

 cfg_lib

 v0.1.0

 Table of contents

 	Modules

 	CFG

 	CFG.Config

 	CFG.Location

 	CFG.RecognizerError

 	Exceptions

 	CFG.RecognizerError

CFG

This top-level namespace holds all the functionality for working with CFG.
You'll normally interact with configurations using the Config submodule.

 Anchor for this section

 Summary

 Functions

 format_error(exception)

 Format an exception for display.

 Anchor for this section

Functions

 Link to this function

 format_error(exception)

 View Source

 Specs

 format_error(%CFG.RecognizerError{
 __exception__: term(),
 detail: term(),
 location: term(),
 reason: term()
}) :: String.t()

Format an exception for display.

CFG.Config

This module contains top-level functionality for working with CFG. Client code will usually just interact with this module.

 Anchor for this section

 Summary

 Types

 t()

 This type represents a configuration loaded from CFG source.

 Functions

 add_include(this, path, append \\ true)

 Append or prepend a list of directories to the include path of this configuration.

 as_dict(this)

 Return this configuration as a map, recursing into included configurations.

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 from_file(path)

 Return a configuration from a file, given its path.

 from_source(s)

 Return a configuration from its source.

 get(this, key, default \\ :MISSING)

 Get a value from this configuration by key or path, with an optional default value if not found.
If no default is specified and a value isn't found, an error will be returned.

 get_include(this)

 Get the include path of this configuration.

 get_no_duplicates(this)

 See whether this configuration allows duplicates.

 is_cached(this)

 See whether this configuration uses a cache.

 is_config(v)

 See if the specified value is a configuration.

 load_file(this, path)

 Load this configuration from a file, given its path.

 new(options \\ %{})

 Return a new, empty configuration with specified options.

 set_cached(this, cached)

 Set whether this configuration uses a cache.

 set_include(this, path)

 Set the include path of this configuration to the specified list of directories.

 set_no_duplicates(this, no_dupes)

 Set whether this configuration allows duplicates.

 set_path(this, p)

 Set the path from which this configuration was loaded.
This is also used to determine the directory searched for included configurations.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %CFG.Config{
 cache: nil | map(),
 context: nil | map(),
 data: nil | map(),
 error: term(),
 include_path: list(),
 no_duplicates: boolean(),
 parent: nil | pid(),
 path: nil | binary(),
 refs_seen: term(),
 root_dir: nil | binary(),
 scalar_tokens: term(),
 strict_conversions: boolean(),
 string_converter: function()
}

This type represents a configuration loaded from CFG source.
These are its fields:
	no_duplicates - Whether duplicate keys are allowed. If allowed, newer values for a given key
silently overwrite older ones. If not and a duplicate is seen, an error is returned.
	strict_conversions - Whether conversions of backtick-strings are allowed to fail. If not
strict, a failure results in the special string being returned. Otherwise, an error is returned.
	context - An optional map containing a variable name-to-value mapping.
	include_path - A list of directories which is searched for included configurations. The directory
of the including configuration is searched first.
	path - The absolute path from where the configuration was loaded.
	root_dir - The directory containing path.
	parent - The parent configuration of an included configuration.
	string_converter - A function which is called with a string and the configuration to perform
 backtick-string conversion.

 Anchor for this section

Functions

 Link to this function

 add_include(this, path, append \\ true)

 View Source

 Specs

 add_include(pid(), [binary()], boolean()) :: atom()

Append or prepend a list of directories to the include path of this configuration.

 Link to this function

 as_dict(this)

 View Source

 Specs

 as_dict(pid()) :: {atom(), any()}

Return this configuration as a map, recursing into included configurations.

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 from_file(path)

 View Source

 Specs

 from_file(binary()) :: {atom(), any()}

Return a configuration from a file, given its path.

 Link to this function

 from_source(s)

 View Source

 Specs

 from_source(binary()) :: {atom(), any()}

Return a configuration from its source.

 Link to this function

 get(this, key, default \\ :MISSING)

 View Source

 Specs

 get(pid(), binary(), any()) :: tuple()

Get a value from this configuration by key or path, with an optional default value if not found.
If no default is specified and a value isn't found, an error will be returned.

 Link to this function

 get_include(this)

 View Source

 Specs

 get_include(pid()) :: [binary()]

Get the include path of this configuration.

