

 Cassandrax

 v0.1.0

 Table of contents

 	Modules

 	Cassandrax

 	Cassandrax.Connection

 	Cassandrax.Keyspace

 	Cassandrax.Keyspace.Schema

 	Cassandrax.Query

 	Cassandrax.Query.Builder

 	Cassandrax.Queryable

 	Cassandrax.Schema

 	Cassandrax.Schema.MapSetType

 	Cassandrax.ClusterConfigError

 	Cassandrax.MultipleResultsError

 	Cassandrax.QueryError

 	Cassandrax.SchemaError

 	Exceptions

 	Cassandrax.ClusterConfigError

 	Cassandrax.MultipleResultsError

 	Cassandrax.QueryError

 	Cassandrax.SchemaError

Cassandrax

Cassandrax is a Cassandra ORM built on top of Xandra and
Ecto. Xandra provides the driver for communication
with the Database, and Ecto provides the data mapping functionality as well as changesets
to control data mutations.
Cassandrax is heavily inspired by Triton and
Ecto projects, if you have used any of those projects,
you'll get up to speed in no time to use Cassandrax.
Cassandrax is split into 3 components following the design choices made on Ecto:
	Cassandrax.Keyspace - keyspaces are the touchpoints with your Cassandra.
Keyspaces provide the API for inserting, updating and deleting data from your tables,
as well as querying the data already stored.
Keyspaces need a cluster or a connection and a name.

	Cassandrax.Schema - schemas are used to map data fetched from Cassandra into an Elixir
struct. They use Ecto.Schema under the hood and should require a @primary_key to be
defined before the table definition.

	Cassandrax.Query - following Ecto design, they're written in Elixir syntax
and are used to retrieve data from a Cassandra table. Queries are composable,
even though they should remain as straight forward as possible. Unlike with
relational databases, where you first model the data and their relationships and later
you define how you should query that data, on Cassandra query design decisions are made
when modeling the tables. For more information, please refer to
Cassandra Docs

Next we'll provide an overview of these components and how you'll use them to
insert/change/fetch from/to Cassandra. Please check their corresponding module documentation
for more in-depth description of the features available and options.
Keyspaces
Cassandrax.Keyspace is a wrapper around the keyspace. Each keyspace contains one or multiple
tables and belongs to a cluster. A keyspace can be defined like so:
defmodule SomeKeyspace do
 use Cassandrax.Keyspace, cluster: SomeCluster, name: "some_keyspace"
end
And the configuration for SomeCluster must be in your application environment,
usually defined in your config/config.exs:
config :cassandrax, clusters: [SomeCluster]

config :cassandrax, SomeCluster,
 protocol_version: :v4,
 nodes: ["127.0.0.1:9042"]
 username: "cassandra",
 password: "cassandra",
 # cassandrax accepts all options you'd use in xandra
Cassandrax automatically picks up these configs to start the pool of connections for each
cluster. Keep in mind that all keyspaces that belong to the same cluster
will share the same pool of connections. If you need your keyspace to have its own
connection pool, please refer to the Cassandrax.Keyspace specific documentation.
Schemas
Schemas are used for table definition. Here's an example:
defmodule UserByEmail do
 use Cassandrax.Schema

 # needs to be defined *before* defining the schema
 @primary_key [:email]

 # table name is users_by_email. Notice we don't need to set the keyspace here
 table "users_by_email" do
 field :email, :string
 field :id, :integer
 field :username, :string
 end
end
Cassandrax uses Ecto.Schema to define a struct with the schema fields:
iex> user_by_email = %UserByEmail{email: "user@example.com"}
iex> user_by_email.email
"user@example.com"
Just like with Ecto, this schema allows us to interact with keyspaces, like so:
iex> user_by_email = %UserByEmail{email: "user@example.com", id: 123_456, username: "user"}
iex> SomeKeyspace.insert!(user_by_email)
%UserByEmail{...}
Unlike relational databases which come with the autoincrement ID as default primary key,
Cassandra requires you to define your own primary key. Therefore calling Keyspace.insert/2
always returns the struct itself with updated metadata, but no changed fields.
Also, bear in mind that Cassandra doesn't provice consistency guarantees the same way relational
databases do, so the returned values of, for instance, deleting a record that doesn't exist
anymore is the same as deleting an existing one:
iex> user_by_email = %UserByEmail{email: "user@example.com", id: 123_456, username: "user"}

