,3,4,5,6], 1
0.0

iex> momentn [1,2,3,4,5,6], 2
1.0

iex> momentn [1,2,3,4,5,6], 4
1.7314285714285718

 Link to this function

 momentn(sample, n, mu)

 View Source

 @spec momentn(sample :: [number()], n :: pos_integer(), mu :: float()) :: float()

Calculates the nth normalized moment of the sample.

 example

 Example

iex> momentn [1,2,3,4,5,6], 4, 3.5
1.7314285714285718

 Link to this function

 momentn(sample, n, mu, sigma)

 View Source

 @spec momentn(
 sample :: [number()],
 n :: pos_integer(),
 mu :: float(),
 sigma :: float()
) :: float()

Calculates the nth normalized moment of the sample.

 Link to this function

 puiseaux(list, result \\ [], flag \\ false)

 View Source

 @spec puiseaux([number()], [number()], boolean()) :: [number()]

Converts the input so that the result is a Puiseaux diagram, that is a strict convex shape.

 examples

 Examples

iex> puiseaux [1]
[1]

iex> puiseaux [5,3,3,2]
[5, 3, 2.5, 2]

 Link to this function

 resample(data, options)

 View Source

 @spec resample(data :: [number()], options :: Keyword.t()) :: [number()]

Resamples the subsequences of numbers contained in the list as determined by analyze/2

 Link to this function

 subexponential_stat(data, test \\ :sum, n \\ 2, binsize \\ {1, 0})

 View Source

Calculates the test statistic for subexponentiality of a sample.
A value close to 0 is a strong indication that the sample shows subexponential behaviour (extremistan), i.e. is fat-tailed.

 Link to this function

 to_bins(data, binsize \\ {1.0, 0.5})

 View Source

 @spec to_bins(data :: [number()], binsize :: {number(), number()}) :: ecdf()

Converts raw data to binned data with (asymmetrical) errors.

 Chi2fit.Times - Chi-SquaredFit v2.0.1

Chi2fit.Times

 Anchor for this section

 Summary

 Functions

 adjust_times(data, options)

 Adjusts the times to working hours and/or work days.

 intervals(options \\ [])

 Returns a Stream that generates a stream of dates.

 map2weekdays(t, sat)

 Maps the date to weekdays such that weekends are eliminated; it does so with respect to a given Saturday

 map2workhours(t, startofday, endofday)

 Maps the time of a day into the working hour period

 throughput(intervals, datelist)

 Counts the number of dates (datelist) that is between consecutive dates in intervals and returns the result as a list of numbers.

 time_diff(data, options)

 Returns a list of time differences (assumes an ordered list as input)

 Anchor for this section

Functions

 Link to this function

 adjust_times(data, options)

 View Source

 @spec adjust_times(Enumerable.t(), options :: Keyword.t()) :: Enumerable.t()

Adjusts the times to working hours and/or work days.

 options

 Options

`workhours` - a 2-tuple containing the starting and ending hours of the work day (defaults
 to {8.0, 18.0})
`epoch` - the epoch to which all data elements are relative (defaults to 1970-01-01)
`saturday` - number of days since the epoch that corresponds to a Saturday (defaults
 to 9)
`correct` - whether to correct the times for working hours and weekdays; possible values
 `:worktime`, `:weekday`, `:"weekday+worktime"` (defaults to `false`)

 Link to this function

 intervals(options \\ [])

 View Source

 @spec intervals(options :: Keyword.t()) :: Enumerable.t()

Returns a Stream that generates a stream of dates.

 examples

 Examples

iex> intervals(end: ~D[2019-06-01]) |> Enum.take(4)
[~D[2019-06-01], ~D[2019-05-16], ~D[2019-05-01], ~D[2019-04-16]]

iex> intervals(end: ~D[2019-06-01], type: :weekly) |> Enum.take(4)
[~D[2019-06-01], ~D[2019-05-18], ~D[2019-05-04], ~D[2019-04-20]]

iex> intervals(end: ~D[2019-06-01], type: :weekly, weeks: 1) |> Enum.take(4)
[~D[2019-06-01], ~D[2019-05-25], ~D[2019-05-18], ~D[2019-05-11]]

iex> intervals(end: ~D[2019-06-01], type: :weekly, weeks: [3,2]) |> Enum.take(4)
[~D[2019-06-01], ~D[2019-05-11], ~D[2019-04-27], ~D[2019-04-13]]

 Link to this function

 map2weekdays(t, sat)

 View Source

 @spec map2weekdays(t :: number(), sat :: pos_integer()) :: number()

Maps the date to weekdays such that weekends are eliminated; it does so with respect to a given Saturday

 example

 Example

iex> map2weekdays(43568.123,43566)
43566.123

iex> map2weekdays(43574.123,43566)
43571.123

 Link to this function

 map2workhours(t, startofday, endofday)

 View Source

 @spec map2workhours(t :: number(), startofday :: number(), endofday :: number()) ::
 number()

Maps the time of a day into the working hour period
Scales the resulting part of the day between 0..1.

 arguments

 Arguments

`t` - date and time of day as a float; the integer part specifies the day and the fractional part the hour of the day
`startofday` - start of the work day in hours
`endofday` - end of the working day in hours

 example

 Example

iex> map2workhours(43568.1, 8, 18)
43568.0

iex> map2workhours(43568.5, 8, 18)
43568.4

 Link to this function

 throughput(intervals, datelist)

 View Source

 @spec throughput(intervals :: Enumerable.t(), datelist :: [NaiveDateTime.t()]) :: [
 number()
]

Counts the number of dates (datelist) that is between consecutive dates in intervals and returns the result as a list of numbers.

