

 bunny_cdn

 v0.1.0

 Table of contents

 	BunnyCDN

 	Modules

 	BunnyCDN

 	BunnyCDN.Client

 	BunnyCDN.HTTPClient

 	BunnyCDN.HTTPClient.Req

 	BunnyCDN.Request

BunnyCDN

Description
BunnyCDN is a simple batteries included HTTP client for the BunnyCDN Storage API. By default, it uses Req as the http client. You can supply your own by implementing the BunnyCDN.HTTPClient behaviour. See https://github.com/quarterpi/bunny_cdn/blob/master/lib/http_client.ex for more details.
Installation
If available in Hex, the package can be installed
by adding bunny_cdn to your list of dependencies in mix.exs:
def deps do
 [
 {:bunny_cdn, "~> 0.1.0"}
]
end
Next, you will need to fetch your dependencies via mix deps.get.
Run with iex iex -S mix.
Optionally supply the storage endpoint, storage zone, and storage api key as environment variables:
BUNNY_STORAGE_API_KEY=my-super-secret-api-key \
BUNNY_DEFAULT_ENDPOINT=ny.storage.bunnycdn.com \
BUNNY_STORAGE_ZONE=my-test-storage \
iex -S mix
Examples
If you load the storage endpoint, storage zone, and storage api keys as environment variables as demonstrated above, you can use the BunnyCDN.Client.new!/0 function to create a new client struct.
alias BunnyCDN.Client

client = Client.new!()

List contents of root directory.
BunnyCDN.get(client, "/")

List contents of files directory. If it does not exist, the contents of `body` will be [].
BunnyCDN.get(client, "audio/")

Download file at "audio/sample.mp3". If the file does not exists, an error touple will be returned with the status code 404. Otherwise the body will contain the binary representation of the file. The `content-type` and `content-length` headers can be used to determine the file's type and size.
BunnyCDN.get(client, "audio/sample.mp3")

Upload a file. If the directory does not exists, it will be created. The status code will be 201 and the body will contain `%{"HttpCode" => 201, "Message" => "File uploaded."}`.
{:ok, file} = File.read("./sample.mp3")
uri = "audio/sample.mp3"
BunnyCDN.put(client, file, uri)

Optionally supply the file name and path separately.
BunnyCDN.put(client, file, "audio", "sample.mp3")

Delete a file. The response will have the status code 200 and the body will contain {"HttpCode" => 200, "Message" => "File deleted successfuly."}
BunnyCDN.delete(client, "sample.mp3")

Delete a directory. The response will have the status code 200 and the body will contain {"HttpCode" => 200, "Message" => "File deleted successfuly."}
BunnyCDN.delete(client, "files/")
Acknowledgments
BunnyCDN is inspired by aws-elixir.
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/bunny_cdn.

BunnyCDN

A simple HTTP Client for the Bunny Storage API.

 Anchor for this section

 Summary

 Functions

 delete(client, uri)

 Delete directory or file at path from storage.

 get(client, uri)

 List or get file from storage.

 put(client, file, uri)

 Put files into the storage zone at the root level.

 put(client, file, path, name)

 Put files into the storage zone at the defined path.

 Anchor for this section

Functions

 Link to this function

 delete(client, uri)

 View Source

 (since 0.1.0)

 @spec delete(BunnyCDN.Client.t(), String.t()) :: {:ok, term()} | {:error, Error.t()}

Delete directory or file at path from storage.

 examples

 Examples

client = Client.new("storage.bunnycdn.com", "my-sample-bunny-storage", "Sup3rsecretAPIkEy")
BunnyCDN.delete(client, "test/")
{:ok, %{"HttpCode" => 200, "Message" => "Directory deleted successfuly."}, %{status: 200}}

BunnyCDN.delete(client, "sample.mp3")
{:ok, %{"HttpCode" => 200, "Message" => "File deleted successfuly."}, %{status: 200}}

BunnyCDN.delete(client, "audio/sample.mp3")
{:ok, %{"HttpCode" => 200, "Message" => "File deleted successfuly."}, %{status: 200}}

BunnyCDN.delete(client, "audio/unknown.mp3")
{:error, %{status: 404}}

 Link to this function

 get(client, uri)

 View Source

 (since 0.1.0)

 @spec get(BunnyCDN.Client.t(), String.t()) :: {:ok, term()} | {:error, Error.t()}

List or get file from storage.

 examples

 Examples

client = Client.new("storage.bunnycdn.com", "my-sample-bunny-storage", "Sup3rsecretAPIkEy")
BunnyCDN.get(client, "foobar/")
{:ok, [], %{status: 200}}

BunnyCDN.get(client, "audio/")
{:ok, [%{"Path" => "my-sample-bunny-storage/audio/"}], %{status: 200}}