Store the result in a variable
iex> result = SomeKeyspace.insert!(user_by_email)
%UserByEmail{...}

Now delete the recently inserted record...
iex> SomeKeyspace.delete!(result)
%UserByEmail{...}

And if you try to delete a record that doesn't exist, no error is returned
iex> SomeKeyspace.delete!(result)
%UserByEmail{...}
Queries
Cassandrax provides you with a DSL so you can write queries in Elixir, lowering the chances
of writing invalid CQL statements. In some occasions, Cassandrax.Query will validate your
query at compile time and fail as soon as possible if your query is invalid:
import Ecto.Query

query = UserByEmail |> where(:email == "user@example.com")

Returns a List of %UserByEmail{} structs matching the query
result = SomeKeyspace.all(query)
Specific examples and detailed documentation for all available keywords are available in
Cassandrax.Query module docs, but the supported keywords are:
	:allow_filtering
	:distinct
	:group_by
	:limit
	:order_by
	:per_partition_limit
	:select
	:where

Cassandrax.Keyspace provides the same API as Ecto: You have Keyspace.all/1 which returns
all records matching a query, Keyspace.one/1 which returns a single entry or raises and
Keyspace.get/2 which fetches an entry by its primary key.

 Anchor for this section

 Summary

 Functions

 cql(conn, statement, values \\ [], opts \\ [])

 ensure_cluster_config!(empty, cluster)

 start(type, args)

 Callback implementation for Application.start/2.

 start_link(children)

 Anchor for this section

Functions

 Link to this function

 cql(conn, statement, values \\ [], opts \\ [])

 View Source

 Link to this function

 ensure_cluster_config!(empty, cluster)

 View Source

 Link to this function

 start(type, args)

 View Source

Callback implementation for Application.start/2.

 Link to this function

 start_link(children)

 View Source

Cassandrax.Connection

 Anchor for this section

 Summary

 Functions

 all(keyspace, queryable)

 child_spec(opts)

 delete(keyspace, table, filters)

 execute(batch, opts)

 execute(conn, prepared, values, opts)

 insert(keyspace, table, changes)

 prepare(conn, iodata)

 update(keyspace, table, changes, filters)

 Anchor for this section

Functions

 Link to this function

 all(keyspace, queryable)

 View Source

 Link to this function

 child_spec(opts)

 View Source

 Link to this function

 delete(keyspace, table, filters)

 View Source

 Link to this function

 execute(batch, opts)

 View Source

 Link to this function

 execute(conn, prepared, values, opts)

 View Source

 Link to this function

 insert(keyspace, table, changes)

 View Source

 Link to this function

 prepare(conn, iodata)

 View Source

 Link to this function

 update(keyspace, table, changes, filters)

 View Source

Cassandrax.Keyspace behaviour

Defines a Keyspace.
A keyspace acts as a repository, wrapping an underlying keyspace in CassandraDB.
Setup
test_conn_attrs = [
 nodes: ["127.0.0.1:9043"],
 username: "cassandra",
 password: "cassandra"
]
child = Cassandrax.Supervisor.child_spec(Cassandrax.MyConn, test_conn_attrs)
Cassandrax.start_link([child])
Defining a new keyspace module.
defmodule MyKeyspace do
 use Cassandrax.Keyspace, cluster: Cassandrax.MyConn, name: "my_keyspace"
end
Creating a keyspace.
statement = """
CREATE KEYSPACE IF NOT EXISTS my_keyspace
WITH REPLICATION = {'class': 'SimpleStrategy', 'replication_factor': 1}
"""

Cassandrax.cql(Cassandrax.MyConn, statement)
Creating a table in the Keyspace.
statement = [
 "CREATE TABLE IF NOT EXISTS ",
 "my_keyspace.user(",
 "id integer, ",
 "user_name text, ",
 "svalue set<text>, ",
 "PRIMARY KEY (id))"
]

{:ok, _result} = Cassandrax.cql(Cassandrax.MyConn, statement)

 Anchor for this section

 Summary

 Callbacks

 __conn__()

 Accesses the cluster that was setup in the runtime configuration.

 __default_options__(atom)

 Accesses the consistency level that manages availability versus data accuracy.
Consistency level is configured for per individual read or write operation.
Pass :read or :write to access the consistency level (eg. [consistency: :one]).

