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This top-level namespace holds all the functionality for working with CFG.
You'll normally interact with configurations using the Config submodule.
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    format_error(exception)

  


    Format an exception for display.
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      Link to this function
    
    format_error(exception)


      
       
       View Source
     


  


  

      Specs

      

          format_error(%CFG.RecognizerError{
  __exception__: term(),
  detail: term(),
  location: term(),
  reason: term()
}) :: String.t()


      


Format an exception for display.

  


        

      



  

    
CFG.Config
    



      
This module contains top-level functionality for working with CFG. Client code will usually just interact with this module.
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          Summary
        


  
    
      Types
    


  
    t()

  


    This type represents a configuration loaded from CFG source.






  


  
    
      Functions
    


  
    add_include(this, path, append \\ true)

  


    Append or prepend a list of directories to the include path of this configuration.






  
    as_dict(this)

  


    Return this configuration as a map, recursing into included configurations.






  
    child_spec(arg)

  


    Returns a specification to start this module under a supervisor.






  
    from_file(path)

  


    Return a configuration from a file, given its path.






  
    from_source(s)

  


    Return a configuration from its source.






  
    get(this, key, default \\ :MISSING)

  


    Get a value from this configuration by key or path, with an optional default value if not found.
If no default is specified and a value isn't found, an error will be returned.






  
    get_include(this)

  


    Get the include path of this configuration.






  
    get_no_duplicates(this)

  


    See whether this configuration allows duplicates.






  
    is_cached(this)

  


    See whether this configuration uses a cache.






  
    is_config(v)

  


    See if the specified value is a configuration.






  
    load_file(this, path)

  


    Load this configuration from a file, given its path.






  
    new(options \\ %{})

  


    Return a new, empty configuration with specified options.






  
    set_cached(this, cached)

  


    Set whether this configuration uses a cache.






  
    set_include(this, path)

  


    Set the include path of this configuration to the specified list of directories.






  
    set_no_duplicates(this, no_dupes)

  


    Set whether this configuration allows duplicates.






  
    set_path(this, p)

  


    Set the path from which this configuration was loaded.
This is also used to determine the directory searched for included configurations.
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      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %CFG.Config{
  cache: nil | map(),
  context: nil | map(),
  data: nil | map(),
  error: term(),
  include_path: list(),
  no_duplicates: boolean(),
  parent: nil | pid(),
  path: nil | binary(),
  refs_seen: term(),
  root_dir: nil | binary(),
  scalar_tokens: term(),
  strict_conversions: boolean(),
  string_converter: function()
}


      


This type represents a configuration loaded from CFG source.
These are its fields:
	no_duplicates - Whether duplicate keys are allowed. If allowed, newer values for a given key
silently overwrite older ones. If not and a duplicate is seen, an error is returned.
	strict_conversions - Whether conversions of backtick-strings are allowed to fail. If not
strict, a failure results in the special string being returned. Otherwise, an error is returned.
	context - An optional map containing a variable name-to-value mapping.
	include_path - A list of directories which is searched for included configurations. The directory
of the including configuration is searched first.
	path - The absolute path from where the configuration was loaded.
	root_dir - The directory containing path.
	parent - The parent configuration of an included configuration.
	string_converter - A function which is called with a string and the configuration to perform
 backtick-string conversion.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    add_include(this, path, append \\ true)


      
       
       View Source
     


  


  

      Specs

      

          add_include(pid(), [binary()], boolean()) :: atom()


      


Append or prepend a list of directories to the include path of this configuration.

  



  
    
      
      Link to this function
    
    as_dict(this)


      
       
       View Source
     


  


  

      Specs

      

          as_dict(pid()) :: {atom(), any()}


      


Return this configuration as a map, recursing into included configurations.

  



  
    
      
      Link to this function
    
    child_spec(arg)


      
       
       View Source
     


  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
      Link to this function
    
    from_file(path)


      
       
       View Source
     


  


  

      Specs

      

          from_file(binary()) :: {atom(), any()}


      


Return a configuration from a file, given its path.

  



  
    
      
      Link to this function
    
    from_source(s)


      
       
       View Source
     


  


  

      Specs

      

          from_source(binary()) :: {atom(), any()}


      


Return a configuration from its source.

  



    

  
    
      
      Link to this function
    
    get(this, key, default \\ :MISSING)


      
       
       View Source
     


  


  

      Specs

      

          get(pid(), binary(), any()) :: tuple()


      


Get a value from this configuration by key or path, with an optional default value if not found.
If no default is specified and a value isn't found, an error will be returned.