BunnyCDN.get("audio/unknown.mp3")
{:error, %{"HttpCode" => 404, "Message" => "Object Not Found"}, %{status: 404}}

 Link to this function

 put(client, file, uri)

 View Source

 (since 0.1.0)

 @spec put(BunnyCDN.Client.t(), Sting.t(), String.t()) ::
 {:ok, term()} | {:error, Error.t()}

Put files into the storage zone at the root level.

 examples

 Examples

client = Client.new("storage.bunnycdn.com", "my-sample-bunny-storage", "Sup3rsecretAPIkEy")
BunnyCDN.put(client, "./sample.mp3", "audio/sample.mp3")
{:ok, %{"HttpCode" => 201, "Message" => "File uploaded."}, %{status: 201}}

 Link to this function

 put(client, file, path, name)

 View Source

 (since 0.1.0)

 @spec put(BunnyCDN.Client.t(), Sting.t(), String.t(), String.t()) ::
 {:ok, term()} | {:error, Error.t()}

Put files into the storage zone at the defined path.

 examples

 Examples

client = Client.new("storage.bunnycdn.com", "my-sample-bunny-storage", "Sup3rsecretAPIkEy")
BunnyCDN.put(client, "./sample.mp3", "audio", "sample.mp3")
{:ok, %{"HttpCode" => 201, "Message" => "File uploaded."}, %{status: 201}}

BunnyCDN.Client

Used for providing credentials and connection details for interacting with BunnyCDN Storage API.
[BunnyCDN Storage Endpoints] https://docs.bunny.net/reference/storage-api
	Falkenstein, DE: storage.bunnycdn.com
	London, UK: uk.storage.bunnycdn.com
	New York, US: ny.storage.bunnycdn.com
	Los Angeles, US: la.storage.bunnycdn.com
	Singapore, SG: sg.storage.bunnycdn.com
	Stockholm, SE: se.storage.bunnycdn.com
	São Paulo, BR: br.storage.bunnycdn.com
	Johannesburg, SA: jh.storage.bunnycdn.com

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(storage_endpoint, storage_zone, storage_api_key)

 new!()

 new!(storage_endpoint)

 put_http_client(client, http_client)

 request(client, method, url, body, headers, opts \\ [])

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %BunnyCDN.Client{
 http_client: {module(), keyword()},
 storage_api_key: binary() | nil,
 storage_endpoint: binary() | nil,
 storage_zone: binary() | nil
}

 Anchor for this section

Functions

 Link to this function

 new(storage_endpoint, storage_zone, storage_api_key)

 View Source

 Link to this function

 new!()

 View Source

 Link to this function

 new!(storage_endpoint)

 View Source

 Link to this function

 put_http_client(client, http_client)

 View Source

 Link to this function

 request(client, method, url, body, headers, opts \\ [])

 View Source

BunnyCDN.HTTPClient behaviour

Http Client Behaviour specification.
The default http client uses Req underneath the hood. You can implement your own http client
if your prefer a different http client. You'll need to set the :http_client configuration in BunnyCDN.Client:
client = %BunnyCDN.Client{http_client: {MyHTTPClient, []}}
BunnyCDN.get(client, "some/file.txt")

 Anchor for this section

 Summary

 Callbacks

 request(method, url, body, headers, options)

 Executes an HTTP request. Must return either {:ok, map} or {:error, reason}.

 Anchor for this section

Callbacks

 Link to this callback

 request(method, url, body, headers, options)

 View Source

 @callback request(
 method ::
 :get | :post | :head | :patch | :delete | :options | :put | String.t(),
 url :: String.t() | URI.t(),
 body :: iodata() | nil,
 headers ::
 [{header_name :: String.t(), header_value :: String.t()}] | [] | nil,
 options :: keyword()
) :: {:ok, binary(), term()} | {:error, term()}

Executes an HTTP request. Must return either {:ok, map} or {:error, reason}.
	body must be raw file data without any encoding. See [BunnyCDN API reference]https://docs.bunny.net/reference/put_-storagezonename-path-filename
	headers already contains required headers such as the Authorization headers.

BunnyCDN.HTTPClient.Req

The default http client. It uses the Req package to make the http requests.

BunnyCDN.Request

Low level API for building requests. You usually won't need to use this. If you do need to use it, note that you will need to set the Access_Key headers yourself.

 Anchor for this section

 Summary

 Functions

 request(client, method, uri, body \\ nil, headers \\ [], options \\ [])

 Anchor for this section

Functions

 Link to this function

 request(client, method, uri, body \\ nil, headers \\ [], options \\ [])

 View Source

 @spec request(BunnyCDN.Client.t(), atom(), String.t(), binary() | nil, [], []) ::
 {:ok, binary(), term()} | {:error, term()}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