 __keyspace__()

 Accesses the name of the Keyspace.

 all(queryable, opts)

 Fetches all entries from the data store that matches the given query.

 batch(opts, function)

 Runs batch queries.

 batch_delete(batch, arg2)

 Adds a DELETE query to the given batch.

 batch_insert(batch, arg2)

 Adds an INSERT query to the given batch.

 batch_update(batch, arg2)

 Adds an UPDATE query to the given batch.

 cql(statement, values, opts)

 Runs plain CQL Statements.

 delete(
 struct_or_changeset,
 opts
)

 Deletes a struct using its primary key.

 delete!(
 struct_or_changeset,
 opts
)

 Same as delete/2 but returns the struct or raises if the changeset is invalid.

 get(queryable, id, opts)

 Example
MyKeyspace.get(User, 2)

 init(context, config)

 A callback executed when the keyspace starts or when configuration is read.

 insert(
 struct_or_changeset,
 opts
)

 Inserts a struct defined in Cassandrax.Schema or a changeset.

 insert!(
 struct_or_changeset,
 opts
)

 Same as insert/2 but returns the struct or raises if the changeset is invalid.

 one(queryable, opts)

 Fetches a single record from the query.

 update(changeset, opts)

 Updates a changeset using its primary key.

 update!(changeset, opts)

 Same as update/2 but returns the struct or raises if the changeset is invalid.

 Anchor for this section

Callbacks

 Link to this callback

 __conn__()

 View Source

 Specs

 __conn__() :: Cassandrax.Connection

Accesses the cluster that was setup in the runtime configuration.

 Example

Cassandrax.MyConn = MyKeyspace.__conn__()

 Link to this callback

 __default_options__(atom)

 View Source

 Specs

 __default_options__(atom :: :read | :write) :: list() | nil

Accesses the consistency level that manages availability versus data accuracy.
Consistency level is configured for per individual read or write operation.
Pass :read or :write to access the consistency level (eg. [consistency: :one]).

 Example

[consistency: :one] = MyKeyspace.__default_options__(:read)

 Link to this callback

 __keyspace__()

 View Source

 Specs

 __keyspace__() :: String.t()

Accesses the name of the Keyspace.

 Example

"my_keyspace" = MyKeyspace.__keyspace__()

 Link to this callback

 all(queryable, opts)

 View Source

 Specs

 all(queryable :: Cassandrax.Queryable.t(), opts :: Keyword.t()) :: [
 Cassandrax.Schema.t()
]

Fetches all entries from the data store that matches the given query.
May raise Xandra.Error if query validation fails.

 Example

query = where(User, id: 1)
MyKeyspace.all(query)

 Link to this callback

 batch(opts, function)

 View Source

 Specs

 batch(opts :: Keyword.t(), (... -> any())) :: :ok | {:error, any()}

Runs batch queries.
Can be used to group and execute queries as Cassandra BATCH query.

 Options

:logged is the default behavior in Cassandrax. Logged batch acts like a lightweight
transaction around a batch operation. It enforces atomicity, and fails the batch if any of the queries fail.
Cassandra doesn't enforce any other transactional properties at batch level.
:unlogged consider it when there are multiple inserts and updates for the same partition key.
Unlogged batching will give a warning if too many operations or too many partitions are involved.
Read the CassandraDB documents for more information logged and unlogged batch operations.

 Example

user = MyKeyspace.get(User, id: 1)
changeset = Ecto.Changeset.change(user, user_name: "trent")

MyKeyspace.batch(fn batch ->
 batch
 |> MyKeyspace.batch_insert(%User{id: 3, user_name: "eve"})
 |> MyKeyspace.batch_insert(%User{id: 4, user_name: "mallory"})
 |> MyKeyspace.batch_update(changeset)
 |> MyKeyspace.batch_delete(user)
end)

 Link to this callback

 batch_delete(batch, arg2)

 View Source

 Specs

 batch_delete(batch :: Cassandrax.Keyspace.Batch.t(), Cassandrax.Schema.t()) ::
 :ok

Adds a DELETE query to the given batch.

 Link to this callback

 batch_insert(batch, arg2)

 View Source

 Specs

 batch_insert(batch :: Cassandrax.Keyspace.Batch.t(), Cassandrax.Schema.t()) ::
 :ok

Adds an INSERT query to the given batch.

