Chi2fit.Fit.chi2fit
You're seeing just the function
chi2fit
, go back to Chi2fit.Fit module for more information.
Specs
chi2fit( observables(), model(), iterations :: pos_integer(), options :: Keyword.t() ) :: chi2fit()
Fits observables to a known model.
Returns the found minimum chi-squared value, covariance matrix, gradient at the minimum, and the corresponding parameter values including error estimates. For a good fit check the following:
`chi2 per degree of freedom` - this should be about 1 or less,
`gradient` - at the minimum the gradient should be zero at all directions.
For asymmetric errors use the option model
equal to linear
.
Rough chi-squared surfaces or if numerically unstable, use the option smoothing
set to true
.
Arguments
`observables` - list of measurements including errors,
`model` - `{parameters, fun}`: set of initial parameter values and a function to fit against the measurements
Options
`onstep` - call back function; it is called with a map with keys `delta`, `chi2`, and `params`,
`smoothing` - boolean value indicating whether the chi-squared is smoothened using a Gauss distribution. This
is used in case the surface is rough because of numerical instabilities to smoothen the surface,
`model` - The same values as in `chi2/3` and `chi2/4`
`grid?` - Performs a grid search: per step, tries to fit only one parameter and keeps the others fixed; selects the parameter in
a round-robin fashion
`probes` -- a list of tuples containing the result of the `chi2probe/4` function. Each tuple contains the chi2 value and parameter list.
Defaults to the empty list.