 Link to this function

 time_diff(data, options)

 View Source

 @spec time_diff(data :: Enumrable.t(), options :: Keyword.t()) :: Enumerable.t()

Returns a list of time differences (assumes an ordered list as input)

 options

 Options

`cutoff` - time differences below the cutoff are changed to the cutoff value (defaults to `0.01`)
`drop?` - whether to drop time differences below the cutoff (defaults to `false`)

 Chi2fit.Utilities - Chi-SquaredFit v2.0.1

Chi2fit.Utilities

Provides various utilities:
	Bootstrapping
	Creating Cumulative Distribution Functions / Histograms from sample data
	Autocorrelation coefficients

 Anchor for this section

 Summary

 Types

 avgsd()

 Average and standard deviationm (error)

 Functions

 analyze(map, fun, options)

 Walks a map structure while applying the function fun.

 as_table(rows, header)

 Pretty-prints a nested array-like structure (list or tuple) as a table.

 display(device \\ :stdio, results)

 Displays results of the function Chi2fit.Fit.chi2probe/4

 display(device \\ :stdio, hdata, model, arg, options)

 Displays results of the function Chi2fit.Fit.chi2fit/4

 display_subsequences(device \\ :stdio, trends, intervals)

 Pretty prints subsequences.

 puts_errors(device \\ :stdio, errors)

 Outputs and formats the errors that result from a call to Chi2fit.Fit.chi2/4

 read_data(filename)

 Reads data from a file specified by filename and returns a stream with the data parsed as floats.

 subsequences(stream)

 Examples
iex> subsequences []
[]

iex> subsequences [:a, :b]
[[:a], [:a, :b]]

iex> Stream.cycle([1,2,3]) |> subsequences |> Enum.take(4)
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 1]]

 unzip(list)

 Unzips lists of 1-, 2-, 3-, 4-, 5-, 6-, 7-, and 8-tuples.

 Anchor for this section

Types

 Link to this type

 avgsd()

 View Source

 @type avgsd() :: {avg :: float(), sd :: float()}

Average and standard deviationm (error)

 Anchor for this section

Functions

 Link to this function

 analyze(map, fun, options)

 View Source

 @spec analyze(
 map :: %{},
 fun :: ([number()], Keyword.t() -> Keyword.t()),
 options :: Keyword.t()
) ::
 Keyword.t()

Walks a map structure while applying the function fun.

 Link to this function

 as_table(rows, header)

 View Source

 @spec as_table(rows :: [any()], header :: tuple()) :: list()

Pretty-prints a nested array-like structure (list or tuple) as a table.

 Link to this function

 display(device \\ :stdio, results)

 View Source

 @spec display(device :: IO.device(), Chi2fit.Fit.chi2probe() | avgsd()) :: none()

Displays results of the function Chi2fit.Fit.chi2probe/4

 Link to this function

 display(device \\ :stdio, hdata, model, arg, options)

 View Source

 @spec display(
 device :: IO.device(),
 hdata :: Chi2fit.Statistics.ecdf(),
 model :: Chi2fit.Distribution.Utilities.model(),
 Chi2fit.Fit.chi2fit(),
 options :: Keyword.t()
) :: none()

Displays results of the function Chi2fit.Fit.chi2fit/4

 Link to this function

 display_subsequences(device \\ :stdio, trends, intervals)

 View Source

 @spec display_subsequences(
 device :: IO.device(),
 trends :: list(),
 intervals :: [NaiveDateTime.t()]
) ::
 none()

Pretty prints subsequences.

 Link to this function

 puts_errors(device \\ :stdio, errors)

 View Source

 @spec puts_errors(device :: IO.device(), errors :: tuple()) :: none()

Outputs and formats the errors that result from a call to Chi2fit.Fit.chi2/4
Errors are tuples of length 2 and larger: {[min1,max1], [min2,max2], ...}.

 Link to this function

 read_data(filename)

 View Source

 @spec read_data(filename :: String.t()) :: Enumerable.t()

Reads data from a file specified by filename and returns a stream with the data parsed as floats.
It expects a single data point on a separate line and removes entries that:
	are not floats, and
	smaller than zero (0)

 Link to this function

 subsequences(stream)

 View Source

 @spec subsequences(Enumerable.t()) :: Enumerable.t()

 examples

 Examples

iex> subsequences []
[]

iex> subsequences [:a, :b]
[[:a], [:a, :b]]

iex> Stream.cycle([1,2,3]) |> subsequences |> Enum.take(4)
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 1]]

 Link to this function

 unzip(list)

 View Source

 @spec unzip(list :: [tuple()]) :: tuple()

Unzips lists of 1-, 2-, 3-, 4-, 5-, 6-, 7-, and 8-tuples.

 NotebookUnit.Case - Chi-SquaredFit v2.0.1

NotebookUnit.Case

 Anchor for this section

 Summary

 Functions

 md_headers(json)

 md_toc(json)

 nbrun(json, notebook)

 nbtest(notebook)

 Anchor for this section

Functions

 Link to this function

 md_headers(json)

 View Source

 Link to this function

 md_toc(json)

 View Source

 Link to this macro

 nbrun(json, notebook)

 View Source

 (macro)

 Link to this macro

 nbtest(notebook)

 View Source

 (macro)

 Chi2fit.Distribution.FunctionNotSupportedError - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.FunctionNotSupportedError exception

 Chi2fit.Distribution.Utilities.UnsupportedDistributionError - Chi-SquaredFit v2.0.1

Chi2fit.Distribution.Utilities.UnsupportedDistributionError exception

 Chi2fit.Statistics.UnknownSampleErrorAlgorithmError - Chi-SquaredFit v2.0.1

Chi2fit.Statistics.UnknownSampleErrorAlgorithmError exception

OEBPS/dist/app-db64fcdc429a9b460caa.js