  



  
    
      
      Link to this function
    
    get_include(this)


      
       
       View Source
     


  


  

      Specs

      

          get_include(pid()) :: [binary()]


      


Get the include path of this configuration.

  



  
    
      
      Link to this function
    
    get_no_duplicates(this)


      
       
       View Source
     


  


  

      Specs

      

          get_no_duplicates(pid()) :: boolean()


      


See whether this configuration allows duplicates.

  



  
    
      
      Link to this function
    
    is_cached(this)


      
       
       View Source
     


  


  

      Specs

      

          is_cached(pid()) :: boolean()


      


See whether this configuration uses a cache.

  



  
    
      
      Link to this function
    
    is_config(v)


      
       
       View Source
     


  


  

      Specs

      

          is_config(any()) :: boolean()


      


See if the specified value is a configuration.

  



  
    
      
      Link to this function
    
    load_file(this, path)


      
       
       View Source
     


  


  

      Specs

      

          load_file(pid(), binary()) :: {atom(), any()}


      


Load this configuration from a file, given its path.

  



    

  
    
      
      Link to this function
    
    new(options \\ %{})


      
       
       View Source
     


  


  

      Specs

      

          new(map()) :: {atom(), pid()}


      


Return a new, empty configuration with specified options.

  



  
    
      
      Link to this function
    
    set_cached(this, cached)


      
       
       View Source
     


  


  

      Specs

      

          set_cached(pid(), boolean()) :: no_return()


      


Set whether this configuration uses a cache.

  



  
    
      
      Link to this function
    
    set_include(this, path)


      
       
       View Source
     


  


  

      Specs

      

          set_include(pid(), [binary()]) :: atom()


      


Set the include path of this configuration to the specified list of directories.

  



  
    
      
      Link to this function
    
    set_no_duplicates(this, no_dupes)


      
       
       View Source
     


  


  

      Specs

      

          set_no_duplicates(pid(), boolean()) :: atom()


      


Set whether this configuration allows duplicates.

  



  
    
      
      Link to this function
    
    set_path(this, p)


      
       
       View Source
     


  


  

      Specs

      

          set_path(pid(), binary()) :: atom()


      


Set the path from which this configuration was loaded.
This is also used to determine the directory searched for included configurations.
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    t()

  


    This type represents a location in the CFG source.






  


  
    
      Functions
    


  
    new(line \\ 1, column \\ 1)

  


    Return a location with the specified line and column.
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      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %CFG.Location{column: non_neg_integer(), line: pos_integer()}


      


This type represents a location in the CFG source.
These are its fields:
	line: The source line. It must be a positive integer.
	column: The source column. It must be a non-negative integer. Newlines end
with a zero column; the first character in the next line would be at column 1.
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      Link to this function
    
    new(line \\ 1, column \\ 1)


      
       
       View Source
     


  


  

      Specs

      

          new(pos_integer(), non_neg_integer()) :: %CFG.Location{
  column: term(),
  line: term()
}


      


Return a location with the specified line and column.
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    t()

  


    This type represents an error which occurred when processing CFG.
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      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %CFG.RecognizerError{
  __exception__: term(),
  detail: nil | any(),
  location: nil | %CFG.Location{column: term(), line: term()},
  reason: atom()
}


      


This type represents an error which occurred when processing CFG.
These are its fields:
	location: The optional location of the error in the source. Some errors may
have no location.
	reason: An atom indicating the kind of error.
	detail: Optional additional information about the error.