 Link to this callback

 batch_update(batch, arg2)

 View Source

 Specs

 batch_update(batch :: Cassandrax.Keyspace.Batch.t(), Cassandrax.Schema.t()) ::
 :ok

Adds an UPDATE query to the given batch.

 Link to this callback

 cql(statement, values, opts)

 View Source

 Specs

 cql(statement :: String.t() | list(), values :: list(), opts :: Keyword.t()) ::
 {:ok, map()} | {:error, map()}

Runs plain CQL Statements.
Returns {:ok, map} if the CQL is successfully run or {:error, message}
if there was a validation or a known constraint error.

 Example

statement = """
SELECT * my_keyspace.user
"""

Cassandrax.cql(MyConn, statement)

 Link to this callback

 delete(
 struct_or_changeset,
 opts
)

 View Source

 Specs

 delete(
 struct_or_changeset :: Ecto.Schema.t() | Ecto.Changeset.t(),
 opts :: Keyword.t()
) :: {:ok, Cassandrax.Schema.t()} | {:error, any()}

Deletes a struct using its primary key.
If the struct has no primary key, Xandra.Error will be raised.
If the struct has been removed from db prior to call, it will still return {:ok, Cassandrax.Schema.t()}
It returns {:ok, struct} if the struct has been successfully deleted or {:error, message}
if there was a validation or a known constraint error.

 Example

MyKeyspace.delete(%User(id: 1, user_name: "bob"))

 Link to this callback

 delete!(
 struct_or_changeset,
 opts
)

 View Source

 Specs

 delete!(
 struct_or_changeset :: Ecto.Schema.t() | Ecto.Changeset.t(),
 opts :: Keyword.t()
) :: Cassandrax.Schema.t()

Same as delete/2 but returns the struct or raises if the changeset is invalid.

 Link to this callback

 get(queryable, id, opts)

 View Source

 Specs

 get(queryable :: Cassandrax.Queryable.t(), id :: term(), opts :: Keyword.t()) ::
 Cassandrax.Schema.t() | nil

 Example

MyKeyspace.get(User, 2)

 Link to this callback

 init(context, config)

 View Source

 (optional)

 Specs

 init(context :: :supervisor | :runtime, config :: Keyword.t()) ::
 {:ok, Keyword.t()} | :ignore

A callback executed when the keyspace starts or when configuration is read.
The first argument is the context the callback is being invoked. If it
is called because the Keyspace supervisor is starting, it will be :supervisor.
It will be :runtime if it is called for reading configuration without
actually starting a process.
The second argument is the keyspace configuration as stored in the
application environment. It must return {:ok, keyword} with the updated
list of configuration or :ignore (only in the :supervisor case).

 Link to this callback

 insert(
 struct_or_changeset,
 opts
)

 View Source

 Specs

 insert(
 struct_or_changeset :: Ecto.Changeset.t() | Cassandrax.Schema,
 opts :: Keyword.t()
) :: {:ok, Cassandrax.Schema.t()} | {:error, any()}

Inserts a struct defined in Cassandrax.Schema or a changeset.
If a struct is given, the struct is converted into a changeset with all non-nil fields.

 Example

{:ok, user} = MyKeyspace.insert(%User{id: 1, user_name: "bob"})

 Link to this callback

 insert!(
 struct_or_changeset,
 opts
)

 View Source

 Specs

 insert!(
 struct_or_changeset :: Ecto.Changeset.t() | Cassandrax.Schema,
 opts :: Keyword.t()
) :: Cassandrax.Schema.t()

Same as insert/2 but returns the struct or raises if the changeset is invalid.

 Link to this callback

 one(queryable, opts)

 View Source

 Specs

 one(queryable :: Cassandrax.Queryable.t(), opts :: Keyword.t()) ::
 Cassandrax.Schema.t() | nil

Fetches a single record from the query.
Returns nil if no records were found. May raise Cassandrax.MultipleResultsError,
if query returns more than one entry.

 Example

query = where(User, id: 1)
MyKeyspace.one(query)

 Link to this callback

 update(changeset, opts)

 View Source

 Specs

 update(changeset :: Ecto.Changeset.t(), opts :: Keyword.t()) ::
 {:ok, Cassandrax.Schema.t()} | {:error, any()}

Updates a changeset using its primary key.
Requires a changeset as it is the only way to track changes.
If the struct has no primary key, Xandra.Error will be raised.
In CassandraDB, UPDATE is also an upsert. If the struct cannot be found, a new entry will be created.
It returns {:ok, struct} if the struct has been successfully updated or {:error, message}
if there was a validation or a known constraint error.