 Link to this function

 get_no_duplicates(this)

 View Source

 Specs

 get_no_duplicates(pid()) :: boolean()

See whether this configuration allows duplicates.

 Link to this function

 is_cached(this)

 View Source

 Specs

 is_cached(pid()) :: boolean()

See whether this configuration uses a cache.

 Link to this function

 is_config(v)

 View Source

 Specs

 is_config(any()) :: boolean()

See if the specified value is a configuration.

 Link to this function

 load_file(this, path)

 View Source

 Specs

 load_file(pid(), binary()) :: {atom(), any()}

Load this configuration from a file, given its path.

 Link to this function

 new(options \\ %{})

 View Source

 Specs

 new(map()) :: {atom(), pid()}

Return a new, empty configuration with specified options.

 Link to this function

 set_cached(this, cached)

 View Source

 Specs

 set_cached(pid(), boolean()) :: no_return()

Set whether this configuration uses a cache.

 Link to this function

 set_include(this, path)

 View Source

 Specs

 set_include(pid(), [binary()]) :: atom()

Set the include path of this configuration to the specified list of directories.

 Link to this function

 set_no_duplicates(this, no_dupes)

 View Source

 Specs

 set_no_duplicates(pid(), boolean()) :: atom()

Set whether this configuration allows duplicates.

 Link to this function

 set_path(this, p)

 View Source

 Specs

 set_path(pid(), binary()) :: atom()

Set the path from which this configuration was loaded.
This is also used to determine the directory searched for included configurations.

CFG.Location

 Anchor for this section

 Summary

 Types

 t()

 This type represents a location in the CFG source.

 Functions

 new(line \\ 1, column \\ 1)

 Return a location with the specified line and column.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %CFG.Location{column: non_neg_integer(), line: pos_integer()}

This type represents a location in the CFG source.
These are its fields:
	line: The source line. It must be a positive integer.
	column: The source column. It must be a non-negative integer. Newlines end
with a zero column; the first character in the next line would be at column 1.

 Anchor for this section

Functions

 Link to this function

 new(line \\ 1, column \\ 1)

 View Source

 Specs

 new(pos_integer(), non_neg_integer()) :: %CFG.Location{
 column: term(),
 line: term()
}

Return a location with the specified line and column.

CFG.RecognizerError exception

 Anchor for this section

 Summary

 Types

 t()

 This type represents an error which occurred when processing CFG.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %CFG.RecognizerError{
 __exception__: term(),
 detail: nil | any(),
 location: nil | %CFG.Location{column: term(), line: term()},
 reason: atom()
}

This type represents an error which occurred when processing CFG.
These are its fields:
	location: The optional location of the error in the source. Some errors may
have no location.
	reason: An atom indicating the kind of error.
	detail: Optional additional information about the error.

Here are the error reasons currently in use:
	invalid_escape - an invalid escape sequence was detected in a string.
	unterminated_backtick - a backtick-string is unterminated.
	newlines_not_allowed - newlines aren't allowed in strings other than multi-line strings.
	unterminated_string - a quoted string is unterminated.
	bad_number - a number is badly formed.
	bad_octal_constant - a number which looks like an octal constant is badly formed.
	unexpected_char - an unexpected character was encountered.
	unexpected_token - an unexpected token was encountered.
	unexpected_token_for_value - an unexpected token was encountered when looking for a value.
	unexpected_token_for_atom - an unexpected token was encountered when looking for an atomic value.
	bad_key_value_separator - a bad key/value separator was encountered.
	unexpected_for_key - an unexpected token was encountered when looking for a key in a mapping.
	unexpected_token_for_container - an unexpected token was encountered when parsing a container.
	text_after_container - there is trailing text following text for a valid container.
	invalid_index - an array or slice index is invalid.
	unexpected_token_for_expression - an unexpected token was encountered when looking for an expression.
	must_be_mapping - a top-level configuration must be a mapping.
	invalid_path - a CFG path is invalid.
	invalid_path_extra - there is text following what looks like a valid CFG path.
	no_configuration - no configuration has been loaded.
	not_found - the specified key or path was not found in this configuration.
	invalid_step - an invalid step (zero) was specified.
	unexpected_path_start - a CFG path doesn't begin as expected (with an identifier).
	cannot_evaluate - an expression cannot be evaluated.
	string_expected - a string was expected, but not found.
	include_not_found - an included configuration was not found.
	cannot_add - an addition cannot be performed.
	cannot_negate - a negation cannot be performed.
	cannot_subtract - a subtraction cannot be performed.
	cannot_multiply - a multiplication cannot be performed.
	cannot_divide - a division cannot be performed.
	cannot_integer_divide - an integer division cannot be performed.
	cannot_compute_modulo - a modulo operation cannot be performed.
	cannot_left_shift - a left shift cannot be performed.
	cannot_right_shift - a right shift cannot be performed.
	cannot_raise_to_power - raise to power operation cannot be performed.
	cannot_bitwise_or - a bitwise-or operation cannot be performed.
	cannot_bitwise_and - a bitwise-and operation cannot be performed.
	cannot_bitwise_xor - a bitwise-xor operation cannot be performed.
	unknown_variable - a variable is undefined or no context was provided.
	conversion_failure - a string conversion operation cannot be performed.
	circular_reference - a circular reference was detected when resolving references.
	not_implemented - a feature is not implemented.