Here are the error reasons currently in use:
	invalid_escape - an invalid escape sequence was detected in a string.
	unterminated_backtick - a backtick-string is unterminated.
	newlines_not_allowed - newlines aren't allowed in strings other than multi-line strings.
	unterminated_string - a quoted string is unterminated.
	bad_number - a number is badly formed.
	bad_octal_constant - a number which looks like an octal constant is badly formed.
	unexpected_char - an unexpected character was encountered.
	unexpected_token - an unexpected token was encountered.
	unexpected_token_for_value - an unexpected token was encountered when looking for a value.
	unexpected_token_for_atom - an unexpected token was encountered when looking for an atomic value.
	bad_key_value_separator - a bad key/value separator was encountered.
	unexpected_for_key - an unexpected token was encountered when looking for a key in a mapping.
	unexpected_token_for_container - an unexpected token was encountered when parsing a container.
	text_after_container - there is trailing text following text for a valid container.
	invalid_index - an array or slice index is invalid.
	unexpected_token_for_expression - an unexpected token was encountered when looking for an expression.
	must_be_mapping - a top-level configuration must be a mapping.
	invalid_path - a CFG path is invalid.
	invalid_path_extra - there is text following what looks like a valid CFG path.
	no_configuration - no configuration has been loaded.
	not_found - the specified key or path was not found in this configuration.
	invalid_step - an invalid step (zero) was specified.
	unexpected_path_start - a CFG path doesn't begin as expected (with an identifier).
	cannot_evaluate - an expression cannot be evaluated.
	string_expected - a string was expected, but not found.
	include_not_found - an included configuration was not found.
	cannot_add - an addition cannot be performed.
	cannot_negate - a negation cannot be performed.
	cannot_subtract - a subtraction cannot be performed.
	cannot_multiply - a multiplication cannot be performed.
	cannot_divide  - a division cannot be performed.
	cannot_integer_divide - an integer division cannot be performed.
	cannot_compute_modulo - a modulo operation cannot be performed.
	cannot_left_shift - a left shift cannot be performed.
	cannot_right_shift - a right shift cannot be performed.
	cannot_raise_to_power - raise to power operation cannot be performed.
	cannot_bitwise_or - a bitwise-or operation cannot be performed.
	cannot_bitwise_and - a bitwise-and operation cannot be performed.
	cannot_bitwise_xor - a bitwise-xor operation cannot be performed.
	unknown_variable - a variable is undefined or no context was provided.
	conversion_failure - a string conversion operation cannot be performed.
	circular_reference - a circular reference was detected when resolving references.
	not_implemented - a feature is not implemented.
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    This type represents an error which occurred when processing CFG.
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      Link to this type
    
    t()


      
       
       View Source
     


  


  

      Specs

      

          t() :: %CFG.RecognizerError{
  __exception__: term(),
  detail: nil | any(),
  location: nil | %CFG.Location{column: term(), line: term()},
  reason: atom()
}


      


This type represents an error which occurred when processing CFG.
These are its fields:
	location: The optional location of the error in the source. Some errors may
have no location.
	reason: An atom indicating the kind of error.
	detail: Optional additional information about the error.

Here are the error reasons currently in use:
	invalid_escape - an invalid escape sequence was detected in a string.
	unterminated_backtick - a backtick-string is unterminated.
	newlines_not_allowed - newlines aren't allowed in strings other than multi-line strings.
	unterminated_string - a quoted string is unterminated.
	bad_number - a number is badly formed.
	bad_octal_constant - a number which looks like an octal constant is badly formed.
	unexpected_char - an unexpected character was encountered.
	unexpected_token - an unexpected token was encountered.
	unexpected_token_for_value - an unexpected token was encountered when looking for a value.
	unexpected_token_for_atom - an unexpected token was encountered when looking for an atomic value.
	bad_key_value_separator - a bad key/value separator was encountered.
	unexpected_for_key - an unexpected token was encountered when looking for a key in a mapping.
	unexpected_token_for_container - an unexpected token was encountered when parsing a container.
	text_after_container - there is trailing text following text for a valid container.
	invalid_index - an array or slice index is invalid.
	unexpected_token_for_expression - an unexpected token was encountered when looking for an expression.
	must_be_mapping - a top-level configuration must be a mapping.
	invalid_path - a CFG path is invalid.
	invalid_path_extra - there is text following what looks like a valid CFG path.
	no_configuration - no configuration has been loaded.
	not_found - the specified key or path was not found in this configuration.
	invalid_step - an invalid step (zero) was specified.
	unexpected_path_start - a CFG path doesn't begin as expected (with an identifier).
	cannot_evaluate - an expression cannot be evaluated.
	string_expected - a string was expected, but not found.
	include_not_found - an included configuration was not found.
	cannot_add - an addition cannot be performed.
	cannot_negate - a negation cannot be performed.
	cannot_subtract - a subtraction cannot be performed.
	cannot_multiply - a multiplication cannot be performed.
	cannot_divide  - a division cannot be performed.
	cannot_integer_divide - an integer division cannot be performed.
	cannot_compute_modulo - a modulo operation cannot be performed.
	cannot_left_shift - a left shift cannot be performed.
	cannot_right_shift - a right shift cannot be performed.
	cannot_raise_to_power - raise to power operation cannot be performed.
	cannot_bitwise_or - a bitwise-or operation cannot be performed.
	cannot_bitwise_and - a bitwise-and operation cannot be performed.
	cannot_bitwise_xor - a bitwise-xor operation cannot be performed.
	unknown_variable - a variable is undefined or no context was provided.
	conversion_failure - a string conversion operation cannot be performed.
	circular_reference - a circular reference was detected when resolving references.
	not_implemented - a feature is not implemented.
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