 Example

user = MyKeyspace.get(User, 1)
changeset = Ecto.Changeset.change(user, user_name: "tom")
MyKeyspace.update(changeset)

 Link to this callback

 update!(changeset, opts)

 View Source

 Specs

 update!(changeset :: Ecto.Changeset.t(), opts :: Keyword.t()) ::
 Cassandrax.Schema.t()

Same as update/2 but returns the struct or raises if the changeset is invalid.

Cassandrax.Keyspace.Schema

This module is invoked by User defined keyspaces for schema related functionality

 Anchor for this section

 Summary

 Functions

 batch_delete(keyspace, batch, changeset)

 Implementation for Cassandrax.Keyspace.batch_delete/2

 batch_insert(keyspace, batch, changeset)

 Implementation for Cassandrax.Keyspace.batch_insert/2

 batch_update(keyspace, batch, changeset)

 Implementation for Cassandrax.Keyspace.batch_update/2

 delete(keyspace, changeset, opts)

 Implementation for Cassandrax.Keyspace.delete/2.

 delete!(keyspace, struct, opts)

 Implementation for Cassandrax.Keyspace.delete!/2.

 insert(keyspace, changeset, opts)

 Implementation for Cassandrax.Keyspace.insert/2.

 insert!(keyspace, struct, opts)

 Implementation for Cassandrax.Keyspace.insert!/2.

 update(keyspace, changeset, opts)

 Implementation for Cassandrax.Keyspace.update/2.

 update!(keyspace, struct, opts)

 Implementation for Cassandrax.Keyspace.update!/2.

 Anchor for this section

Functions

 Link to this function

 batch_delete(keyspace, batch, changeset)

 View Source

Implementation for Cassandrax.Keyspace.batch_delete/2

 Link to this function

 batch_insert(keyspace, batch, changeset)

 View Source

Implementation for Cassandrax.Keyspace.batch_insert/2

 Link to this function

 batch_update(keyspace, batch, changeset)

 View Source

Implementation for Cassandrax.Keyspace.batch_update/2

 Link to this function

 delete(keyspace, changeset, opts)

 View Source

Implementation for Cassandrax.Keyspace.delete/2.

 Link to this function

 delete!(keyspace, struct, opts)

 View Source

Implementation for Cassandrax.Keyspace.delete!/2.

 Link to this function

 insert(keyspace, changeset, opts)

 View Source

Implementation for Cassandrax.Keyspace.insert/2.

 Link to this function

 insert!(keyspace, struct, opts)

 View Source

Implementation for Cassandrax.Keyspace.insert!/2.

 Link to this function

 update(keyspace, changeset, opts)

 View Source

Implementation for Cassandrax.Keyspace.update/2.

 Link to this function

 update!(keyspace, struct, opts)

 View Source

Implementation for Cassandrax.Keyspace.update!/2.

Cassandrax.Query behaviour

 Provides the query macros.
 Queries are used to retrieve or manipulate data from a repository (see Cassandrax.Keyspace).

 Anchor for this section

 Summary

 Types

 t()

 Functions

 allow_filtering(queryable)

 distinct(queryable, distinct \\ [])

 group_by(queryable, group_by \\ [])

 limit(queryable, limit \\ 100)

 order_by(queryable, order_by \\ [])

 per_partition_limit(queryable, per_partition_limit \\ 100)

 select(queryable, select \\ [])

 where(queryable, where \\ [])

 Callbacks

 allow_filtering(queryable, allow_filtering)

 A query expression that enables filtering in certain Cassandra queries.

 distinct(queryable, distinct)

 A distinct query expression.

 group_by(queryable, order_by)

 A group by query expression.

 limit(queryable, limit)

 A limit query expression.

 order_by(queryable, order_by)

 An order by query expression.

 per_partition_limit(
 queryable,
 per_partition_limit
)

 A per partition limit expression controls the number of results return from each partition.

 select(queryable, select)

 A select query expression.

 where(queryable, where)

 A where query expression that works like an AND operator.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Cassandrax.Query{
 allow_filtering: term(),
 distinct: term(),
 from: term(),
 group_bys: term(),
 limit: term(),
 order_bys: term(),
 per_partition_limit: term(),
 schema: term(),
 select: term(),
 wheres: term()
}