CFG.RecognizerError exception

 Anchor for this section

 Summary

 Types

 t()

 This type represents an error which occurred when processing CFG.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %CFG.RecognizerError{
 __exception__: term(),
 detail: nil | any(),
 location: nil | %CFG.Location{column: term(), line: term()},
 reason: atom()
}

This type represents an error which occurred when processing CFG.
These are its fields:
	location: The optional location of the error in the source. Some errors may
have no location.
	reason: An atom indicating the kind of error.
	detail: Optional additional information about the error.

Here are the error reasons currently in use:
	invalid_escape - an invalid escape sequence was detected in a string.
	unterminated_backtick - a backtick-string is unterminated.
	newlines_not_allowed - newlines aren't allowed in strings other than multi-line strings.
	unterminated_string - a quoted string is unterminated.
	bad_number - a number is badly formed.
	bad_octal_constant - a number which looks like an octal constant is badly formed.
	unexpected_char - an unexpected character was encountered.
	unexpected_token - an unexpected token was encountered.
	unexpected_token_for_value - an unexpected token was encountered when looking for a value.
	unexpected_token_for_atom - an unexpected token was encountered when looking for an atomic value.
	bad_key_value_separator - a bad key/value separator was encountered.
	unexpected_for_key - an unexpected token was encountered when looking for a key in a mapping.
	unexpected_token_for_container - an unexpected token was encountered when parsing a container.
	text_after_container - there is trailing text following text for a valid container.
	invalid_index - an array or slice index is invalid.
	unexpected_token_for_expression - an unexpected token was encountered when looking for an expression.
	must_be_mapping - a top-level configuration must be a mapping.
	invalid_path - a CFG path is invalid.
	invalid_path_extra - there is text following what looks like a valid CFG path.
	no_configuration - no configuration has been loaded.
	not_found - the specified key or path was not found in this configuration.
	invalid_step - an invalid step (zero) was specified.
	unexpected_path_start - a CFG path doesn't begin as expected (with an identifier).
	cannot_evaluate - an expression cannot be evaluated.
	string_expected - a string was expected, but not found.
	include_not_found - an included configuration was not found.
	cannot_add - an addition cannot be performed.
	cannot_negate - a negation cannot be performed.
	cannot_subtract - a subtraction cannot be performed.
	cannot_multiply - a multiplication cannot be performed.
	cannot_divide - a division cannot be performed.
	cannot_integer_divide - an integer division cannot be performed.
	cannot_compute_modulo - a modulo operation cannot be performed.
	cannot_left_shift - a left shift cannot be performed.
	cannot_right_shift - a right shift cannot be performed.
	cannot_raise_to_power - raise to power operation cannot be performed.
	cannot_bitwise_or - a bitwise-or operation cannot be performed.
	cannot_bitwise_and - a bitwise-and operation cannot be performed.
	cannot_bitwise_xor - a bitwise-xor operation cannot be performed.
	unknown_variable - a variable is undefined or no context was provided.
	conversion_failure - a string conversion operation cannot be performed.
	circular_reference - a circular reference was detected when resolving references.
	not_implemented - a feature is not implemented.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

