

 castle

 v0.3.0

 Table of contents

 	Castle

 	Changelog

 	Modules

 	Castle

Castle

Runtime support for hot-code upgrades.
Castle provides runtime support for hot-code upgrades. In particular, it generates a
valid sys.config from runtime.exs and/or other Config Providers
prior to both boot and hot-code upgrade.
It relies on Forecastle for build-time release generation
and brings it in as a build-time dependency.
Installation
The package can be installed by adding castle to your list of dependencies in
mix.exs. For projects that don't define a release, but use the appup compiler,
it's sufficient to bring Castle in as a build-time dependency:
def deps do
 [
 {:castle, "~> 0.3.0", runtime: false}
]
end
For projects that do define one or more releases, Castle should be brought in
as a runtime dependency:
def deps do
 [
 {:castle, "~> 0.3.0"}
]
end
Castle brings in Forecastle as a build-time dependency.
Integration
Build-time integration is done via Forecastle and more details can be found in its
documentation but, in summary, it will integrate into your release process via the
release assembly process. In particular, it requires that that the Forecastle.pre_assemble/1
and Forecastle.post_assemble/1 functions are placed around the :assemble step, e.g.:
defp releases do
 [
 myapp: [
 include_executables_for: [:unix],
 steps: [&Forecastle.pre_assemble/1, :assemble, &Forecastle.post_assemble/1, :tar]
]
]
end
Release Management
The script in the bin folder supports some extra commands to manage upgrades.
Releases, in their tarred-gzipped form, should first be copied to the releases
subfolder on the target system. The following commands can be used to manage
them:
	releases - Lists the releases on the system and their status. Status can
be one of the following:	permanent - the release the system will boot into on next restart.
	current - if it exists, represents the current running release. Will be
different from the permanent version if a new release has been installed
but not yet committed. If no version is listed as current, the permanent
version is the currently running version.
	old - if it exists, a previously installed version.
	unpacked - an unpacked version, but not yet installed.

	unpack <vsn> - Unpacks the release called <name>-<vsn>.tar.gz.
	install <vsn> - Installs the new release. This makes the release the
current one, but not yet the permanent one. Prior to running the relup,
Castle generates the version specific sys.config for the new version.
	commit <vsn> - Makes the specified release the one the permanent one.
	remove <vsn> - Remove an old version from the filesystem. Any files
shared with remaining releases are left untouched.

The Appup Compiler
You are responsible for writing the appup
scripts for your application, but Castle will copy the appup into the ebin folder
for you. The steps are as follows:
	Write a file, in Elixir form, describing the application upgrade. e.g.: # You can call the file what you like, e.g. appup.ex,
 # but you should # keep it away from the compiler paths.
 {
 '0.1.1',
 [
 {'0.1.0', [
 {:update, MyApp.Server, {:advanced, []}}
]}
],
 [
 {'0.1.0', [
 {:update, MyApp.Server, {:advanced, []}}
]}
]
 }
This file will typically be checked in to SCM.
	Add the appup file to the Mix project definition in mix.exs and add the
:appup compiler. # Mix.exs
 def project do
 [
 appup: "appup.ex", # Relative to the project root.
 compilers: Mix.compilers() ++ [:appup]
]
 end

Relup Generation
Castle contains a mix task, castle.relup, that simplifies the generation of
the relup file. Assuming you have two unpacked releases e.g. 0.1.0 and 0.1.1
and you wish to generate a relup between them:
> mix castle.relup --target myapp/releases/0.1.1/myapp --fromto myapp/releases/0.1.0/myapp

If the generated file is in the project root, it will be copied during
post-assembly to the release.

Changelog

0.3.0 - May 27, 2023
	Move build time support into Forecastle

0.2.3 - May 21, 2023
	Fix bug in shell script that prevented execution on Linux

0.2.2 - May 21, 2023
	Update Changelog

0.2.1 - May 21, 2023
	Update README

0.2.0 - May 21, 2023
	Added support for Config Provider expansion

0.1.3 - May 16, 2023
	Initial revision

Castle

Documentation for Castle.

 Anchor for this section

 Summary

 Functions

 commit(vsn)

 generate(vsn)

 install(vsn)

 make_releases()

 releases()

 remove(vsn)

 unpack(name)

 Anchor for this section

Functions

 Link to this function

 commit(vsn)

 View Source

 Link to this function

 generate(vsn)

 View Source

 Link to this function

 install(vsn)

 View Source

 Link to this function

 make_releases()

 View Source

 Link to this function

 releases()

 View Source

 Link to this function

 remove(vsn)

 View Source

 Link to this function

 unpack(name)

 View Source

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