 Anchor for this section

Functions

 Link to this macro

 allow_filtering(queryable)

 View Source

 (macro)

 Link to this macro

 distinct(queryable, distinct \\ [])

 View Source

 (macro)

 Link to this macro

 group_by(queryable, group_by \\ [])

 View Source

 (macro)

 Link to this macro

 limit(queryable, limit \\ 100)

 View Source

 (macro)

 Link to this macro

 order_by(queryable, order_by \\ [])

 View Source

 (macro)

 Link to this macro

 per_partition_limit(queryable, per_partition_limit \\ 100)

 View Source

 (macro)

 Link to this macro

 select(queryable, select \\ [])

 View Source

 (macro)

 Link to this macro

 where(queryable, where \\ [])

 View Source

 (macro)

 Anchor for this section

Callbacks

 Link to this callback

 allow_filtering(queryable, allow_filtering)

 View Source

 Specs

 allow_filtering(
 queryable :: Cassandrax.Queryable.t(),
 allow_filtering :: Keyword.t()
) :: t()

A query expression that enables filtering in certain Cassandra queries.
CassandraDB doesn't allow certain queries to be executed for performance reasons, such as where.
You need to set ALLOW FILTERING to bypass this block. More details in CassandraDB docs.

 Example

query = User |> allow_filtering() |> where(:id > 1) |> where(:user_name != "alice")

 Link to this callback

 distinct(queryable, distinct)

 View Source

 Specs

 distinct(queryable :: Cassandrax.Queryable.t(), distinct :: Keyword.t()) :: t()

A distinct query expression.
Only returns the distinct records from the result. Only works with a list of partition_key(s).
##Example
query = distinct(TestSchema, [:id])

 Link to this callback

 group_by(queryable, order_by)

 View Source

 Specs

 group_by(queryable :: Cassandrax.Queryable.t(), order_by :: Keyword.t()) :: t()

A group by query expression.
Allows to condense into a single row all selected rows that share the same values for a set of columns.
Only available for partition key level or at a clustering column level.

 Example

query = User |> allow_filtering() |> group_by([:id])

 Link to this callback

 limit(queryable, limit)

 View Source

 Specs

 limit(queryable :: Cassandrax.Queryable.t(), limit :: Keyword.t()) :: t()

A limit query expression.
Limits the number of rows to be returned from the result. Requires an integer, fields cannot be included.
Default limit is 100.
Limit expressions are chainable, however, the last limit expression will take precedence.

 Example

query = limit(User, 200)

 Link to this callback

 order_by(queryable, order_by)

 View Source

 Specs

 order_by(queryable :: Cassandrax.Queryable.t(), order_by :: Keyword.t()) :: t()

An order by query expression.
Orders the fields based on a given key or list of keys. Order by needs to be paired with a where clause, specifically with where clauses that have equality or in. You also need to setup the table correctly to be able to perform order by queries.

 Example Table Setup

statement = [
 "CREATE TABLE IF NOT EXISTS ",
 "MyKeyspace.ordered_(",
 "id int, ",
 "device_id int, ",
 "value text, ",
 "PRIMARY KEY (id, device_id))",
 "WITH CLUSTERING ORDER BY (device_id DESC)"
]

Cassandrax.cql(MyConn, statement)

 Example

query = User |> allow_filtering() |> where(:id == 1) |> order_by([:device_id])

 Link to this callback

 per_partition_limit(
 queryable,
 per_partition_limit
)

 View Source

 Specs

 per_partition_limit(
 queryable :: Cassandrax.Queryable.t(),
 per_partition_limit :: integer()
) :: t()

A per partition limit expression controls the number of results return from each partition.
Cassandra will then return only the first number of rows given in the per_partition_limit
(clustered by the partition key) from that partition, regardless of how many ocurences of when may be present.
More details in CassandraDB docs.

 Example

Default per_partition_limit is 100.
query = per_partition_limit(User)
Or you can set a custom per_partition_limit
query = per_partition_limit(User, 10)

 Link to this callback

 select(queryable, select)

 View Source

 Specs

 select(queryable :: Cassandrax.Queryable.t(), select :: Keyword.t()) :: t()

A select query expression.
Selects the fields from the schema and any transformations